Aromatase; Japanese quail; Mesotocin; Social behavior; Social environment; Vasotocin; mesotocin; Oxytocin; Biomarkers; Animals; Male; Female; Vasotocin/metabolism; Vasotocin/genetics; Oxytocin/metabolism; Oxytocin/genetics; Oxytocin/analogs & derivatives; Behavior, Animal/physiology; Brain/metabolism; Brain/physiology; Neurons/metabolism; Selection, Genetic; Social Behavior; Quail/physiology; Social Environment; Motivation/physiology; Behavior, Animal; Brain; Motivation; Neurons; Quail; Multidisciplinary
Abstract :
[en] Many species, including humans exhibit a wide range of social behaviors that are crucial for the adaptation and survival of most species. Brain organization and function are shaped by genetic and environmental factors, although their precise contributions have been relatively understudied in the context of artificial selection. We used divergent lines of quail selected on their high versus low level of motivation to approach a group of conspecifics (S + and S-, respectively) to investigate the influence of genetic selection and early social environment on sociability. We observed distinct sex- and brain-region-specific expression patterns of three neuronal markers: mesotocin, and vasotocin, the avian homologues of mammalian oxytocin and vasopressin, as well as aromatase, the enzyme that converts androgens into estrogens. These markers displayed pronounced and neuroanatomically specific differences between S + and S- quail. Additionally, in a second experiment, we assessed the influence of early social environment on social skills in juvenile birds. Mixing S + and S- resulted in more S- males approaching the group without affecting the sociability of S + or other behaviors, suggesting that the early social environment may influence the results of genetic selection. In conclusion, the divergent quail lines offer a valuable model for unraveling the neuronal and behavioral mechanisms underlying social behaviors.
Disciplines :
Neurosciences & behavior Zoology
Author, co-author :
Court, Lucas ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Neuroendocrinology ; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France. court.lucas@orange.fr
Talbottier, Laura; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
Lemarchand, Julie; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
Cornilleau, Fabien; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
Pecnard, Emmanuel; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
Blache, Marie-Claire; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
Balthazart, Jacques ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Cornil, Charlotte ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Keller, Matthieu ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie de la différenciation sexuelle du cerveau ; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
Calandreau, Ludovic; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
Pellissier, Lucie; INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France. lucie.pellissier@inrae.fr
Language :
English
Title :
Exploring neuronal markers and early social environment influence in divergent quail lines selected for social motivation.
Lee, V. E., Arnott, G. & Turner, S. P. Social behavior in farm animals: applying fundamental theory to improve animal welfare. Front. Veterinary Sci.9https://doi.org/10.3389/fvets.2022.932217 (2022).
A. Regan N. Radošić S. Lyubomirsky Experimental effects of social behavior on well-being Trends Cogn. Sci. 2022 26 987 998 10.1016/j.tics.2022.08.006 36109332
N.C. Ferrara et al. Neural circuit transitions supporting developmentally specific Social Behavior J. Neurosci. 2023 43 7456 7462 1:CAS:528:DC%2BB2cXhslCguw%3D%3D 10.1523/jneurosci.1377-23.2023 37940586 10634550
P. Chen W. Hong Neural Circuit Mechanisms of Social Behavior Neuron 2018 98 16 30 1:CAS:528:DC%2BC1cXntFWktro%3D 10.1016/j.neuron.2018.02.026 29621486 6028944
D.P. Kennedy R. Adolphs The social brain in psychiatric and neurological disorders Trends Cogn. Sci. 2012 16 559 572 10.1016/j.tics.2012.09.006 23047070 3606817
B. Barak G. Feng Neurobiology of social behavior abnormalities in autism and Williams syndrome Nat. Neurosci. 2016 19 647 655 1:CAS:528:DC%2BC28XmslOhsro%3D 10.1038/nn.4276 29323671 4896837
B.S. Cushing K.M. Kramer Mechanisms underlying epigenetic effects of early social experience: the role of neuropeptides and steroids Neurosci. Biobehav. Rev. 2005 29 1089 1105 1:CAS:528:DC%2BD2MXpvV2murs%3D 10.1016/j.neubiorev.2005.04.001 16099507
A.H. Veenema Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors Horm. Behav. 2012 61 304 312 1:CAS:528:DC%2BC38XktlGlurs%3D 10.1016/j.yhbeh.2011.12.002 22197269
A.R. Burke C.M. McCormick S.M. Pellis J.L. Lukkes Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses Neurosci. Biobehav. Rev. 2017 76 280 300 10.1016/j.neubiorev.2017.01.018 28111268
Strathearn, L. The elusive etiology of autism: nature and nurture? Front. Behav. Neurosci.3https://doi.org/10.3389/neuro.08.011.2009 (2009).
M. Yang K. Perry M.D. Weber A.M. Katz J.N. Crawley Social peers rescue autism-relevant sociability deficits in adolescent mice Autism Research: Official J. Int. Soc. Autism Res. 2011 4 17 27 10.1002/aur.163
M. Campolongo et al. Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment Mol. Autism 2018 9 36 1:CAS:528:DC%2BC1MXlt1Shtrc%3D 10.1186/s13229-018-0221-9 29946415 6001054
C. Gora et al. Effect of the social environment on olfaction and social skills in WT and a mouse model of autism Translational Psychiatry 2024 10.21203/rs.3.rs-3759429/v1 39366951 11452541
L.A. O’Connell H.A. Hofmann The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis J. Comp. Neurol. 2011 519 3599 3639 10.1002/cne.22735 21800319
L.A. O’Connell H.A. Hofmann Evolution of a vertebrate social decision-making network Science 2012 336 1154 1157 2012Sci..336.1154O 1:CAS:528:DC%2BC38XnsFOrtLw%3D 10.1126/science.1218889 22654056
J.L. Goodson The vertebrate social behavior network: evolutionary themes and variations Horm. Behav. 2005 48 11 22 10.1016/j.yhbeh.2005.02.003 15885690 2570781
J.L. Goodson D. Kabelik Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning Front. Neuroendocr. 2009 30 429 441 1:CAS:528:DC%2BD1MXhtFGksLvK 10.1016/j.yfrne.2009.05.007
G.E. Robinson R.D. Fernald D.F. Clayton Genes and Social Behavior Science 2008 322 896 900 2008Sci..322.896R 1:CAS:528:DC%2BD1cXhtlaltL3P 10.1126/science.1159277 18988841 3052688
Z.R. Donaldson L.J. Young Oxytocin, vasopressin, and the neurogenetics of sociality Science 2008 322 900 904 2008Sci..322.900D 1:CAS:528:DC%2BD1cXhtlaltL3I 10.1126/science.1158668 18988842
Z. Liutkeviciute J. Koehbach T. Eder E. Gil-Mansilla C.W. Gruber Global map of oxytocin/vasopressin-like neuropeptide signalling in insects Sci. Rep. 2016 6 39177 2016NatSR..639177L 1:CAS:528:DC%2BC28XitFGjsbnI 10.1038/srep39177 27958372 5153645
J.L. Goodson A.M. Kelly M.A. Kingsbury Evolving nonapeptide mechanisms of gregariousness and social diversity in birds Horm. Behav. 2012 61 239 250 1:CAS:528:DC%2BC38XktlGmu7c%3D 10.1016/j.yhbeh.2012.01.005 22269661 3312996
H.K. Caldwell Oxytocin and Vasopressin: powerful regulators of Social Behavior Neuroscientist: Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2017 23 517 528 1:CAS:528:DC%2BC1cXitVygsrw%3D 10.1177/1073858417708284
B.J. Marlin R.C. Froemke Oxytocin modulation of neural circuits for social behavior Dev. Neurobiol. 2017 77 169 189 1:CAS:528:DC%2BC2sXhslWhtLo%3D 10.1002/dneu.22452 27626613
Rigney, N., de Vries, G. J., Petrulis, A., Young, L. J. & Oxytocin Vasopressin, and Social Behavior: from neural circuits to Clinical opportunities. Endocrinology. 163 https://doi.org/10.1210/endocr/bqac111 (2022).
N. Rigney G.J. de Vries A. Petrulis Modulation of social behavior by distinct vasopressin sources Front. Endocrinol. 2023 14 1127792 10.3389/fendo.2023.1127792
N. Bons The topography of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail: immunocytochemical identification Cell Tissue Res. 1980 213 37 51 1980hdao.book...B 1:STN:280:DyaL3M7ht1Wjuw%3D%3D 10.1007/BF00236919 7459995
G. Panzica N. Aste C. Castagna C. Viglietti-Panzica J. Balthazart Steroid-induced plasticity in the sexually dimorphic vasotocinergic innervation of the avian brain: behavioral implications Brain Res. Rev. 2001 37 178 200 1:CAS:528:DC%2BD3MXovF2jtbw%3D 10.1016/s0165-0173(01)00118-7 11744086
J. Balthazart P. Absil C. Viglietti-Panzica G.C. Panzica Vasotocinergic innervation of areas containing aromatase-immunoreactive cells in the quail forebrain J. Neurobiol. 1997 33 45 60 1:CAS:528:DyaK2sXks1Kqtr0%3D 10.1002/(SICI)1097-4695(199707)33:1<45::AID-NEU5>3.0.CO;2-D 9212069
P. Absil M. Baillien G.F. Ball G.C. Panzica J. Balthazart The control of preoptic aromatase activity by afferent inputs in Japanese quail Brain Res. Brain Res. Rev. 2001 37 38 58 1:CAS:528:DC%2BD3MXovF2jt7c%3D 10.1016/s0165-0173(01)00122-9 11744073
D. Stanić et al. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors PloS One 2014 9 e90451 e90451 2014PLoSO..990451S 1:CAS:528:DC%2BC2cXhs1ajsL%2FN 10.1371/journal.pone.0090451 24646567 3960106
A. Soumier M. Habart G. Lio C. Demily A. Sirigu Differential fate between oxytocin and vasopressin cells in the developing mouse brain iScience 2022 25 103655 2022iSci..25j3655S 1:CAS:528:DC%2BB38XhtVChtr%2FF 10.1016/j.isci.2021.103655 35028535
J.L. Goodson S.E. Schrock J.D. Klatt D. Kabelik M.A. Kingsbury Mesotocin and nonapeptide receptors promote Estrildid Flocking Behavior Science 2009 325 862 866 2009Sci..325.862G 1:CAS:528:DC%2BD1MXps1Ogsbg%3D 10.1126/science.1174929 19679811 2862247
Court, L., Balthazart, J., Ball, G. F. & Cornil, C. A. Effect of chronic intracerebroventricular administration of an aromatase inhibitor on the expression of socio-sexual behaviors in male Japanese quail. Behav. Brain. Res.113315https://doi.org/10.1016/j.bbr.2021.113315 (2021).
H. E Albers Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network Front. Neuroendocr. 2015 36 49 71 1:CAS:528:DC%2BC2cXhtlSqtbbI 10.1016/j.yfrne.2014.07.001
Dhakar, M. B., Stevenson, E. L. & Caldwell, H. K. in Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior (eds Donald Pfaff, Elena Choleris, & Martin Kavaliers) Ch. 1, 3–26Cambridge University Press, (2013).
M.V. Wu et al. Estrogen Masculinizes Neural Pathways and Sex-Specific behaviors Cell 2009 139 61 72 1:CAS:528:DC%2BD1MXhsVCjs7jJ 10.1016/j.cell.2009.07.036 19804754 2851224
A. Foidart et al. Critical re-examination of the distribution of aromatase-immunoreactive cells in the quail forebrain using antibodies raised against human placental aromatase and against the recombinant quail, mouse or human enzyme J. Chem. Neuroanat. 1995 8 267 282 1:CAS:528:DyaK2MXms1SqsLo%3D 10.1016/0891-0618(95)00054-b 7669272
A. Csillag Á. Ádám G. Zachar Avian models for brain mechanisms underlying altered social behavior in autism Front. Physiol. 2022 13 1032046 10.3389/fphys.2022.1032046 36388132 9650632
J. Balthazart G.F. Ball The Japanese quail as a model system for the investigation of steroid-catecholamine interactions mediating appetitive and consummatory aspects of male sexual behavior Annual Rev. Sex. Res. 1998 9 96 176 1:STN:280:DyaK1M3nvVKntg%3D%3D
A.D. Mills J.M. Faure Divergent selection for duration of tonic immobility and social reinstatement behavior in Japanese quail (Coturnix coturnix japonica) chicks J. Comp. Psychol. 1991 105 25 38 1:STN:280:DyaK3M3jsFGqsg%3D%3D 10.1037/0735-7036.105.1.25 2032452
F. Launay A.D. Mills J.M. Faure Social motivation in Japanese quail coturnix coturnix japonica chicks selected for high or low levels of treadmill behaviour Behav. Process. 1991 24 95 110 1:STN:280:DC%2BC2cfit1Whsg%3D%3D 10.1016/0376-6357(91)90002-H
F. Launay A.D. Mills J.M. Faure Effects of test age, line and sex on tonic immobility responses and social reinstatement behaviour in Japanese quail Coturnix japonica Behav. Process. 1993 29 1 16 1:STN:280:DC%2BC2cjpslyhuw%3D%3D 10.1016/0376-6357(93)90023-k
A.D. Mills R.B. Jones J.M. Faure Species specificity of social reinstatement in Japanese quail Coturnix japonica genetically selected for high or low levels of social reinstatement behaviour Behav. Process. 1995 34 13 22 1:STN:280:DC%2BC2cjpslGjsQ%3D%3D 10.1016/0376-6357(94)00044-h
R.B. Jones A.D. Mills J.M. Faure Social discrimination in Japanese quail Coturnix japonica chicks genetically selected for low or high social reinstatement motivation Behav. Process. 1996 36 117 124 1:STN:280:DC%2BC2cjpslWisg%3D%3D 10.1016/0376-6357(95)00024-0
J. Recoquillay et al. Evidence of phenotypic and genetic relationships between sociality, emotional reactivity and production traits in Japanese quail PloS One 2013 8 e82157 2013PLoSO..882157R 1:CAS:528:DC%2BC2cXhvFenur8%3D 10.1371/journal.pone.0082157 24324761 3852745
M. Burns M. Domjan A.D. Mills Effects of genetic selection for fearfulness or social reinstatement behavior on adult social and sexual behavior in domestic quail (Coturnix japonica) Psychobiology 1998 26 249 257 10.3758/BF03330613
N. François S. Decros M. Picard J.M. Faure A.D. Mills Effect of group disruption on social behaviour in lines of Japanese quail (Coturnix japonica) selected for high or low levels of social reinstatement behaviour Behav. Process. 2000 48 171 181 10.1016/S0376-6357(99)00081-9
A.D. Mills R.B. Jones J.M. Faure J.B. Williams Responses to isolation in Japanese quail genetically selected for high or low sociality Physiol. Behav. 1993 53 183 189 1:STN:280:DyaK3s7msFyjtw%3D%3D 10.1016/0031-9384(93)90029-f 8434061
C. Schweitzer C. Houdelier S. Lumineau F. Lévy C. Arnould Social motivation does not go hand in hand with social bonding between two familiar Japanese quail chicks, Coturnix japonica Anim. Behav. 2010 79 571 578 10.1016/j.anbehav.2009.11.023
F.E. Akumbugu M.U. Obakpa A.V. Ebuga T.S. Esson Effect of sex on biometry and morphological indices of Japanese quails (Coturnix Coturnix Japonica) Biotechnol. Anim. Husb. 2020 36 37 47 10.2298/BAH2001037F
R. Tarhyel B. Tanimomo S. Hena Effect of sex, colour and weight group on carcass characteristics of Japanese quail Sci. J. Anim. Sci. 2012 1 22 27
Puelles, L., Martinez-de-la-Torre, M., Martinez, S., Watson, C. & Paxinos, G. The Chick Brain in Stereotaxic Coordinates and Alternate Stains: Featuring Neuromeric Divisions and Mammalian Homologies. 2nd Edition Featuring Neuromeric Divisions and Mammalian Homologies ednAcademic Press, (2018).
C.M. Haakenson J. Balthazart F.N. Madison G.F. Ball The neural distribution of the avian homologue of oxytocin, mesotocin, in two songbird species, the zebra finch and the canary: a potential role in song perception and production J. Comp. Neurol. 2022 530 2402 2414 1:CAS:528:DC%2BB38XhvFGrsr7O 10.1002/cne.25338 35599378 9283256
K.M. Dumais A.H. Veenema Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior Front. Neuroendocr. 2016 40 1 23 1:CAS:528:DC%2BC2MXnvFWit7c%3D 10.1016/j.yfrne.2015.04.003
C. Viglietti-Panzica G.C. Anselmetti J. Balthazart N. Aste G.C. Panzica Vasotocinergic innervation of the septal region in the Japanese quail: sexual differences and the influence of testosterone Cell Tissue Res. 1992 267 261 265 1:CAS:528:DyaK38XhtVejtL0%3D 10.1007/bf00302963
G.C. Panzica et al. Organizational effects of estrogens on brain vasotocin and sexual behavior in quail Dev. Neurobiol. 1998 37 684 699 1:CAS:528:DyaK1MXlsF2h 10.1002/(sici)1097-4695(199812)3743C684aidneu153E30co2u
Court, L., Vandries, L., Balthazart, J. & Cornil, C. A. Key role of estrogen receptor β in the organization of brain and behavior of the Japanese quail. Horm. Behav. 104827 https://doi.org/10.1016/j.yhbeh.2020.104827 (2020).
A. Foidart A. de Clerck N. Harada J. Balthazart Aromatase-immunoreactive cells in the quail brain: effects of testosterone and sex dimorphism Physiol. Behav. 1994 55 453 464 1:CAS:528:DyaK2cXis1Kgs7k%3D 10.1016/0031-9384(94)90100-7 8190761
J. Balthazart O. Tlemçani N. Harada Localization of testosterone-sensitive and sexually dimorphic aromatase-immunoreactive cells in the quail preoptic area J. Chem. Neuroanat. 1996 11 147 171 1:CAS:528:DyaK28XmvFKrs7k%3D 10.1016/0891-0618(96)00149-4 8906458
Court, L. Role of neuroestrogens in the regulation of social behaviors Doctor thesis, ULiège, (2022).
W.M. Rauw E. Kanis E.N. Noordhuizen-Stassen F.J. Grommers Undesirable side effects of selection for high production efficiency in farm animals: a review Livest. Prod. Sci. 1998 56 15 33 10.1016/S0301-6226(98)00147-X
L. Zhou J.D. Blaustein G.J. De Vries Distribution of androgen receptor immunoreactivity in vasopressin- and oxytocin-immunoreactive neurons in the male rat brain Endocrinology 1994 134 2622 2627 1:CAS:528:DyaK2cXktVWgtro%3D 10.1210/en.134.6.2622 8194487
S. Anpilov et al. Wireless Optogenetic stimulation of oxytocin neurons in a semi-natural setup dynamically elevates both pro-social and agonistic behaviors Neuron 2020 107 644 655e647 1:CAS:528:DC%2BB3cXhtFyltLjL 10.1016/j.neuron.2020.05.028 32544386 7447984
S.L. Resendez et al. Social Stimuli induce activation of oxytocin neurons within the Paraventricular Nucleus of the Hypothalamus to promote Social Behavior in male mice J. Neurosci. 2020 40 2282 2295 1:CAS:528:DC%2BB3cXptlSrtro%3D 10.1523/jneurosci.1515-18.2020 32024781 7083279
T. Grund et al. Chemogenetic activation of oxytocin neurons: temporal dynamics, hormonal release, and behavioral consequences Psychoneuroendocrinology 2019 106 77 84 1:CAS:528:DC%2BC1MXmvVOksbs%3D 10.1016/j.psyneuen.2019.03.019 30954921
A.M. Kelly J.L. Goodson Hypothalamic oxytocin and vasopressin neurons exert sex-specific effects on pair bonding, gregariousness, and aggression in finches Proc. Natl. Acad. Sci. 2014 111 6069 6074 2014PNAS.111.6069K 1:CAS:528:DC%2BC2cXmtlWhtbY%3D 10.1073/pnas.1322554111 24711411 4000841
N. Rigney J. Whylings G.J. de Vries A. Petrulis Sex differences in the Control of Social Investigation and anxiety by Vasopressin cells of the Paraventricular Nucleus of the Hypothalamus Neuroendocrinology 2020 111 521 535 1:CAS:528:DC%2BB3MXht1yiurzP 10.1159/000509421 32541145
N. Rigney A. Zbib G.J. de Vries A. Petrulis Knockdown of sexually differentiated vasopressin expression in the bed nucleus of the stria terminalis reduces social and sexual behaviour in male, but not female, mice J. Neuroendocrinol. 2022 34 e13083 1:CAS:528:DC%2BB38Xjtlyguw%3D%3D 10.1111/jne.13083 34978098 9213575
L. Court J. Balthazart G.F. Ball C.A. Cornil Role of aromatase in distinct brain nuclei of the social behaviour network in the expression of sexual behaviour in male Japanese quail J. Neuroendocrinol. 2022 34 e13127 1:CAS:528:DC%2BB38XpsVyksro%3D 10.1111/jne.13127 35394094 9250618
M.P. de Bournonville L.M. Vandries G.F. Ball J. Balthazart C.A. Cornil Site-specific effects of aromatase inhibition on the activation of male sexual behavior in male Japanese quail (Coturnix japonica) Horm. Behav. 2019 108 42 49 1:CAS:528:DC%2BC1MXntFCqtg%3D%3D 10.1016/j.yhbeh.2018.12.015 30605622 6377315
D.W. Bayless et al. Limbic Neurons Shape Sex Recognition and Social Behavior in sexually naive males Cell 2019 10.1016/j.cell.2018.12.041 30712868 6453703
I.D. Neumann R. Landgraf Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors Trends Neurosci. 2012 35 649 659 1:CAS:528:DC%2BC38XhtlertLnN 10.1016/j.tins.2012.08.004 22974560
V. Coustham E. Godet L. Beauclair A simple PCR method for sexing Japanese quail Coturnix japonica at hatching Br. Poult. Sci. 2017 58 59 62 1:CAS:528:DC%2BC2sXnvVWnuw%3D%3D 10.1080/00071668.2016.1246708 27845564
B.D. Sachs Photoperiodic Control of the Cloacal Gland of the Japanese quail Science 1967 157 201 203 1967Sci..157.201S 1:STN:280:DC%2BC3cvjslWltA%3D%3D 10.1126/science.157.3785.201 17806265
J. Balthazart M. Schumacher M.A. Ottinger Sexual differences in the Japanese quail: behavior, morphology, and intracellular metabolism of testosterone Gen. Comp. Endocrinol. 1983 51 191 207 1:CAS:528:DyaL3sXksFSlt7g%3D 10.1016/0016-6480(83)90072-2 6413294
A. Biswas O.S. Ranganatha J. Mohan K.V.H. Sastry Relationship of cloacal gland with testes, testosterone and fertility in different lines of male Japanese quail Anim. Reprod. Sci. 2007 97 94 102 1:CAS:528:DC%2BD28XhtF2qu7vE 10.1016/j.anireprosci.2005.12.012 16448791
R. Noble The effects of estrogen and progesterone on copulation in female quail (Coturnix coturnix japonica) housed in continuous dark Horm. Behav. 1972 3 199 204 1:STN:280:DyaE2M7jt1ensw%3D%3D 10.1016/0018-506X(72)90032-3 4680510
R. Noble Hormonal Control of Receptivity in Female Quail (Coturnix coturnix japonica) Horm. Behav. 1973 4 61 72 1:CAS:528:DyaE3sXks1Wrt7w%3D 10.1016/0018-506X(73)90017-2
Y. Delville J. Balthazart Hormonal control of female sexual behavior in the Japanese quail Horm. Behav. 1987 21 288 309 1:CAS:528:DyaL2sXlvFGgtLY%3D 10.1016/0018-506x(87)90016-x 3666684
J.D. Baylé F. Ramade J. Oliver Stereotaxic topography of the brain of the quail (Coturnix coturnix japonica) J. Physiol. 1974 68 219 241
P. Bankhead et al. Open source software for digital pathology image analysis Sci. Rep. 7 2017 QuPath 16878 2017NatSR..716878B 1:CAS:528:DC%2BC1cXhsFamsL%2FE 10.1038/s41598-017-17204-5
J. Schindelin et al. Fiji: an open-source platform for biological-image analysis Nat. Methods 2012 9 676 682 1:CAS:528:DC%2BC38XhtVKnurbJ 10.1038/nmeth.2019 22743772
C. Stringer T. Wang M. Michaelos M. Pachitariu Cellpose: a generalist algorithm for cellular segmentation Nat. Methods 2021 18 100 106 1:CAS:528:DC%2BB3cXis1Sgs77K 10.1038/s41592-020-01018-x 33318659
M.A. Ottinger H.J. Brinkley Testosterone and sex-related behavior and morphology: relationship during maturation and in the adult Japanese quail Horm. Behav. 1978 11 175 182 1:CAS:528:DyaE1MXitVSkurg%3D 10.1016/0018-506X(78)90046-6 750348
M.A. Ottinger H.J. Brinkley Testosterone and sex related physical characteristics during the maturation of the male Japanese quail (Coturnix coturnix japonica) Biol. Reprod. 1979 20 905 909 1:CAS:528:DyaE1MXktlKju78%3D 10.1095/biolreprod20.4.905 572248
G.C. Panzica et al. Sexual differentiation and hormonal control of the sexually dimorphic medial preoptic nucleus in the quail Brain Res. 1987 416 59 68 1:CAS:528:DyaL2sXkvFeqtrs%3D 10.1016/0006-8993(87)91496-X 3620956
L. Calandreau et al. Higher inherent fearfulness potentiates the effects of chronic stress in the Japanese quail Behav. Brain. Res. 2011 225 505 510 1:STN:280:DC%2BC3Mfls1yitA%3D%3D 10.1016/j.bbr.2011.08.010 21871499
R.B. Jones The tonic immobility reaction of the domestic fowl: a review World’s Poult. Sci. J. 1986 42 82 96 10.1079/WPS19860008
G.G. Gallup Tonic immobility: the role of fear and predation Psychol. Record 1977 27 41 61 10.1007/BF03394432
R.B. Jones A.D. Mills J.M. Faure Genetic and experiential manipulation of fear-related behavior in Japanese quail chicks (Coturnix coturnix japonica) J. Comp. Psychol. 1991 105 15 24 1:STN:280:DyaK3M3jsFGruw%3D%3D 10.1037/0735-7036.105.1.15 2032451