damage; fracture; triaxiality; notched tensile samples; model comparison; validation
Abstract :
[en] The effect of triaxiality on the evolution of damage in Al-2024 aluminum cylindrical
specimens is studied in this work. Uncoupled and coupled damage models, all of them explicitly
dependent on triaxiality, are assessed and compared. These models are characterized by tensile
tests on cylindrical specimens without notches, to obtain the material parameters for each model.
The capability of each model to predict fracture when different positive triaxial conditions evolve
is then evaluated through tensile tests on notched cylindrical specimens. In particular, the damage
index, evaluated at the fracture strain level, is compared with the experimental results validating the
models. Moreover, the triaxiality evolution in the different specimens is studied in order to assess
its effect on damage, demonstrating that the fracture strain decreases at greater triaxiality values.
Observations through scanning electron microscopy confirm this pattern; i.e., an increase in triaxiality
reveals a shift in the fracture mechanism from a more ductile condition in the original specimens to a
more brittle one as the notch radius decreases. In addition, bilinear damage evolution is proposed to
describe the physical behavior of the material when the Lemaitre coupled model is considered. In
such a case, special attention must be devoted to the material characterization since coupling between
hardening material parameters and damage affects the results.
Disciplines :
Mechanical engineering
Author, co-author :
Gonzalez, Alvaro
Celentano, Diego; PUC - Pontificia Universidad Católica de Chile [CL]
Cruchaga, Marcela; Universidad de Santiago de Chile
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
The Triaxiality Effect on Damage Evolution in Al-2024 Tensile Samples
Publication date :
2024
Journal title :
Metals
eISSN :
2075-4701
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
McClintock F. A criterion for ductile fracture by the growth of holes J. Appl. Mech. 1968 35 363 371 10.1115/1.3601204
Lemaitre J. A continuous damage mechanics model for ductile fracture J. Eng. Mater. Technol. 1985 107 83 89 10.1115/1.3225775
Gurson A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media J. Eng. Mater. Technol. 1977 99 2 15 10.1115/1.3443401
Rice J.R. Tracey D.M. On the ductile enlargement of voids in triaxial stress field J. Mech. Phys. Solids 1969 17 201 217 10.1016/0022-5096(69)90033-7
Ganjiani M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle Eur. J. Mech. Solids 2020 84 104048 10.1016/j.euromechsol.2020.104048
Hancock J. Mackenzie A. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states J. Mech. Phys. Solids 1976 24 147 160 10.1016/0022-5096(76)90024-7
Dunand M. Mohr D. On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles J. Mech. Phys. Solids 2011 59 1374 1394 10.1016/j.jmps.2011.04.006
Achouri M. Germain G. Dal Santo P. Saidane D. Experimental characterization and numerical modeling of micromechanical damage under different stress states Mater. Des. 2013 50 207 222 10.1016/j.matdes.2013.02.075
Gholipour H. Biglari F. Nikbin K. Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests Int. J. Mech. Sci. 2019 164 105170 10.1016/j.ijmecsci.2019.105170
Bonora N. Gentile D. Pirondi A. Newaz G. Ductile damage evolution under triaxial state of stress: Theory and experiments Int. J. Plast. 2005 21 981 1007 10.1016/j.ijplas.2004.06.003
Peng J. Wang Y. Dai Q. Liu X. Liu L. Zhang Z. Effect of Stress Triaxiality on Plastic Damage Evolution and Failure Mode for 316L Notched Specimen Metals 2019 9 1067 10.3390/met9101067
Zhong J. Xu T. Guan K. Huang L. Evaluation of Ductile Damage Parameters under High Stress Triaxiality Exp. Mech. 2017 57 501 504 10.1007/s11340-016-0224-4
Yu F. Ben Jar P.-Y. Hendry M. Constitutive analysis of pressure-insensitive metals under axisymmetric tensile loading: A stress triaxiality-dependent plasticity damage model Int. J. Mech. Sci. 2018 142–143 21 32 10.1016/j.ijmecsci.2018.04.035
Zhu Y. Engelhardt M. Pan Z. Simulation of ductile fracture initiation in steels using a stress triaxiality–shear stress coupled model Acta Mech. Sin. 2019 35 600 614 10.1007/s10409-018-0825-5
Coppola T. Cortese L. Folgarait P. The effect of stress invariants on ductile fracture limit in steels Eng. Fract. Mech. 2009 76 1288 1302 10.1016/j.engfracmech.2009.02.006
Thompson R.D. Hancock J.W. Ductile failure by void nucleation, growth and coalescence Int. J. Fract. 1984 26 99 112 10.1007/BF01157547
Drucker D.C. Rice R. Plastic deformation in brittle and ductile fracture Eng. Fract. Mech. 1970 1 577 602 10.1016/0013-7944(70)90001-9
Pineau A. Benzerga A.A. Pardoen T. Failure of metals I: Brittle and ductile fracture Acta Mater. 2016 107 424 483 10.1016/j.actamat.2015.12.034
Cao T.-S. Gachet J.-M. Montmitonnet P. Bouchard P.-O. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality Eng. Fract. Mech. 2014 124–125 80 96 10.1016/j.engfracmech.2014.03.021
Kiran R. Khandelwal K. A triaxiality and Lode parameter dependent ductile fracture criterion Eng. Fract. Mech. 2014 128 121 138 10.1016/j.engfracmech.2014.07.010
Malcher L. Andrade Pires F.M. César de Sá J.M.A. An extended GTN model for ductile fracture under high and low stress triaxiality Int. J. Plast. 2014 54 193 228 10.1016/j.ijplas.2013.08.015
Bao Y. Wierzbicki T. On the cut-off value of negative triaxiality for fracture Eng. Fract. Mech. 2005 72 1049 1069 10.1016/j.engfracmech.2004.07.011
Kubík P. Šebek F. Hůlka J. Petruška J. Calibration of ductile fracture criteria at negative stress triaxiality Int. J. Mech. Sci. 2016 108–109 90 103 10.1016/j.ijmecsci.2016.02.001
Brünig M. Gerke S. Schmidt M. Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations Int. J. Plast. 2018 102 70 82 10.1016/j.ijplas.2017.12.003
Bonora N. Testa G. Ruggiero A. Iannitti G. Gentile D. Continuum damage mechanics modelling incorporating stress triaxiality effect on ductile damage initiation Fatigue Fract. Eng. Mater. Struct. 2020 43 1755 1768 10.1111/ffe.13220
Testa G. Bonora N. Ruggiero A. Iannitti G. Gentile D. Stress triaxiality effect on void nucleation in ductile metals Fatigue Fract. Eng. Mater. Struct. 2020 43 1473 1486 10.1111/ffe.13212
Testa G. Bonora N. Ruggiero A. Iannitti G. Gentile D. Stress triaxiality effect on cleavage fracture stress Theor. Appl. Fract. Mech. 2020 109 102689 10.1016/j.tafmec.2020.102689
Saeidi N. Ashrafizadeh F. Niroumand B. Forouzan M.R. Mohseni mofidi S. Barlat F. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel Mater. Sci. Eng. 2015 644 210 217 10.1016/j.msea.2015.07.036
Khan A. Liu H. A new approach for ductile fracture prediction on Al 2024-T351 alloy Int. J. Plast. 2012 35 1 12 10.1016/j.ijplas.2012.01.003
Driemeier L. Brünig M. Micheli G. Alves M. Experiments on stress-triaxiality dependence of material behavior of aluminum alloys Mech. Mater. 2010 42 207 217 10.1016/j.mechmat.2009.11.012
Kim H. Kobayashi T. Niimoni M. Hagiwara T. Sakamoto T. Effect of stress triaxiality on fracture behaviour of Al-Li system alloy Mater. Sci. Forum 1996 217–222 1499 1504 10.4028/www.scientific.net/MSF.217-222.1499
Brünig M. Chyra O. Albrecht D. Driemeier L. Alves M. A ductile damage criterion at various stress triaxialities Int. J. Plast. 2008 24 1731 1755 10.1016/j.ijplas.2007.12.001
Zhang K. Badreddine H. Hfaiedh N. Saanouni K. Liu J. Enhanced CDM model accounting of stress triaxiality and Lode angle for ductile damage prediction in metal forming Int. J. Damage Mech. 2021 30 260 282 10.1177/1056789520958045
Li H. Fu M. Lu J. Yang H. Ductile fracture: Experiments and computations Int. J. Plast. 2011 27 147 180 10.1016/j.ijplas.2010.04.001
Yu S. Cai L. Yao D. Bao C. Critical ductile fracture criterion based on first principal stress and stress triaxiality Theor. Appl. Fract. Mech. 2020 109 102696 10.1016/j.tafmec.2020.102696
Bao Y. Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space Int. J. Mech. Sci. 2004 46 81 98 10.1016/j.ijmecsci.2004.02.006
Kou L. Zhao W. Tuo X. Wang G. Sun C. Effect of stress triaxiality on fracture failure of 6061 aluminium alloy J. Mech. Eng. Sci. 2020 14 6961 6970 10.15282/jmes.14.2.2020.33.0545
Cao T.-S. Gaillac A. Montmitonnet P. Bouchard P.-O. Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical–experimental analysis of fracture experiments conducted on a zirconium alloy Int. J. Solids Struct. 2013 50 3984 3999 10.1016/j.ijsolstr.2013.08.011
Takuda H. Mori K. Hatta N. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals J. Mater. Process. Technol. 1999 95 116 121 10.1016/S0924-0136(99)00275-7
Canales C. Boman R. Ponthot J.-P. Application of uncoupled damage models to predict ductile fracture in sheet metal blanking Key Eng. Mater. 2016 725 483 488 10.4028/www.scientific.net/KEM.725.483
Komori K. Effect of ductile fracture criteria on chevron crack formation and evolution in drawing Int. J. Mech. Sci. 2003 45 141 160 10.1016/S0020-7403(03)00035-3
Yue Z. Cao K. Badreddine H. Saanouni K. Gao J. Failure prediction on steel sheet under different loading paths based on fully coupled ductile damage model Int. J. Mech. Sci. 2019 153–154 1 9 10.1016/j.ijmecsci.2019.01.029
Gruben G. Hopperstad O. Børvik T. Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL Int. J. Mech. Sci. 2012 62 133 146 10.1016/j.ijmecsci.2012.06.009
Kiran R. Khandelwal K. Experimental Studies and Models for Ductile Fracture in ASTM A992 Steels at High Triaxiality J. Struct. Eng. 2014 140 04013044 10.1061/(ASCE)ST.1943-541X.0000828
Peng Z. Zhao H. Li X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality Int. J. Plast. 2021 145 103057 10.1016/j.ijplas.2021.103057
Bonora N. A nonlinear CDM model for ductile failure Eng. Fract. Mech. 1997 58 11 28 10.1016/S0013-7944(97)00074-X
McAllen P.J. Phelan P. Ductile fracture by central bursts in drawn 2011 aluminium wire Int. J. Fract. 2005 135 19 33 10.1007/s10704-005-3470-5
Celentano D. Chaboche J.L. Experimental and numerical characterization of damage evolution in steels Int. J. Plast. 2007 23 1739 1762 10.1016/j.ijplas.2007.03.008
Freudenthal A.M. The Inelastic Behaviour of Engineering Materials and Structures John Wiley and Sons New York, NY, USA 1950
Cockcroft M. Latham D. Ductility and workability of metals J. Inst. Met. 1968 96 33 39
Chaouadi R. De Mester P. Vandermeulen W. Damage work as ductile fracture criterion Int. J. Fract. 1994 66 155 164 10.1007/BF00020080
Ayada M. Higashino T. Mori K. Central bursting in extrusion of inhomogeneous materials Adv. Technol. Plast. 1987 1 553 558
Gonzalez A. Celentano D. Cruchaga M. Assessment of ductile failure models in single-pass wire drawing processes Int. J. Damage Mech. 2017 27 1291 1306 10.1177/1056789517704029
Wang T.-J. Unified CDM model and local criterion for ductile fracture—I. Unified CDM model for ductile fracture Eng. Fract. Mech. 1992 42 177 183 10.1016/0013-7944(92)90289-Q
Chandrakanth S. Pandey P.C. An isotropic damage model for ductile material Eng. Fract. Mech. 1995 50 457 465 10.1016/0013-7944(94)00214-3
La Rosa G. Mirone G. Risitano A. Effect of stress triaxiality corrected plastic flow on ductile damage evolution in the framework of continuum damage mechanics Eng. Fract. Mech. 2001 68 417 434 10.1016/S0013-7944(00)00109-0
Chow C.L. Wang J. An anisotropic theory of continuum damage mechanics for ductile fracture Eng. Fract. Mech. 1987 27 547 558 10.1016/0013-7944(87)90108-1
Gonzalez A. Celentano D. Cruchaga M. Bilinear damage evolution in AA2011 wire drawing processes Int. J. Damage Mech. 2021 10.1177/10567895211072581
ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials ASTM International West Conshohocken, PA, USA 2021
Blaber J. Adair B. Antoniou A. Ncorr: Open-Source 2D Digital Image Correlation Matlab Software Exp. Mech. 2015 55 1105 1122 10.1007/s11340-015-0009-1
Huang Y. Accurate dilatation rate for spherical voids in triaxial stress fields J. Appl. Mech. 1991 58 1084 1086 10.1115/1.2897686
Celentano D. A large strain thermoviscoplastic formulation for the solidification of S.G. cast iron in a green sand mould Int. J. Plast. 2001 17 1623 1658 10.1016/S0749-6419(00)00095-4
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.