Synthesis, Characterization, and Catalytic Evaluation of Ruthenium Complexes Bearing Xanthinium-8-dithiocarboxylate Ligands Derived from Caffeine and Theophylline
[en] Various experimental procedures and purification techniques were applied to alkylate or arylate the N7 and N9 positions of caffeine and theophylline into xanthinium salts. These N-heterocyclic carbene (NHC) precursors were converted into xanthinium-8-dithiocarboxylate zwitterions using CS2 and either Cs2CO3 or NaOtBu. The NHC·CS2 betaines were employed as chelating ligands to prepare a wide variety of [RuX(p-cymene)(S2C·NHC)]Y (X = Cl, SAc; Y = Cl, PF6, [RuCl3(p-cymene)]) and [Ru(S2C·NHC)3]X2 (X = Cl, PF6) complexes that were characterized by NMR and HRMS. Moreover, the molecular structures of three betaines, one hetero-, and one homoleptic complex were determined by XRD. The catalytic potentials of all these complexes were investigated in the transfer hydrogenation of ketones with isopropanol, the synthesis of vinyl esters from benzoic acid and 1-hexyne, and the cyclopropanation of styrene with ethyl diazoacetate. The reduction of acetophenone into 1-phenylethanol was chosen as a model reaction for the former application. Monitoring the time course of this transformation showed that chelates bearing a NHC·CS2 ligand displayed an initial activity slightly higher than the analogous [RuCl2(p-cymene)(NHC)] complex. Contrastingly, for the last two catalytic processes, the Ru(S2C·NHC) chelates did not outperform their Ru-NHC counterparts.
Disciplines :
Chemistry
Author, co-author :
Mazars, François ; Université de Liège - ULiège > Molecular Systems (MolSys)
Zaragoza, Guillermo ; Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
Delaude, Lionel ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organométallique et catalyse homogène
Language :
English
Title :
Synthesis, Characterization, and Catalytic Evaluation of Ruthenium Complexes Bearing Xanthinium-8-dithiocarboxylate Ligands Derived from Caffeine and Theophylline
Hans, M.; Lorkowski, J.; Demonceau, A.; Delaude, L. Efficient synthetic protocols for the preparation of common N-heterocyclic carbene precursors. Beilstein J. Org. Chem 2015, 11, 2318- 2325, 10.3762/bjoc.11.252
For monographs, see: N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis; Nolan, S. P., Ed.; Wiley-VCH: Weinheim, 2014.
N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, 2nd ed.; Díez-González, S., Ed.; RSC Catalysis Series; Royal Society of Chemistry: Cambridge, 2017; Vol. 27.
N-Heterocyclic Carbenes in Catalytic Organic Synthesis; Nolan, S. P.; Cazin, C. S. J., Eds.; Science of Synthesis, Thieme: Stuttgart, 2017.
Huynh, H. V. The Organometallic Chemistry of N-heterocyclic Carbenes; Wiley: Hoboken, NJ, 2017.
N-Heterocyclic Carbenes in Organocatalysis; Biju, A. T., Ed.; Wiley-VCH: Weinheim, 2019.
Winkelmann, O.; Näther, C.; Lüning, U. Concave Imidazolinium Salts as Precursors to Concave N-Heterocyclic Carbenes. Eur. J. Org. Chem 2007, 2007, 981- 987, 10.1002/ejoc.200600843
Sereda, O.; Blanrue, A.; Wilhelm, R. Enantiopure imidazolinium-dithiocarboxylates as highly selective novel organocatalysts. Chem. Commun 2009, 1040- 1042, 10.1039/B817991C
Katritzky, A. R.; Jishkariani, D.; Sakhuja, R.; Hall, C. D.; Steel, P. J. Carbene-Mediated Transformations of 1-(Benzylideneamino)benzimidazoles. J. Org. Chem 2011, 76, 4082- 4087, 10.1021/jo200088s
Zhang, J.; Qin, X.; Fu, J.; Wang, X.; Su, X.; Hu, F.; Jiao, J.; Shi, M. Fine-Tunable 3,4-Dihydroquinazol-2-ylidene Carbenes: Synthesis, Rhodium(I) Complexes, and Reactivity. Organometallics 2012, 31, 8275- 8282, 10.1021/om300887y
Delaude, L.; Demonceau, A.; Wouters, J. Assessing the Potentials of Zwitterionic NHC·CS2 Adducts for Probing the Stereoelectronic Parameters of N-Heterocyclic Carbenes. Eur. J. Inorg. Chem 2009, 2009, 1882- 1891, 10.1002/ejic.200801110
Dagmara Konieczna, D.; Blanrue, A.; Wilhelm, R. Investigation of Imidazol(in)ium-dithiocarboxylates as Sensors for the Detection of Mercury(II) and Silver(I) Ions. Z. Naturforsch., Teil B 2014, 69, 596- 604, 10.5560/znb.2014-4014
Di Marco, L.; Hans, M.; Delaude, L.; Monbaliu, J.-C. M. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis. Chem.─Eur. J 2016, 22, 4508, 10.1002/chem.201505135
Mazars, F.; Hrubaru, M.; Tumanov, N.; Wouters, J.; Delaude, L. Synthesis of Azolium-2-dithiocarboxylate Zwitterions under Mild, Aerobic Conditions. Eur. J. Org. Chem 2021, 2021, 2025- 2033, 10.1002/ejoc.202100274
Gehrke, S.; Hollóczki, O. Are There Carbenes in N-Heterocyclic Carbene Organocatalysis?. Angew. Chem., Int. Ed 2017, 56, 16395- 16398, 10.1002/anie.201708305
Rico Del Cerro, D.; Mera-Adasme, R.; King, A. W. T.; Perea-Buceta, J. E.; Heikkinen, S.; Hase, T.; Sundholm, D.; Wähälä, K. On the Mechanism of the Reactivity of 1,3-Dialkylimidazolium Salts under Basic to Acidic Conditions: A Combined Kinetic and Computational Study. Angew. Chem., Int. Ed 2018, 57, 11613- 11617, 10.1002/anie.201805016
Gehrke, S.; Reckien, W.; Palazzo, I.; Welton, T.; Hollóczki, O. On the Carbene-Like Reactions of Imidazolium Acetate Ionic Liquids: Can Theory and Experiments Agree?. Eur. J. Org. Chem 2019, 2019, 504- 511, 10.1002/ejoc.201801050
Hollóczki, O. The Mechanism of N-Heterocyclic Carbene Organocatalysis through a Magnifying Glass. Chem.─Eur. J 2020, 26, 4885- 4894
Tzouras, N. V.; Nahra, F.; Falivene, L.; Cavallo, L.; Saab, M.; Van Hecke, K.; Collado, A.; Collett, C. J.; Smith, A. D.; Cazin, C. S. J. A Mechanistically and Operationally Simple Route to Metal-N-Heterocyclic Carbene (NHC) Complexes. Chem.─Eur. J 2020, 26, 4515- 4519, 10.1002/chem.202000564
Zaby, P.; Blasius, J.; Müller, A. K.; Nolan, S. P.; Hollóczki, O. Liquid Dynamics Determine Transition Metal-N-Heterocyclic Carbene Complex Formation. Chem.─Eur. J 2023, 29, e202203636 10.1002/chem.202203636
For other applications of the weak base route, see: Scattolin, T.; Logvinov, A. A.; Tzouras, N. V.; Cazin, C. S. J.; Nolan, S. P. Advances in the Synthesis and Applications of N-Heterocyclic Carbene Metal Complexes with a Focus on the Weak Base Route. Organometallics 2023, 42, 2692- 2730, 10.1021/acs.organomet.3c00299
Mazars, F.; Zaragoza, G.; Delaude, L. The facile alkylation and iodination of imidazol(in)ium salts in the presence of cesium carbonate. Chem. Commun 2023, 59, 14528- 14531, 10.1039/D3CC04971J
Beltrán, T. F.; Zaragoza, G.; Delaude, L. Mono- and bimetallic manganese-carbonyl complexes and clusters bearing imidazol(in)ium-2-dithiocarboxylate ligands. Dalton Trans 2017, 46, 1779- 1788, 10.1039/C6DT04780G
Beltrán, T. F.; Zaragoza, G.; Delaude, L. Synthesis and characterization of cationic manganese-carbonyl complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands. Polyhedron 2021, 197, 115055, 10.1016/j.poly.2021.115055
Beltrán, T. F.; Zaragoza, G.; Delaude, L. Synthesis, characterization, and gas-phase fragmentation of rhenium-carbonyl complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands. Dalton Trans 2016, 45, 18346- 18355, 10.1039/C6DT03428D
Beltrán, T. F.; Zaragoza, G.; Delaude, L. Synthesis and complexation of superbulky imidazolium-2-dithiocarboxylate ligands. Dalton Trans 2017, 46, 9036- 9048, 10.1039/C7DT01889D
Naeem, S.; Thompson, A. L.; Delaude, L.; Wilton-Ely, J. D. E. T. Non-innocent Behaviour of Dithiocarboxylate Ligands Based on N-Heterocyclic Carbenes. Chem.─Eur. J 2010, 16, 10971- 10974, 10.1002/chem.201001235
Naeem, S.; Thompson, A. L.; White, A. J. P.; Delaude, L.; Wilton-Ely, J. D. E. T. Dithiocarboxylate complexes of ruthenium(II) and osmium(II). Dalton Trans 2011, 40, 3737- 3747, 10.1039/c1dt10048c
Champion, M. J. D.; Solanki, R.; Delaude, L.; White, A. J. P.; Wilton-Ely, J. D. E. T. Synthesis and catalytic application of palladium imidazol(in)ium-2-dithiocarboxylate complexes. Dalton Trans 2012, 41, 12386- 12394, 10.1039/c2dt31413d
Neuba, A.; Ortmeyer, J.; Konieczna, D. D.; Weigel, G.; Flörke, U.; Henkel, G.; Wilhelm, R. Synthesis of new copper(I) based linear 1-D-coordination polymers with neutral imidazolinium-dithiocarboxylate ligands. RSC Adv 2015, 5, 9217- 9220, 10.1039/C4RA09033K
Rungthanaphatsophon, P.; Gremillion, A. J.; Wang, Y.; Kelley, S. P.; Robinson, G. H.; Walensky, J. R. Structure of copper(I) and silver(I) complexes with zwitterionic ligands derived from N-Heterocyclic Carbenes. Inorg. Chim. Acta 2021, 514, 120033, 10.1016/j.ica.2020.120033
Naeem, S.; Delaude, L.; White, A. J. P.; Wilton-Ely, J. D. E. T. The use of Imidazolium-2-dithiocarboxylates in the Formation of Gold(I) Complexes and Gold Nanoparticles. Inorg. Chem 2010, 49, 1784- 1793, 10.1021/ic9021504
Siemeling, U.; Memczak, H.; Bruhn, C.; Vogel, F.; Träger, F.; Baio, J. E.; Weidner, T. Zwitterionic dithiocarboxylates derived from N-heterocyclic carbenes: coordination to gold surfaces. Dalton Trans 2012, 41, 2986- 2994, 10.1039/c2dt11976e
Pérez-Ramos, P.; Mateo, M. A.; Elorriaga, D.; García-Vivó, D.; Soengas, R. G.; Rodríguez-Solla, H. Coordination of azol(in)ium dithiocarboxylate ligands to Au(iii): unexpected formation of a novel family of cyclometallated Au(iii) complexes, DFT calculations and catalytic studies. Dalton Trans 2024, 53, 9433- 9440, 10.1039/D4DT01184H
Sugaya, T.; Fujihara, T.; Nagasawa, A.; Unoura, K. Group 12 metal complexes with inner-salt, bis(N,N-disubstituted amino)carbeniumdithiocarboxylate. Asymmetric stretching vibration of thiocarboxylate and reduction potential as probes for the coordination mode. Inorg. Chim. Acta 2009, 362, 4813- 4822, 10.1016/j.ica.2009.07.010
Delaude, L.; Sauvage, X.; Demonceau, A.; Wouters, J. Synthesis and Catalytic Evaluation of Ruthenium-Arene Complexes Generated Using Imidazol(in)ium-2-carboxylates and Dithiocarboxylates. Organometallics 2009, 28, 4056- 4064, 10.1021/om9002363
Zain Aldin, M.; Zaragoza, G.; Choquenet, E.; Blampain, G.; Berger, G.; Delaude, L. Synthesis, characterization, and biological activity of ruthenium-arene complexes with sulfur ligands. J. Inorg. Biol. Chem 2024, 29, 441- 454, 10.1007/s00775-024-02052-2
Zain Aldin, M.; Zaragoza, G.; Deschamps, W.; Tomani, J.-C. D.; Souopgui, J.; Delaude, L. Synthesis, Characterization, and Biological Activity of Water-Soluble, Dual Anionic and Cationic Ruthenium-Arene Complexes Bearing Imidazol(in)ium-2-dithiocarboxylate Ligands. Inorg. Chem 2021, 60, 16769- 16781, 10.1021/acs.inorgchem.1c02648
Carvalho, V. P., Jr.; Zaragoza, G.; Delaude, L. Homoleptic ruthenium(II) complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands: synthesis, characterization, and redox properties. Dalton Trans 2024, 53, 11436- 11444, 10.1039/D4DT01503G
Mazars, F.; Zaragoza, G.; Delaude, L. Caffeine and theophylline as sustainable, biosourced NHC ligand precursors for efficient palladium-catalyzed Suzuki-Miyaura cross-coupling reactions. J. Organomet. Chem 2022, 978, 122489, 10.1016/j.jorganchem.2022.122489
Mazars, F.; Etsè, K. S.; Zaragoza, G.; Delaude, L. Pd-PEPPSI catalysts bearing N-heterocyclic carbene ligands derived from caffeine and theophylline for Mizoroki-Heck and C(sp2)-H arylation reactions. J. Organomet. Chem 2024, 1003, 122928, 10.1016/j.jorganchem.2023.122928
Mazars, F.; Delaude, L. “Greening” Ruthenium-Arene Catalyst Precursors with N-Heterocyclic Carbene Ligands Derived from Caffeine and Theophylline. Organometallics 2023, 42, 1589- 1597, 10.1021/acs.organomet.3c00166
For a few reports from this journal, see: Teng, Q.; Zhao, Y.; Lu, Y.; Liu, Z.; Chen, H.; Yuan, D.; Huynh, H. V.; Meng, Q. Synthesis, Characterization, and Catalytic Study of Caffeine-Derived N-heterocyclic Carbene Palladium Complexes. Organometallics 2022, 41, 161- 168, 10.1021/acs.organomet.1c00641
Zhang, J.; Rahman, M. M.; Zhao, Q.; Feliciano, J.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes. Organometallics 2022, 41, 1806- 1815, 10.1021/acs.organomet.2c00019
Rahman, M. M.; Zhang, J.; Zhao, Q.; Feliciano, J.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. Pd-PEPPSI N-Heterocyclic Carbene Complexes from Caffeine: Application in Suzuki, Heck, and Sonogashira Reactions. Organometallics 2022, 41, 2281- 2290, 10.1021/acs.organomet.2c00262
For reviews, see: Valdés, H.; Canseco-González, D.; Germán-Acacio, J. M.; Morales-Morales, D. Xanthine based N-heterocyclic carbene (NHC) complexes. J. Organomet. Chem 2018, 867, 51- 54, 10.1016/j.jorganchem.2018.01.008
Chaudhary, A.; Mathur, D.; Gaba, R.; Pasricha, R.; Sharma, K. Greening up organic reactions with caffeine: applications, recent developments, and future directions. RSC Adv 2024, 14, 8932- 8962, 10.1039/D4RA00432A
Landaeta, V. R.; Rodríguez-Lugo, R. E.; Rodríguez-Arias, E. N.; Coll-Gómez, D. S.; González, T. Studies on the coordination chemistry of methylated xanthines and their imidazolium salts. Part 1: benzyl derivatives. Transition Met. Chem 2010, 35, 165- 175, 10.1007/s11243-009-9310-0
Kascatan-Nebioglu, A.; Melaiye, A.; Hindi, K.; Durmus, S.; Panzner, M. J.; Hogue, L. A.; Mallett, R. J.; Hovis, C. E.; Coughenour, M.; Crosby, S. D. Synthesis from Caffeine of a Mixed N-Heterocyclic Carbene-Silver Acetate Complex Active against Resistant Respiratory Pathogens. J. Med. Chem 2006, 49, 6811- 6818, 10.1021/jm060711t
Pinto, R. M. A.; Salvador, J. A. R.; Le Roux, C. Metal triflates combined with caffeine based imidazolium salts: A new family of highly efficient and reusable catalysts. Catal. Commun 2008, 9, 465- 469, 10.1016/j.catcom.2007.07.022
Mokfi, M.; Rust, J.; Lehmann, C. W.; Mohr, F. Facile N9-Alkylation of Xanthine Derivatives and Their Use as Precursors for N-Heterocyclic Carbene Complexes. Molecules 2021, 26, 3705, 10.3390/molecules26123705
Luo, F.-T.; Lo, H.-K. Short synthesis of bis-NHC-Pd catalyst derived from caffeine and its applications to Suzuki, Heck, and Sonogashira reactions in aqueous solution. J. Organomet. Chem 2011, 696, 1262- 1265, 10.1016/j.jorganchem.2010.11.002
Scattolin, T.; Caligiuri, I.; Canovese, L.; Demitri, N.; Gambari, R.; Lampronti, I.; Rizzolio, F.; Santo, C.; Visentin, F. Synthesis of new allyl palladium complexes bearing purine-based NHC ligands with antiproliferative and proapoptotic activities on human ovarian cancer cell lines. Dalton Trans 2018, 47, 13616- 13630, 10.1039/C8DT01831F
Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett 1998, 39, 2941- 2944, 10.1016/S0040-4039(98)00504-8
Chen, J.-Q.; Li, J.-H.; Dong, Z.-B. A Review on the Latest Progress of Chan-Lam Coupling Reaction. Adv. Synth. Catal 2020, 362, 3311- 3331, 10.1002/adsc.202000495
Kim, D.; Jun, H.; Lee, H.; Hong, S.-S.; Hong, S. Development of New Fluorescent Xanthines as Kinase Inhibitors. Org. Lett 2010, 12, 1212- 1215, 10.1021/ol100011n
Touj, N.; Mazars, F.; Zaragoza, G.; Delaude, L. Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes. Beilstein J. Org. Chem 2023, 19, 1947- 1956, 10.3762/bjoc.19.145
Lovison, D.; Allegri, L.; Baldan, F.; Ballico, M.; Damante, G.; Jandl, C.; Baratta, W. Cationic carboxylate and thioacetate ruthenium(II) complexes: synthesis and cytotoxic activity against anaplastic thyroid cancer cells. Dalton Trans 2020, 49, 8375- 8388, 10.1039/D0DT01390K
For monographs, see: Ruthenium Catalysts and Fine Chemistry; Bruneau, C.; Dixneuf, P. H., Eds.; Topics in Organometallic Chemistry; Springer-Verlag: Berlin, 2004; Vol. 11.
Ruthenium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley-VCH: Weinheim, 2004.
Alonso, F.; Beletskaya, I. P.; Yus, M. Transition-Metal-Catalyzed Addition of Heteroatom-Hydrogen Bonds to Alkynes. Chem. Rev 2004, 104, 3079- 3160, 10.1021/cr0201068
For a few selected examples, see: Bruneau, C.; Dixneuf, P. H. Selective transformations of alkynes with ruthenium catalysts. Chem. Commun 1997, 507- 512, 10.1039/a604112d
Doucet, H.; Derrien, N.; Kabouche, Z.; Bruneau, C.; Dixneuf, P. H. Powerful control by organoruthenium catalysts of the regioselective addition to C(1) or C(2) of the prop-2-ynyl ethers C≡C triple bond. J. Organomet. Chem 1998, 551, 151- 157, 10.1016/S0022-328X(97)00435-X
Le Gendre, P.; Comte, V.; Michelot, A.; Moïse, C. Synthesis of enol esters catalysed by ‘early-late’ Ti-Ru complexes. Inorg. Chim. Acta 2003, 350, 289- 292, 10.1016/S0020-1693(02)01563-3
Nicks, F.; Libert, L.; Delaude, L.; Demonceau, A. Microwave-assisted synthesis of vinyl esters through ruthenium-catalyzed addition of carboxylic acids to alkynes. Aust. J. Chem 2009, 62, 227- 231, 10.1071/CH08480
Willem, Q.; Nicks, F.; Sauvage, X.; Delaude, L.; Demonceau, A. Ruthenium-arene complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands: evaluation of their catalytic activity in the synthesis of enol esters. J. Organomet. Chem 2009, 694, 4049- 4055, 10.1016/j.jorganchem.2009.08.028
Maas, G. Ruthenium-catalysed carbenoid cyclopropanation reactions with diazo compounds. Chem. Soc. Rev 2004, 33, 183- 190, 10.1039/b309046a
Méret, M.; Maj, A. M.; Demonceau, A.; Delaude, L. Ruthenium-arene catalysts bearing N-heterocyclic carbene ligands for olefin cyclopropanation and metathesis. Monatsh. Chem 2015, 146, 1099- 1105, 10.1007/s00706-015-1492-x
Bruker. APEX3; Bruker AXS Inc.: Madison, WI, USA, 2005.
Clark, R. C.; Reid, J. S. The Analytical Calculation of Absorption in Multifaceted Crystals. Acta Crystallogr., Sect. A: fundam. Crystallogr 1995, 51, 887- 897, 10.1107/S0108767395007367
Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: an improved tool for crystal structure determination and refinement. J. Appl. Crystallogr 2005, 38, 381- 388, 10.1107/S002188980403225X
Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: struct. Chem 2015, 71, 3- 8, 10.1107/S2053229614024218
Sheldrick, G. M. SADABS, Programs for Scaling and Correction of Area Detection Data; University of Göttingen: Göttingen, Germany, 1996.