[en] A typical process flow for micro-hotplate sensors includes the fabrication of the sensor wafer followed by functionalization. Functionalization involves the local deposition of a sensing material, or several materials in the case of a multi-gas analyzer. Functionalization makes the analyzer sensitive to specific gases. Typically, functionalization is a wafer-level process, of which screen and inkjet printing, dispensing and direct atomic layer processing are good examples. Once the sensor wafer is fully processed and functionalized, it must be singulated onto individual sensor dies. After that the individual sensor die will be assembled. Various die singulation methods have been reported, but they can pose serious problems for the functionalized sensor wafer. The sensing materials used for functionalization are dominated by metal-oxides, which are sensitive to environmental factors, including thermal exposure, humidity uptake, etc. In this paper, we reviewed various die singulation techniques and methods, in function of their suitability for singulating fully functionalized metal-oxide (MOX) micro-hotplates sensor silicon wafers, including wafer sawing, laser ablation and dicing, scribe-and-break, stealth dicing, plasma dicing, dicing before grinding and others. Finally, we identified the most suitable wafer singulation method for the selected application and presented an outlook.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Electrical & electronics engineering
Author, co-author :
Stoukatch, Serguei ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Dupont, François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Redouté, Jean-Michel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Language :
English
Title :
Advanced Wafer Singulation Techniques for Miniaturized Metal-oxide (MOX) Micro-hotplates Based Gas Analyzer
HE - 101130159 - AMUSENS - Adaptable multi-pixel gas sensor platform for a wide range of appliance and consumer markets
Name of the research project :
Amusens
Funders :
EU - European Union
Funding number :
101130159 – AMUSENS
Funding text :
The work was fully funded by the European framework program HORIZON-CL4-2023-RESILIENCE-01-33 - Smart sensors for the Electronic Appliances market (RIA), 101130159 – AMUSENS. This review paper was inspired by consortium members during the preparation of the AMUSENS project.
W.-S. Lei, A. Kumar, R. Yalamanchili, "Die singulation technologies for advanced packaging: A critical review". J. Vac. Sci. Technol. B, 2012; 30 (4): 040801. doi: 10. 1116/1. 3700230.
A. C. Fischer et al. "Integrating MEMS and ICs". Microsyst Nanoeng 1, 15005, 2015. doi: 10. 1038/micronano. 2015. 5.
H. A. C. Tilmans et al. "MEMS packaging and reliability: An undividable couple, Microelectronics Reliability", Vol. 52, Issues 9-10, 2012, pp. 2228-2234, doi: 10. 1016/j. microrel. 2012. 06. 029.
H. Liu, L. Zhang, K. H. H. Li, O. K Tan, "Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications-Towards the CMOS-MEMS Monolithic Approach". Micromachines, 2018, 9, 557. doi: 10. 3390/mi9110557.
Y. H. Ochoa-Munoz, R. Mejia de Gutierrez, J. E. Rodriguez-Paez, "Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review". Molecules 2023, 28, 1150. doi: 10. 3390/molecules28031150.
A. Paleczek et al. "The Heterostructures of CuO and SnOx for NO2 Detection". Sensors, 2021, 21, 4387. Doi: 10. 3390/s21134387.
Y. Yamaguchi, S. Imamura, K. Nishio and K. Fujimoto, "Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor". Journal of the Ceramic Society of Japan, 124 (6), 2016, pp. 629-633, doi: 10. 2109/jcersj2. 15246.
A. N. Abdullah et al. "Correction Model for Metal Oxide Sensor Drift Caused by Ambient Temperature and Humidity". Sensors. 2022, 26;22 (9): 3301. doi: 10. 3390/s22093301.
N. Dufour et al. "Increasing the sensitivityand selectivity of Metal Oxide gas sensors by controlling the sensitive layer polarization". In Proceedings of the 2012 IEEE Sen-sors, Taipei, Taiwan, 28-31 October 2012; pp. 1-4, doi: 10. 1109/ICSENS. 2012. 6411463.
C. Wang, L. Yin L, L. Zhang, D. Xiang, R. Gao. "Metal oxide gas sensors: Sensitivity and influencing factors". Sensors 2010; 10 (3): 2088-106. doi: 10. 3390/s100302088.
H. Chai, et al. "Stability of Metal Oxide Semiconductor Gas Sensors: A Review, " in IEEE Sensors Journal, vol. 22, no. 6, pp. 5470-5481, 15 March15, 2022, doi: 10. 1109/JSEN. 2022. 3148264.
R. Zhang, H. Liu, B. Li and T. Sugiya, "Ultra wafer thinning and dicing technology for stacked die packages, " 2016 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2016, pp. 1-5, doi: 10. 1109/CSTIC. 2016. 7464047.
T.-J. Su, Y.-F. Chen, J.-C. Cheng, and C.-L. Chiu, "Design of UV Laser Parameters on Grooving Depth for Die Attach Film", Sens. Mater., Vol. 30, No. 4, 2018, p. 885-891. doi: 10. 18494/SAM. 2018. 1791.
A. Hooper, J. Ehorn, M. Brand and C. Bassett, "Review of wafer dicing techniques for via-middle process 3DI/TSV ultrathin silicon device wafers, " 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2015, pp. 1436-1446, doi: 10. 1109/ECTC. 2015. 7159786.
J. Shi, W. Liu, Z. Chen, W. Cao, L. Zhou, "Optimization method of cutting parameters of wafer dicing saw based on orthogonal regression design". SN Appl. Sci. 4, 262, (2022). doi: 10. 1007/s42452-022-05146-1.
DISCO, Dicing blades, https: //www. disco. c o. jp/eg/products/ tool. html?id=hub&hubless (Accessed on June 1, 2024).
ADT, Blades range, https: //www. adt-co. com/dicing-blades/, (Accessed on June 1, 2024).
M. Cooke, "Scribe and dice", The Advanced Semiconductor Magazine, III-Vs Review, Vol. 19, Is. 4, 2006, pp. 20-24, doi: 10. 1016/S0961-1290 (06)71638-6.
A. D. Oliver, T. A. Wallner, R. Tandon1, K. Nieman1, and P. L. Bergstrom, "Diamond scribing and breaking of silicon for MEMS die separation". 2008 J. Micromech. Microeng. 18 075026, doi: 10. 1088/0960-1317/18/7/075026.
A. Tamhankar, R. Patel, "Optimization of UV laser scribing process for light emitting diode sapphire wafers". J. Laser Appl. 2011; 23 (3): 032001. doi: 10. 2351/1. 3589243.
Dynatex, Scribe & Break, https: //www. corning. com/worldwide/en/ products/advanced-optics/product-materials/lasertechnologies/ DynatexToolsbyCLT. html, (Accessed on June 1, 2024).
Thinning Equipment Technology And Market Trends For Semiconductor Devices, https: //medias. yolegroup. com/uploads/ 2020/06/Thinning-Equipment-Technology-and-Market-Trends-for-Semiconductor-Devices_flyer. pdf (Accessed on June 1, 2024).
M. R Marks, Z Hassan and K. Y. Cheong, "Ultrathin wafer preassembly and assembly process technologies: A review". Critical Reviews in Solid State and Materials Sciences, 40 (5), 2015. pp. 251-290. doi: 10. 1080/10408436. 2014. 992585.
S. Gupta, W. T. Navaraj, L. Lorenzelli, R. Dahiya, "Ultra-thin chips for high-performance flexible electronics". npj Flex Electron 2, 8, 2018, doi: 10. 1038/s41528-018-0021-5.
R. Westerman et al. "Deep silicon etching: Current capabilities and future directions". In Micromachining and Microfab. Process Technology XIX, SPIE, 2014, Vol. 8973, pp. 38-51., doi: 10. 1117/12. 2046694.
S; Dutta, I. Yadav, P. Kumar, P. and R. Pal, "Influence of deep reactive ion etching process parameters on etch selectivity and anisotropy in stacked silicon substrates for fabrication of comb-type MEMS capacitive accelerometer". Journal of Mat. Sci. Materials in Electronics, 34 (36), 2023., p. 2270, doi: 10. 1007/s10854-023-11722-x.
A. Podpod et al. "Investigation of Advanced Dicing Technologies for Ultra Low-k and 3D Integration", 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016, pp. 1247-1258, doi: 10. 1109/ECTC. 2016. 28.
R. Westerman, G. Grivna, K. Mackenzie, T. Lazerand, J. Doub, "Plasma dicing: Current state & future trends". ECS Transactions. 2015 Sep 10;69 (6): 3, doi: 10. 1149/06906. 0003ecst.
K. Kim, J. Park, K. Kim, T. Kim, S. Kwon, Y. Na., "Plasma dicing before grinding process for highly reliable singulation of low-profile and large die sizes in advanced packages". Micro and Nano Syst Lett 11, 16 (2023). doi: 10. 1186/s40486-023-00183-w.
K. D. Mackenzie, D. Pays-Volard, L. Martinez, C. Johnson, T. Lazerand and R. Westerman, "Plasma-based die singulation processing technology, " 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2014, pp. 1577-1583, doi: 10. 1109/ECTC. 2014. 6897504.
J. van Borkulo, R. Evertsen and R. van der Stam, "A More Than Moore Enabling Wafer Dicing Technology, " 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, USA, 2019, pp. 423-427, doi: 10. 1109/ECTC. 2019. 00071.
J. K. S. Lam and S. W. R. Lee, "Development of Novel Dicing Process by Anisotropic Wet Etching with Convex Corner Compensation, " 2008 10th Electronics Packaging Technology Conference, Singapore, 2008, pp. 161-166, doi: 10. 1109/EPTC. 2008. 4763428
S. Fulton, O. Ansell, J. Hopkins, T. Umemoto and T. Nishida, "Dicing Tape Performance in a Plasma Dicing Environment, " 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 2018, pp. 229-236, doi: 10. 1109/EPTC. 2018. 8654272.
S. Fulton et al. "A Study of Integrated Circuit Dicing Tape When Used in a Plasma Dicing Environment, " in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 4, pp. 694-703, April 2020, doi: 10. 1109/TCPMT. 2020. 2966724.
Y. Asano, K. Matsuo, H. Ito, K. Higuchi, K. Shimokawa and T. Sato, "A novel wafer dicing method using metal-assisted chemical etching, " 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2015, pp. 853-858, doi: 10. 1109/ECTC. 2015. 7159692.
C. Fornaroli, J. Holtkamp, and A. Gillner, "Dicing of Thin Si Wafers with a Picosecond Laser Ablation Process". Physics Procedia. 41. 2013, pp. 603-609, doi: 10. 1016/j. phpro. 2013. 03. 122.
J. Cheng et al. "A review of ultrafast laser materials micromachining. Optics & Laser Technology", 46, 2013, pp. 88-102., doi: 10. 1016/j. optlastec. 2012. 06. 037.
M. S. Brown, C. B. Arnold, "Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification". In: Sugioka, K., Meunier, M., Pique, A. (eds) Laser Precision Microfabrication. Springer Series in Materials Science, 2010, vol 135. Springer, Berlin, Heidelberg, doi: 10. 1007/978-3-642-10523-4_4.
K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, "Ultrafast laser processing of materials: A review, " Adv. Opt. Photon. 7, 684-712, 2015, doi: 10. 1364/AOP. 7. 000684.
M. R. Marks, K. Y. Cheong, Z. Hassan, "A review of laser ablation and dicing of Si wafers, Precision Engineering", Volume 73, 2022, pp. 377-408, doi: 10. 1016/j. precisioneng. 2021. 10. 001.
O. Haupt et al. "Laser dicing of silicon: Comparison of ablation mechanisms with a novel technology of thermally induced stress". J. LaserMicroNanoeng. 2008, pp. 135, doi: 10. 2961/jlmn. 2008. 03. 0002.
F. Zhang, J. Duan, X. Zeng, and X. Li, "A study of 355nm DPSS UV laser micromachining for silicon wafer", PICALO 2010, P111 (2010); doi: 10. 2351/1. 5057267.
Disco, Laser Saws, DFL7161, https: //www. disco. co. jp/eg/products/ laser/dfl7161. html, (Accessed on June 1, 2024).
Disco, Laser Saws, DFL7362: https: //www. disco. co. jp/eg/products /laser/dfl7362. html, (Accessed on June 1, 2024).
Hamamatsu Photonics, https: //www. hamamatsu. com/eu/en/product/ semiconductor-manufacturing-support-systems/stealth-dicingtechnology. html, (Aceesed on June 1, 2024).
K. W. Shi, Y. B. Kar, N. A. Talik, L. W. Yew, "Ultraviolet Laser Diode Ablation Process for CMOS 45 nm Copper Low-K Semiconductor Wafer", Procedia Engineering, Vol. 184, 2017, pp. 360-369, doi: 10. 1016/j. proeng. 2017. 04. 106.
Synova, LDGS300A, https: //www. synova. ch/products/semiconducto r-dicing-systems/item/58-ldgs-300a. html, (Accessed on June 1, 2024).
Synova, Semiconductor Dicing: https: //www. synova. ch/products /semiconductor-dicing-systems. html, (Aceesed on June 1, 2024).
Accretech, Semiconductor, Wafer Dicing Machines, Laser Dicing: https: //www. accretech. eu/en/products/semiconductor/wafer-dicingmachines/ laser-dicing/ml301exwh/, (Accessed on June 1, 2024).
A. Jain et al. "Laser vs. Blade Dicing for Direct Bonded Heterogeneous Integration (DBHi) Si Bridge, " 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021, pp. 1125-1130, doi: 10. 1109/ECTC32696. 2021. 00184.
F. Inoue et al. "Morphological characterization and mechanical behavior by dicing and thinning on direct bonded Si wafer". Journal of Manufacturing Processes. 2020 Oct 1; 2020, 58, pp. 811-818, doi. : 10. 1016/j. jmapro. 2020. 08. 050.
J. van Borkulo and R. v. d. Stam, "Laser-Based Full Cut Dicing Evaluations for Thin Si Wafers, " 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018, pp. 1951-1955, doi: 10. 1109/ECTC. 2018. 00292.
P. Dijkstra, J. van Borkulo and R. van der Stam, "Laser-Based Full Cut Dicing Evaluations for Thin Si wafers, " 2020 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2020, pp. 1-5, doi: 10. 1109/CSTIC49141. 2020. 9282399.
Z. Li, O. Allegre, Q. Li, W. Guo and L Li., "Femtosecond laser single step, full depth cutting of thick silicon sheets with low surface roughness". Optics & Laser Technology, 138, 2021, p. 106899, doi: 10. 1016/j. optlastec. 2020. 106899
S. J. Wu. "A hybrid method of ultrafast laser dicing and high density plasma etching with water soluble mask for thin silicon wafer cutting. Materials Science in Semiconductor Processing". 2018 Feb 1; 74: Pp. 64-73. https: //doi. org/10. 1016/j. mssp. 2017. 09. 038.
F. Inoue et al. "Advanced Dicing Technologies for Combination of Wafer to Wafer and Collective Die to Wafer Direct Bonding, " 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019, pp. 437-445, doi: 10. 1109/ECTC. 2019. 00073.
M. Kumagai, et al. "Advanced dicing technology for semiconductor wafer-Stealth Dicing, " 2006 IEEE International Symposium on Semiconductor Manufacturing, Tokyo, Japan, 2006, pp. 215-218, doi: 10. 1109/ISSM. 2006. 4493065.
W. H. Teh, D. S. Boning and R. E. Welsch, "Multi-Strata Stealth Dicing Before Grinding for Singulation-Defects Elimination and Die Strength Enhancement: Experiment and Simulation, " in IEEE Transactions on Semiconductor Manufacturing, vol. 28, no. 3, pp. 408-423, Aug. 2015, doi: 10. 1109/TSM. 2015. 2438875.
S. Shao, D. Liu, Yuling Niu and S. Park, "Die stress in stealth dicing for MEMS, " 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, 2016, pp. 539-545, doi: 10. 1109/ITHERM. 2016. 7517595.
D. I. Cereno and S. Wickramanayaka, "Stealth Dicing Challenges for MEMS Wafer Applications, " 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017, pp. 358-363, doi: 10. 1109/ECTC. 2017. 132.
B. Sharma, J. S. Kim, "MEMS based highly sensitive dual FET gas sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 detection". Sci Rep 8, 5902, 2018, doi: 10. 1038/s41598-018-24324-z
WHO Guidelines for indoor air quality, https: //iris. who. int/bitstream/ handle/10665/260127/9789289002134-eng. pdf (accessed on June 1, 2024).
Exploring gas sensors: https: //www. yolegroup. com/playerinterviews/ exploring-gas-sensors-assessing-technological-advancesand-unveiling-business-opportunities-an-interview-with-cubicinnovaer-technologies/ (accessed on June 1, 2024).
D. Ruffer, F. Hoehne, J. Buhler, "New Digital Metal-Oxide (MOx) Sensor Platform". Sensors 2018, Vol. 18, 1052, doi: 10. 3390/s18041052.
B. Souhir, G. Sami, C. S. Hekmet, and K. Abdennaceur, "Design, Simulation, and Optimization of a Meander Micro Hotplate for Gas Sensors, " Transactions on Electrical and Electronic Materials, vol. 17, no. 4, pp. 189-195, Aug. 2016, doi: 10. 4313/TEEM. 2016. 17. 4. 189.
Y. Tang, A. Sandoughsaz, K. J. Owen and K. Najafi, "Ultra Deep Reactive Ion Etching of High Aspect-Ratio and Thick Silicon Using a Ramped-Parameter Process, " in Journal of Microelectromechanical Systems, vol. 27, no. 4, pp. 686-697, Aug. 2018, doi: 10. 1109/JMEMS. 2018. 2843722.
M. T. Ghoneim, M. M. Hussain, "Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics". Small. 2017 Apr;13 (16): 1601801. doi: 10. 1002/smll. 201601801.
P. Pal, V. Swarnalatha, A. V. N. Rao, A. K. Pandey, H. Tanaka & K. Sato. "High speed silicon wet anisotropic etching for applications in bulk micromachining: A review. " Micro and Nano Syst Lett 9, 4, 2021, doi: 10. 1186/s40486-021-00129-0.
D. Briand, L. Guillot, S. Raible, J. Kappler and N. F. de Rooij, "Highly Integrated Wafer Level Packaged MOX Gas Sensors, " TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 2007, pp. 2401-2404, doi: 10. 1109/SENSOR. 2007. 4300654.
S. Edler et al. "Silicon field emitters fabricated by dicing-saw and wet-chemical-etching". J. Vac. Sci. Technol., 2021; Vol. 39 (1): 013205, doi: 10. 1116/6. 0000466.