Multiferroic; magnetoelectric; antimagnetoelectric; BiCoO3; dynamical magnetic effective charges
Abstract :
[en] Using first-principles calculations, we explore the magnetoelectric properties of the room-temperature multiferroic crystal BiCoO3. We use both applied magnetic field and finite-difference techniques to show that BiCoO3 is antimagnetoelectric at the linear level. The calculation of the dynamical effective charges reveals that the total magnetoelectric response is zero due to the compensating nonzero magnetoelectric response of each magnetic sublattice. This calculation also highlights that the orbital contribution to the response is remarkably larger than the spin one and that each sublattice has a rather large total magnetoelectric response of 85 ps/m. Furthermore, we provide an intuitive recipe to visualize the dynamical magnetic effective charge, allowing to examine its multipolar nature, which we confirm by means of ab initio calculations. Given the large value of the local response, we investigate the ferromagnetic phase as well, which gives a giant magnetoelectric response of about 1000 ps/m and coming mainly from the spin contribution this time. Finally, we discuss the possible reasons for such a large magnetoelectric response in BiCoO3 and propose possible strategies to unveil this potentially large response.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Braun, Maxime ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université Lille ; Université Artois ; UMR ; Unité de Catalyse et Chimie du Solide
Guster, Ionel-Bogdan ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Urru, Andrea ; Rutgers University
Kabbour, Houria; Université Lille ; Université Artois ; UMR ; Unité de Catalyse et Chimie du Solide
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
Language :
English
Title :
Large dynamical magnetic effective charges and antimagnetoelectricity from spin and orbital origin in multiferroic BiCoO3
Publication date :
24 October 2024
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society (APS)
Volume :
110
Issue :
14
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
F.R.S.-FNRS - Fonds de la Recherche Scientifique EOS - The Excellence Of Science Program
Funding number :
40007525; J.0020.20
Funding text :
E.B. and B.G. acknowledge the FNRS and the Excellence of Science pro- gram (EOS “ShapeME”, No. 40007525) funded by the FWO and F.R.S.-FNRS. E.B. and M.B. acknowledge the FNRS CDR project “MULAN” No. (J.0020.20). M.B. acknowledges V. Duffort for his advice on figures performed using Python scripts. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique (F.R.S.- FNRS) under Grant No. 2.5020.11 and the Tier-1 Lucia supercomputer of the Walloon Region, infrastructure funded by the Walloon Region under the Grant Agreement No. 1910247 and by the High Performance Computing Mesocenter of the University of Lille financed by the University, the Hauts-de-France Region, the State, the FEDER and the University’s laboratories through a pooling process.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D 38, R123 (2005) 0022-3727 10.1088/0022-3727/38/8/R01.
W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature (London) 442, 759 (2006) 0028-0836 10.1038/nature05023.
J.-P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics, Eur. Phys. J. B 71, 299 (2009) 1434-6028 10.1140/epjb/e2009-00336-7.
T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P. Maletinsky, R. Hübner, M. O. Liedke, J. Fassbender, O. G. Schmidt, and D. Makarov, Purely antiferromagnetic magnetoelectric random access memory, Nat. Commun. 8, 13985 (2017) 2041-1723 10.1038/ncomms13985.
S. Kopyl, R. Surmenev, M. Surmeneva, Y. Fetisov, and A. Kholkin, Magnetoelectric effect: Principles and applications in biology and medicine-A review, Mater. Today Bio 12, 100149 (2021) 2590-0064 10.1016/j.mtbio.2021.100149.
X. Liang, H. Chen, and N. X. Sun, Magnetoelectric materials and devices, APL Mater. 9, 041114 (2021) 2166-532X 10.1063/5.0044532.
N. A. Spaldin and R. Ramesh, Advances in magnetoelectric multiferroics, Nat. Mater. 18, 203 (2019) 1476-1122 10.1038/s41563-018-0275-2.
W. C. Röntgen, Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft, Ann. Phys. (Leipzig) 271, 264 (1888) 0003-3804 10.1002/andp.18882711003.
P. Curie, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, J. Phys. Théor. Appl. 3, 393 (1894).
P. Debye, Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt, Z. Angew. Phys. 36, 300 (1926) 10.1007/BF01557844.
I. E. Dzyaloshinskiç, On the magneto-electrical effects in antiferromagnets, Sov. Phys. JETP 10, 628 (1960).
D. N. Astrov, The magnetoelectric effect in antiferromagnetics, J. Exp. Theor. Phys. 11, 984 (1960).
D. N. Astrov, Magnetoelectric effect in chromium oxide, J. Exp. Theor. Phys. 13, 1035 (1960).
V. J. Folen, G. T. Rado, and E. W. Stalder, Anisotropy of the magnetoelectric effect in (Equation presented), Phys. Rev. Lett. 6, 607 (1961) 0031-9007 10.1103/PhysRevLett.6.607.
G. T. Rado and V. J. Folen, Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains, Phys. Rev. Lett. 7, 310 (1961) 0031-9007 10.1103/PhysRevLett.7.310.
W. F. Brown, R. M. Hornreich, and S. Shtrikman, Upper bound on the magnetoelectric susceptibility, Phys. Rev. 168, 574 (1968) 0031-899X 10.1103/PhysRev.168.574.
T. Bayaraa, Y. Yang, M. Ye, and L. Bellaiche, Giant linear magnetoelectric effect at the morphotropic phase boundary of epitaxial (Equation presented) films, Phys. Rev. B 103, L060103 (2021) 2469-9950 10.1103/PhysRevB.103.L060103.
A. Sasani, J. Íñiguez, and E. Bousquet, Origin of nonlinear magnetoelectric response in rare-earth orthoferrite perovskite oxides, Phys. Rev. B 105, 064414 (2022) 2469-9950 10.1103/PhysRevB.105.064414.
C. M. Fernández-Posada, A. Castro, J.-M. Kiat, F. Porcher, O. Peña, M. Algueró, and H. Amorín, A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-Temperature magnetoelectricity, Nat. Commun. 7, 12772 (2016) 2041-1723 10.1038/ncomms12772.
E. Bousquet and N. Spaldin, Induced magnetoelectric response in (Equation presented) perovskites, Phys. Rev. Lett. 107, 197603 (2011) 0031-9007 10.1103/PhysRevLett.107.197603.
O. Diéguez and J. Íñiguez, First-principles investigation of morphotropic transitions and phase-change functional responses in (Equation presented) multiferroic solid solutions, Phys. Rev. Lett. 107, 057601 (2011) 0031-9007 10.1103/PhysRevLett.107.057601.
S. H. Chun, Y. S. Chai, Y. S. Oh, D. Jaiswal-Nagar, S. Y. Haam, I. Kim, B. Lee, D. H. Nam, K.-T. Ko, J.-H. Park, J.-H. Chung, and K. H. Kim, Realization of giant magnetoelectricity in helimagnets, Phys. Rev. Lett. 104, 037204 (2010) 0031-9007 10.1103/PhysRevLett.104.037204.
A. Malashevich, S. Coh, I. Souza, and D. Vanderbilt, Full magnetoelectric response of (Equation presented) from first principles, Phys. Rev. B 86, 094430 (2012) 1098-0121 10.1103/PhysRevB.86.094430.
J. Íñiguez, First-principles approach to lattice-mediated magnetoelectric effects, Phys. Rev. Lett. 101, 117201 (2008) 0031-9007 10.1103/PhysRevLett.101.117201.
T. Birol, N. A. Benedek, H. Das, A. L. Wysocki, A. T. Mulder, B. M. Abbett, E. H. Smith, S. Ghosh, and C. J. Fennie, The magnetoelectric effect in transition metal oxides: Insights and the rational design of new materials from first principles, Curr. Opin. Solid State Mater. Sci. 16, 227 (2012) 1359-0286 10.1016/j.cossms.2012.08.002.
E. Bousquet and A. Cano, Non-collinear magnetism in multiferroic perovskites, J. Phys.: Condens. Matter 28, 123001 (2016) 0953-8984 10.1088/0953-8984/28/12/123001.
M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, The evolution of multiferroics, Nat. Rev. Mater. 1, 16046 (2016) 2058-8437 10.1038/natrevmats.2016.46.
C. Xu, H. Yu, J. Wang, and H. Xiang, First-principles approaches to magnetoelectric multiferroics, Annu. Rev. Condens. Matter Phys. 15, 85 (2024) 1947-5454 10.1146/annurev-conmatphys-032922-102353.
M. Ye and D. Vanderbilt, Dynamical magnetic charges and linear magnetoelectricity, Phys. Rev. B 89, 064301 (2014) 1098-0121 10.1103/PhysRevB.89.064301.
A. Scaramucci, E. Bousquet, M. Fechner, M. Mostovoy, and N. A. Spaldin, Linear magnetoelectric effect by orbital magnetism, Phys. Rev. Lett. 109, 197203 (2012) 0031-9007 10.1103/PhysRevLett.109.197203.
I. V. Solovyev and T. V. Kolodiazhnyi, Origin of magnetoelectric effect in (Equation presented) and (Equation presented): The lessons learned from the comparison of first-principles-based theoretical models and experimental data, Phys. Rev. B 94, 094427 (2016) 2469-9950 10.1103/PhysRevB.94.094427.
Y. Yanagi, S. Hayami, and H. Kusunose, Manipulating the magnetoelectric effect: Essence learned from (Equation presented), Phys. Rev. B 97, 020404 (R) (2018) 2469-9950 10.1103/PhysRevB.97.020404.
C. Ederer and N. A. Spaldin, Towards a microscopic theory of toroidal moments in bulk periodic crystals, Phys. Rev. B 76, 214404 (2007) 1098-0121 10.1103/PhysRevB.76.214404.
N. A. Spaldin, M. Fechner, E. Bousquet, A. Balatsky, and L. Nordström, Monopole-based formalism for the diagonal magnetoelectric response, Phys. Rev. B 88, 094429 (2013) 1098-0121 10.1103/PhysRevB.88.094429.
A. Urru and N. A. Spaldin, Magnetic octupole tensor decomposition and second-order magnetoelectric effect, Ann. Phys. (NY) 447, 168964 (2022) 0003-4916 10.1016/j.aop.2022.168964.
X. H. Verbeek, A. Urru, and N. A. Spaldin, Hidden orders and (anti-)magnetoelectric effects in (Equation presented) and (Equation presented), Phys. Rev. Res. 5, L042018 (2023) 2643-1564 10.1103/PhysRevResearch.5.L042018.
Note that the phonon angular frequencies (Equation presented) are related to the frequencies (Equation presented), commonly expressed in THz or (Equation presented), by (Equation presented).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.110.144442 for theoretical formulation of the ME mode-oscillator strength, fit of the DMC data, visualization of the DMC, and second order diagonal DMC.
X. Gonze and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55, 10355 (1997) 0163-1829 10.1103/PhysRevB.55.10355.
M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Linear optical properties in the projector-Augmented wave methodology, Phys. Rev. B 73, 045112 (2006) 1098-0121 10.1103/PhysRevB.73.045112.
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996) 0927-0256 10.1016/0927-0256(96)00008-0.
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993) 0163-1829 10.1103/PhysRevB.47.558.
X. Gonze, The Abinit project: Impact, environment and recent developments, Comput. Phys. Commun. 248, 107042 (2020) 0010-4655 10.1016/j.cpc.2019.107042.
R. Resta, Electrical polarization and orbital magnetization: The modern theories, J. Phys.: Condens. Matter 22, 123201 (2010) 0953-8984 10.1088/0953-8984/22/12/123201.
D. Ceresoli, U. Gerstmann, A. P. Seitsonen, and F. Mauri, First-principles theory of orbital magnetization, Phys. Rev. B 81, 060409 (R) (2010) 1098-0121 10.1103/PhysRevB.81.060409.
T. Thonhauser, Theory of orbital magnetization in solids, Int. J. Mod. Phys. B 25, 1429 (2011) 0217-9792 10.1142/S0217979211058912.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100, 136406 (2008) 0031-9007 10.1103/PhysRevLett.100.136406.
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994) 10.1103/PhysRevB.50.17953.
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976) 0556-2805 10.1103/PhysRevB.13.5188.
J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981) 0163-1829 10.1103/PhysRevB.23.5048.
A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Phys. Rev. B 52, R5467 (1995) 0163-1829 10.1103/PhysRevB.52.R5467.
P. Ravindran, R. Vidya, O. Eriksson, and H. Fjellvåg, Magnetic-instability-induced giant magnetoelectric coupling, Adv. Mater. 20, 1353 (2008) 0935-9648 10.1002/adma.200701889.
Y. Uratani, T. Shishidou, F. Ishii, and T. Oguchi, First-principles predictions of giant electric polarization, Jpn. J. Appl. Phys. 44, 7130 (2005) 0021-4922 10.1143/JJAP.44.7130.
J. A. McLeod, Z. V. Pchelkina, L. D. Finkelstein, E. Z. Kurmaev, R. G. Wilks, A. Moewes, I. V. Solovyev, A. A. Belik, and E. Takayama-Muromachi, Electronic structure of (Equation presented) multiferroics and related oxides, Phys. Rev. B 81, 144103 (2010) 1098-0121 10.1103/PhysRevB.81.144103.
F. Bultmark, F. Cricchio, O. Grånäs, and L. Nordström, Multipole decomposition of (Equation presented) energy and its application to actinide compounds, Phys. Rev. B 80, 035121 (2009) 1098-0121 10.1103/PhysRevB.80.035121.
See https://github.com/materialstheory/multipyles.
M. Torrent, F. Jollet, F. Bottin, G. Zérah, and X. Gonze, Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure, Comput. Mater. Sci. 42, 337 (2008) 0927-0256 10.1016/j.commatsci.2007.07.020.
F. Jollet, M. Torrent, and N. Holzwarth, Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format, Comput. Phys. Commun. 185, 1246 (2014) 0010-4655 10.1016/j.cpc.2013.12.023.
A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S.-I. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, and E. Takayama-Muromachi, Neutron powder diffraction study on the crystal and magnetic structures of (Equation presented), Chem. Mater. 18, 798 (2006) 0897-4756 10.1021/cm052334z.
S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M. Perez-Mato, Automatic calculation of symmetry-Adapted tensors in magnetic and non-magnetic materials: A new tool of the Bilbao Crystallographic Server, Acta Cryst. A75, 438 (2019).
M. Mostovoy, A. Scaramucci, N. A. Spaldin, and K. T. Delaney, Temperature-dependent magnetoelectric effect from first principles, Phys. Rev. Lett. 105, 087202 (2010) 0031-9007 10.1103/PhysRevLett.105.087202.
C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater. 22, 2900 (2010) 0935-9648 10.1002/adma.200904326.
Y. Chang, Y. Weng, Y. Xie, B. You, J. Wang, L. Li, J.-M. Liu, S. Dong, and C. Lu, Colossal linear magnetoelectricity in polar magnet (Equation presented), Phys. Rev. Lett. 131, 136701 (2023) 0031-9007 10.1103/PhysRevLett.131.136701.
Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura, Magnetic-field-induced ferroelectric state in (Equation presented), Phys. Rev. Lett. 101, 097205 (2008) 0031-9007 10.1103/PhysRevLett.101.097205.
Y. S. Oh, S. Artyukhin, J. J. Yang, V. Zapf, J. W. Kim, D. Vanderbilt, and S.-W. Cheong, Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet, Nat. Commun. 5, 3201 (2014) 2041-1723 10.1038/ncomms4201.
E. Bousquet and N. Spaldin, (Equation presented) dependence in the (Equation presented) treatment of noncollinear magnets, Phys. Rev. B 82, 220402 (R) (2010) 1098-0121 10.1103/PhysRevB.82.220402.
F. Ricci and E. Bousquet, Unveiling the room-Temperature magnetoelectricity of troilite FeS, Phys. Rev. Lett. 116, 227601 (2016) 0031-9007 10.1103/PhysRevLett.116.227601.
M. K. Kim, J. Y. Moon, S. H. Oh, D. G. Oh, Y. J. Choi, and N. Lee, Strong magnetoelectric coupling in mixed ferrimagnetic-multiferroic phases of a double perovskite, Sci. Rep. 9, 5456 (2019) 2045-2322 10.1038/s41598-019-41990-9.
P. Li, X.-S. Zhou, and Z.-X. Guo, Intriguing magnetoelectric effect in two-dimensional ferromagnetic/perovskite oxide ferroelectric heterostructure, npj Comput. Mater. 8, 20 (2022) 2057-3960 10.1038/s41524-022-00706-w.
M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J.-M. Triscone, Exchange bias in (Equation presented)-(Equation presented) superlattices, Nat. Mater. 11, 195 (2012) 1476-1122 10.1038/nmat3224.
Y. S. Hou, H. J. Xiang, and X. G. Gong, Intrinsic insulating ferromagnetism in manganese oxide thin films, Phys. Rev. B 89, 064415 (2014) 1098-0121 10.1103/PhysRevB.89.064415.
M. Gibert, M. Viret, A. Torres-Pardo, C. Piamonteze, P. Zubko, N. Jaouen, J. M. Tonnerre, A. Mougin, J. Fowlie, S. Catalano, A. Gloter, O. Stéphan, and J. M. Triscone, Interfacial control of magnetic properties at (Equation presented) interfaces, Nano Lett. 15, 7355 (2015) 1530-6984 10.1021/acs.nanolett.5b02720.
M. An, Y. Weng, H. Zhang, Jun-J. Zhang, Y. Zhang, and S. Dong, Appearance and disappearance of ferromagnetism in ultrathin (Equation presented) on (Equation presented) substrate: A viewpoint from first principles, Phys. Rev. B 96, 235112 (2017) 2469-9950 10.1103/PhysRevB.96.235112.
W. Niu, W. Liu, M. Gu, Y. Chen, X. Zhang, M. Zhang, Y. Chen, J. Wang, J. Du, F. Song, Direct demonstration of the emergent magnetism resulting from the Mmultivalence Mn in a (Equation presented) epitaxial thin film system, Adv. Electron. Mater. 4, 1800055 (2018) 2199-160X 10.1002/aelm.201800055.
C. Zhong, X. Lu, Y. Wan, Y. Min, Z. Zhao, P. Zhou, Z. Dong, and J. Liu, Strain-induced insulating ferromagnetism in (Equation presented) thin films from first-principles investigations, J. Magn. Magn. Mater. 466, 406 (2018) 0304-8853 10.1016/j.jmmm.2018.07.050.
X. Guan, X. Shen, J. Zhang, W. Wang, J. Zhang, H. Wang, W. Wang, Y. Yao, J. Li, C. Gu, J. Sun, and R. Yu, Tuning magnetism and crystal orientations by octahedral coupling in (Equation presented) thin films, Phys. Rev. B 100, 014427 (2019) 2469-9950 10.1103/PhysRevB.100.014427.
Y. K. Liu, H. F. Wong, K. K. Lam, C. L. Mak, and C. W. Leung, Tuning ferromagnetic properties of (Equation presented) films by oxygen vacancies and strain, J. Magn. Magn. Mater. 481, 85 (2019) 0304-8853 10.1016/j.jmmm.2019.03.001.
H. Yao, K. Jin, Z. Yang, Q. Zhang, W. Ren, S. Xu, M. Yang, L. Gu, E.-J. Guo, C. Ge, Ferromagnetic enhancement in (Equation presented) films with release and flexure, Adv. Mater. Interfac. 8, 2101499 (2021) 2196-7350 10.1002/admi.202101499.
M. Yang, K. Jin, H. Yao, Q. Zhang, Y. Ji, L. Gu, W. Ren, J. Zhao, J. Wang, E.-J. Guo, Emergent magnetic phenomenon with unconventional structure in epitaxial manganate thin films, Adv. Sci. 8, 2100177 (2021) 2198-3844 10.1002/advs.202100177.
Q. Lu, Z. Liu, Q. Yang, H. Cao, P. Balakrishnan, Q. Wang, L. Cheng, Y. Lu, J.-M. Zuo, H. Zhou, Engineering magnetic anisotropy and emergent multidirectional soft ferromagnetism in ultrathin freestanding (Equation presented) films, ACS Nano 16, 7580 (2022) 1936-0851 10.1021/acsnano.1c11065.
D. Fuchs, E. Arac, C. Pinta, S. Schuppler, R. Schneider, and H. V. Löhneysen, Tuning the magnetic properties of (Equation presented) thin films by epitaxial strain, Phys. Rev. B 77, 014434 (2008) 1098-0121 10.1103/PhysRevB.77.014434.
E.-M. Choi, J. E. Kleibeuker, and J. L. MacManus-Driscoll, Strain-Tuned enhancement of ferromagnetic TC to 176 K in Sm-doped (Equation presented) thin films and determination of magnetic phase diagram, Sci. Rep. 7, 43799 (2017) 2045-2322 10.1038/srep43799.
W.-N. Ren, K. Jin, E.-J. Guo, C. Ge, C. Wang, X. Xu, H. Yao, L. Jiang, and G. Yang, Strain-engineered high-Temperature ferromagnetic oxygen-substituted (Equation presented) from first principles, Phys. Rev. B 104, 174428 (2021) 2469-9950 10.1103/PhysRevB.104.174428.
S. P. Altintas, N. Mahamdioua, A. Amira, and C. Terzioglu, Effect of anionic substitution on the structural and magneto-electrical properties of La-Ca-Mn-O perovskite manganites, J. Magn. Magn. Mater. 368, 111 (2014) 0304-8853 10.1016/j.jmmm.2014.05.010.
A. Camilo Garcia-Castro, Y. Ma, Z. Romestan, E. Bousquet, C. Cen, and A. H. Romero, Engineering of ferroic orders in thin films by anionic substitution, Adv. Funct. Mater. 32, (2021) 10.1002/adfm.202107135.
H. T. Hirose, J.-I. Yamaura, and Z. Hiroi, Robust ferromagnetism carried by antiferromagnetic domain walls, Sci. Rep. 7, 42440 (2017) 2045-2322 10.1038/srep42440.
Y. Ga, D. Yu, Y. Li, J. Jiang, L. Wang, P. Li, J. Liang, H. Feng, Y. Shi, and H. Yang, Electrically controllable topological magnetism in multiferroic antiferromagnetic (Equation presented), Phys. Rev. B 109, L060402 (2024) 2469-9950 10.1103/PhysRevB.109.L060402.
P. Bouvier, A. Sasani, E. Bousquet, M. Guennou, and J. A. Moreira, Lattice dynamics and Raman spectrum of supertetragonal (Equation presented), J. Phys. Chem. Solids 173, 111092 (2023) 0022-3697 10.1016/j.jpcs.2022.111092.
R. V. Shpanchenko, V. V. Chernaya, A. A. Tsirlin, P. S. Chizhov, D. E. Sklovsky, E. V. Antipov, E. P. Khlybov, V. Pomjakushin, A. M. Balagurov, J. E. Medvedeva, Synthesis, structure, and properties of new perovskite (Equation presented), Chem. Mater. 16, 3267 (2004) 0897-4756 10.1021/cm049310x.
A. Payne, G. Avendaño-Franco, E. Bousquet, and A. H. Romero, Firefly algorithm applied to noncollinear magnetic phase materials prediction, J. Chem. Theory Comput. 14, 4455 (2018) 1549-9618 10.1021/acs.jctc.8b00404.
A. Payne, G. Avedaño-Franco, X. He, E. Bousquet, and A. H. Romero, Optimizing the orbital occupation in the multiple minima problem of magnetic materials from the metaheuristic firefly algorithm, Phys. Chem. Chem. Phys. 21, 21932 (2019) 1463-9076 10.1039/C9CP03618K.
L. Ponet, E. D. Lucente, N. Marzari, The energy landscape of magnetic materials, npj Comput. Mater. 10, 151 (2024) 10.21203/rs.3.rs-3358581/v1.
E. Bousquet, E. Lelièvre-Berna, N. Qureshi, J.-R. Soh, N. A. Spaldin, A. Urru, X. H. Verbeek, and S. F. Weber, On the sign of the linear magnetoelectric coefficient in (Equation presented), J. Phys.: Condens. Matter 36, 155701 (2024) 0953-8984 10.1088/1361-648X/ad1a59.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.