[en] [en] INTRODUCTION: Ulcerative colitis is a chronic inflammatory bowel disease, affecting the colorectal mucosae, with a relapsing-remitting course, characterized by the trafficking and gathering of lymphocytes in the inflammatory intestinal mucosa. Sphingosine-1-phosphate (S1P) receptor modulators preventing lymphocytes egress from lymphoid tissues to the active inflammation site is an alternative therapeutic option in this condition.
AREA COVERED: We carried out a comprehensive review of the literature available on Medline, Scopus and Embase regarding the pharmacokinetics of S1P receptor modulators. For each compound, we reviewed the mechanism of action, pharmacokinetic data and efficacy and safety data from phase 3 studies and real-life studies when available.
EXPERT OPINION: S1P receptor modulators, including ozanimod and etrasimod (both currently on the market) as well as VTX002 (under development), are a new class of drugs for the treatment of moderate to severe ulcerative colitis, inducing and maintaining the remission. Due to its pharmacokinetic features, this class of drugs has certain advantages such as an oral administration, a short half-life, a high volume of distribution, and no immunogenicity. On the other hand, there are risks of cardiological and ophthalmological side-effects, as well as drug-drug interactions risk, that require special attention from the healthcare providers.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Vieujean, Sophie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de gastroentérologie, hépatologie, onco. digestive
Peyrin-Biroulet, Laurent; Department of Gastroenterology, INFINY Institute, INSERM NGERE, CHRU Nancy, Vandœuvre-lès-Nancy, France ; Groupe Hospitalier privé Ambroise Paré - Hartmann, Paris IBD center, Neuilly sur Seine, France ; Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada
Language :
English
Title :
Pharmacokinetics of S1P receptor modulators in the treatment of ulcerative colitis.
Le Berre C, Honap S, Peyrin-Biroulet L., Ulcerative colitis. Lancet. 2023;402(10401):571–584. doi: 10.1016/S0140-6736(23)00966-2
Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462–2476. doi: 10.1056/NEJMoa050516
Sandborn WJ, Van Assche G, Reinisch W, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142(2):257–265.e3. doi: 10.1053/j.gastro.2011.10.032
Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):85–95. doi: 10.1053/j.gastro.2013.05.048
Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710. doi: 10.1056/NEJMoa1215734
Sandborn WJ, Su C, Sands BE, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376(18):1723–1736. doi: 10.1056/NEJMoa1606910
Feagan BG, Danese S, Loftus EV, et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet. 2021;397(10292):2372–2384. doi: 10.1016/S0140-6736(21)00666-8
Pérez-Jeldres T, Alvarez-Lobos M, Rivera-Nieves J. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: beyond multiple sclerosis. Drugs. 2021;81(9):985–1002. doi: 10.1007/s40265-021-01528-8
EMA. Zeposia. European Medicines Agency; 2020 [cited 2024 Apr1]. Available from:https://www.ema.europa.eu/en/medicines/human/EPAR/zeposia
VTX002 versus placebo for the treatment of moderately to severely active ulcerative colitis. [cited 2024 Jul17]. Available from:https://trialsearch.who.int/Trial2.aspx?TrialID=CTRI/2023/03/050181.l
English D, Welch Z, Kovala AT, et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. Faseb J. 2000;14(14):2255–2265. doi: 10.1096/fj.00-0134com
Pappu R, Schwab SR, Cornelissen I, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science (80-). 2007;316(5822):295–298. doi: 10.1126/science.1139221
Venkataraman K, Lee YM, Michaud J, et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102(6):669–676. doi: 10.1161/CIRCRESAHA.107.165845
Pham THM, Baluk P, Xu Y, et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med. 2010;207(1):17–27. doi: 10.1084/jem.20091619
Danese S, Furfaro F, Vetrano S. Targeting S1P in inflammatory bowel disease: new avenues for modulating intestinal leukocyte migration. J Crohn’s Colitis. 2018;12(suppl_2):S678–S686. doi: 10.1093/ecco-jcc/jjx107
Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol. 2007;8(12):1295–1301. doi: 10.1038/ni1545
Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects. Drugs. 2021;81(2):207–231. doi: 10.1007/s40265-020-01431-8
Pérez-Jeldres T, Tyler CJ, Boyer JD, et al. Cell trafficking interference in inflammatory bowel disease: therapeutic interventions based on basic pathogenesis concepts. Inflamm Bowel Dis. 2019;25(2):270–28. doi: 10.1093/ibd/izy269
Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115(1):84–105. doi: 10.1016/j.pharmthera.2007.04.006
Peyrin-Biroulet L, Christopher R, Behan D, et al. Modulation of sphingosine-1-phosphate in inflammatory bowel disease. Autoimmun Rev. 2017;16(5):495–503. doi: 10.1016/j.autrev.2017.03.007
Becher N, Swaminath A, Sultan K. A literature review of ozanimod therapy in inflammatory bowel disease: from concept to practical application. Ther Clin Risk Manag. 2022;18:913–927. doi: 10.2147/TCRM.S336139
Marsolais D, Rosen H. Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nat Rev Drug Discov. 2009;8(4):297–307. doi: 10.1038/nrd2356
Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest. 2015;125(4):1379–1387. doi: 10.1172/JCI76369
Sandborn WJ, Feagan BG, D’Haens G, et al. Ozanimod as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2021;385(14):1280–1291. doi: 10.1056/NEJMoa2033617
Sandborn WJ, Vermeire S, Peyrin-Biroulet L, et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): two randomised, double-blind, placebo-controlled, phase 3 studies. The Lancet. 2023;401(10383):1159–1171. doi: 10.1016/S0140-6736(23)00061-2
Juif PE, Kraehenbuehl S, Dingemanse J. Clinical pharmacology, efficacy, and safety aspects of sphingosine-1-phosphate receptor modulators. Expert Opin Drug Metab Toxicol. 2016;12(8):879–895. doi: 10.1080/17425255.2016.1196188
Lamb YN. Ozanimod: first approval. Drugs. 2020;80(8):841–848. doi: 10.1007/s40265-020-01319-7
Scott FL, Clemons B, Brooks J, et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016;173(11):1778–1792. doi: 10.1111/bph.13476
Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008;8(10):753–763. doi: 10.1038/nri2400
Tran JQ, Hartung JP, Peach RJ, et al. Results from the first-in-human study with ozanimod, a novel, selective sphingosine-1-phosphate receptor modulator. J Clin Pharmacol. 2017;57(8):988–996. doi: 10.1002/jcph.887
Tran JQ, Zhang P, Walker S, et al. Multiple-dose pharmacokinetics of ozanimod and its major active metabolites and the pharmacodynamic and pharmacokinetic interactions with pseudoephedrine, a sympathomimetic agent, in healthy subjects. Adv Ther. 2020;37(12):4944–4958. doi: 10.1007/s12325-020-01500-0
Tran JQ, Zhang P, Ghosh A, et al. Single-dose pharmacokinetics of ozanimod and its major active metabolites alone and in combination with gemfibrozil, itraconazole, or rifampin in healthy subjects: a randomized, parallel-group, open-label study. Adv Ther. 2020;37(10):4381–4395. doi: 10.1007/s12325-020-01473-0
Irving PM, Gecse KB. Optimizing therapies using therapeutic drug monitoring: current strategies and future perspectives. Gastroenterology. 2022;162(5):1512–1524. doi: 10.1053/j.gastro.2022.02.014
Tran JQ, Hartung JP, Tompkins CA, et al. Effects of high- and low-fat meals on the pharmacokinetics of ozanimod, a novel sphingosine-1-phosphate receptor modulator. Clin Pharmacol Drug Dev. 2018;7(6):634–640. doi: 10.1002/cpdd.409
Gandia P, Decheiver S, Picard M, et al. Hypoalbuminemia and pharmacokinetics: when the misunderstanding of a fundamental concept leads to repeated errors over decades. Antibiotics. 2023;12(3):515. doi: 10.3390/antibiotics12030515
Choi D, Stewart AP, Bhat S. Ozanimod: a first-in-class sphingosine 1-phosphate receptor modulator for the treatment of ulcerative colitis. Ann Pharmacother. 2022;56(5):592–599. doi: 10.1177/10600280211041907
Tran JQ, Hartung JP, Olson AD, et al. Cardiac safety of ozanimod, a novel sphingosine-1-phosphate receptor modulator: results of a thorough QT/QTc study. Clin Pharmacol Drug Dev. 2018;7(3):263–276. doi: 10.1002/cpdd.383
Tatosian D, Shen J, Chen L, et al. Population pharmacokinetics and pharmacodynamics of ozanimod in ulcerative colitis. J Crohn’s Colitis. 2021;15(Supplement_1):S341–S342. doi: 10.1093/ecco-jcc/jjab076.439
Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999;36(6):425–438. doi: 10.2165/00003088-199936060-00004
Fowler JS, Logan J, Wang GJ, et al. Low monoamine oxidase B in peripheral organs in smokers. Proc Natl Acad Sci USA. 2003;100(20):11600–11605. doi: 10.1073/pnas.1833106100
Müller T, Riederer P, Grünblatt E. Determination of monoamine oxidase A and B activity in long-term treated patients with parkinson disease. Clin Neuropharmacol. 2017;40(5):208–211. doi: 10.1097/WNF.0000000000000233
Thébault JJ, Guillaume M, Levy R. Tolerability, safety, pharmacodynamics, and pharmacokinetics of rasagiline: a potent, selective, and irreversible monoamine oxidase type B inhibitor. Pharmacotherapy. 2004;24(10 II):1295–1305. doi: 10.1592/phco.24.14.1295.43156
Heinonen EH, Anttila MI, Nyman LM, et al. Inhibition of platelet monoamine oxidase type B by selegiline. J Clin Pharmacol. 1997;37(7):597–601. doi: 10.1002/j.1552-4604.1997.tb04341.x
Sands BE, Schreiber S, Blumenstein I, et al. Clinician’s guide to using ozanimod for the treatment of ulcerative colitis. J Crohn’s Colitis. 2023;17(12):2012–2025. doi: 10.1093/ecco-jcc/jjad112
Surapaneni S, Yerramilli U, Bai A, et al. Absorption, metabolism, and excretion, in vitro pharmacology, and clinical pharmacokinetics of ozanimod, a novel sphingosine 1-phosphate receptor modulator. Drug Metab Dispos. 2021;49(5):405–419. doi: 10.1124/dmd.120.000220
Rodriguez J, Neyrinck AM, Zhang Z, et al. Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microbes. 2020;12(1):1810530. doi: 10.1080/19490976.2020.1810530
Sandborn WJ, Feagan BG, Wolf DC, et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N Engl J Med. 2016;374(18):1754–1762. doi: 10.1056/NEJMoa1513248
Sandborn WJ, Feagan BG, Hanauer S, et al. Long-Term Efficacy and safety of ozanimod in moderately to severely active ulcerative colitis: results from the open-label extension of the randomized, phase 2 TOUCHSTONE study. J Crohn’s Colitis. 2021;15(7):1120–1129. doi: 10.1093/ecco-jcc/jjab012
Colombel JF, Charles L, Petersen A, et al. S745 safety of concurrent administration of ozanimod and serotonergic antidepressants in patients with ulcerative colitis. Am J Gastroenterol. 2021;116(1):S343–S343. doi: 10.14309/01.ajg.0000776512.86710.84
Cohen NA, Choi D, Choden T, et al. Ozanimod in the treatment of ulcerative colitis: initial real-world data from a large tertiary center. Clin Gastroenterol Hepatol. 2023 Aug;21(9): 2407–2409.e2.
Cohen NA, Choi D, Garcia N, et al. Real world clinical effectiveness and safety of ozanimod in the treatment of ulcerative colitis: 1-year follow-up from a tertiary center. Dig Dis Sci. 2024;69(2):579–587. doi: 10.1007/s10620-023-08178-8
Al-Shamma H, Lehmann-Bruinsma K, Carroll C, et al. The selective sphingosine 1-phosphate receptor modulator etrasimod regulates lymphocyte trafficking and alleviates experimental colitis. J Pharmacol Exp Ther. 2019;369(3):311–317. doi: 10.1124/jpet.118.254268
Lee CA, Acevedo L, Oh DA, et al. P396 Pharmacokinetics and circulating total lymphocyte count pharmacodynamic response from single and multiple oral doses of etrasimod in Japanese and Caucasian healthy male subjects. J Crohn’s Colitis. 2020;14(Supplement_1):S368–S368. doi: 10.1093/ecco-jcc/jjz203.525
Peyrin-Biroulet L, Morgan M, Christopher R, et al. Safety, pharmacokinetics and pharmacodynamics of etrasimod (APD334), an oral selective S1P receptor modulator, after dose-escalation, in healthy volunteers. Inflamm Bowel Dis. 2017;23(suppl_1):SS265–S266. doi: 10.1093/ecco-jcc/jjx002.494
Schreiber S, Morgan M, Christopher R, et al. Effects of transient and persistent anti-drug antibodies to certolizumab pegol: longitudinal data from a 7-year study in Crohn’s disease. Inflamm Bowel Dis. 2017;23(7):S1047–1056. doi: 10.1097/MIB.0000000000001100
Gilardi D, Gabbiadini R, Allocca M, et al. PK, PD, and interactions: the new scenario with JAK inhibitors and S1P receptor modulators, two classes of small molecule drugs, in IBD. Expert Rev Gastroenterol Hepatol. 2020;14(9):797–806. doi: 10.1080/17474124.2020.1785868
Lee CA, Schreiber S, Bressler B, et al. Safety, pharmacokinetics, and pharmacodynamics of etrasimod: single and multiple ascending dose studies in healthy adults. Clin Pharmacol Drug Dev. 2024Feb12;13(5):534–548. doi: 10.1002/cpdd.1379
Oh DA, Lee CA, Tang Y, et al. Steady-state trough concentrations and their relationship to selected demographic and clinical response measures in etrasimod-treated patients with moderately-to-severely active ulcerative colitis. Turk J Gastroenterol. 2019 [cited 2024 Apr4];30:S143‐S144.
Lee CA, Oh DA, Tang Y, et al. Disposition and mass balance of etrasimod in healthy subjects and in vitro determination of the enzymes responsible for its oxidative metabolism. Clin Pharmacol Drug Dev. 2023;12(6):553–571. doi: 10.1002/cpdd.1255
VELSIPITY (etrasimod). Summary of Product characteristics (centralized license), applicable to all countries in the EU and Norway. Amsterdam, Netherlands: European Medicines Agency (EMA); 2023.
Velsipity (etrasimod). European Public Assessment Report (EPAR). Amsterdam, Netherlands: European Medicines Agency (EMA); 2023. Available online at: Velsipity, INN-etrasimod (europa.eu). [cited 2024 Jul11].
Sandborn WJ, Peyrin-Biroulet L, Zhang J, et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis. Gastroenterology. 2020;158(3):550–561. doi: 10.1053/j.gastro.2019.10.035
Vermeire S, Chiorean M, Panés J, et al. Long-term safety and efficacy of etrasimod for ulcerative colitis: results from the open-label extension of the OASIS study. J Crohn’s Colitis. 2021;15(6):950–959. doi: 10.1093/ecco-jcc/jjab016
Pérez-Jeldres T, Tyler CJ, Boyer JD, et al. Targeting cytokine signaling and lymphocyte traffic via small molecules in inflammatory bowel disease: JAK inhibitors and S1PR agonists. Front Pharmacol. 2019;10(MAR). doi: 10.3389/fphar.2019.00212
Ventyx biosciences announces positive results from the phase 2 trial the phase 2 trial of VTX002 in patients with moderate-to-severely active ulcerative colitis. [cited 2024 Jul15]. Available onlinehttps://clinicaltrials.gov/ct2/show/NCT0435379
Luo A, Lester R, Schwab R, et al. Tu1852 Pharmacokinetics and pharmacodynamics of OPL-002, a highly selective S1P1R modulator, in healthy adult volunterrs. Gastroenterology. 2020;158(6):S–1188. doi: 10.1016/S0016-5085(20)33639-8
Gregg R, Yun C, Naik S, et al. P748 Pharmacokinetics, relative bioavailability, and dose proportionality of a tablet formulation of the sphingosine 1-phosphate-1 receptor modulator VTX002 (formerly OPL-002). J Crohn’s Colitis. 2023;17(Supplement_1):i878–i879. doi: 10.1093/ecco-jcc/jjac190.0878
Bencardino S, D’Amico F, Faggiani I, et al. Efficacy and safety of S1P1 receptor modulator drugs for patients with moderate-to-severe ulcerative colitis. J Clin Med. 2023;12(15):5014. doi: 10.3390/jcm12155014
Sands BE, Panaccione R, D’Haens G, et al. OP03 Efficacy and safety of the oral selective sphingosine-1-phosphate-1 receptor modulator VTX002 in moderately to severely active Ulcerative Colitis: results from a randomised, double-blind, placebo-controlled, phase 2 trial. J Crohn’s Colitis. 2024;18(Supplement_1):i4–i5. doi: 10.1093/ecco-jcc/jjad212.0003
Panaccione R, Collins EB, Melmed GY, et al. Efficacy and Safety of Advanced Therapies for Moderately to Severely Active Ulcerative Colitis at Induction and Maintenance: An Indirect Treatment Comparison Using Bayesian Network Meta-analysis. Crohn’s Colitis 360. 2023;5(2). doi: 10.1093/crocol/otad009
Ahuja D, Murad MH, Ma C, et al. Comparative speed of early symptomatic remission with advanced therapies for moderate-to-severe ulcerative colitis: a systematic review and Network Meta-analysis. Am J Gastroenterol. 2023;118(9):1618–1625. doi: 10.14309/ajg.0000000000002263
Solitano V, Facciorusso A, Jess T, et al. Comparative risk of serious infections with biologic agents and oral small molecules in inflammatory bowel diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2023;21(4):907–921.e2. doi: 10.1016/j.cgh.2022.07.032