[en] How does the brain simultaneously process signals that bring complementary information, like raw sensory signals and their transformed counterparts, without any disruptive interference? Contemporary research underscores the brain's adeptness in using decorrelated responses to reduce such interference. Both neurophysiological findings and artificial neural networks support the notion of orthogonal representation for signal differentiation and parallel processing. Yet, where, and how raw sensory signals are transformed into more abstract representations remains unclear. Using a temporal pattern discrimination task in trained monkeys, we revealed that the second somatosensory cortex (S2) efficiently segregates faithful and transformed neural responses into orthogonal subspaces. Importantly, S2 population encoding for transformed signals, but not for faithful ones, disappeared during a nondemanding version of this task, which suggests that signal transformation and their decoding from downstream areas are only active on-demand. A mechanistic computation model points to gain modulation as a possible biological mechanism for the observed context-dependent computation. Furthermore, individual neural activities that underlie the orthogonal population representations exhibited a continuum of responses, with no well-determined clusters. These findings advocate that the brain, while employing a continuum of heterogeneous neural responses, splits population signals into orthogonal subspaces in a context-dependent fashion to enhance robustness, performance, and improve coding efficiency.
Disciplines :
Neurosciences & behavior
Author, co-author :
Bayones, Lucas; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Zainos, Antonio ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Alvarez, Manuel ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Romo, Ranulfo; El Colegio Nacional, Mexico City 06020, Mexico
Franci, Alessio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Departmento de Matemática, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico ; Wallon ExceLlence (WEL) Research Institute, Wavre 1300, Belgique
Rossi-Pool, Román ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Language :
English
Title :
Orthogonality of sensory and contextual categorical dynamics embedded in a continuum of responses from the second somatosensory cortex.
Publication date :
16 July 2024
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
UNAM - Universidad Nacional Autónoma de México CONACYT - Consejo Nacional de Ciencia y Tecnología IBRO - International Brain Research Organization
Funding text :
We thank Hector Diaz for his technical assistance. This work was supported by grants PAPIIT-IN205022 from the Direcci\u00F3n de Asuntos del Personal Acad\u00E9mico de la Universidad Nacional Aut\u00F3noma de M\u00E9xico (to R.R.-P.) and CONAHCYT-319347 (to R.R.-P.) from Consejo Nacional de Ciencia y Tecnolog\u00EDa; International Brain Research Organization (IBRO) Early Career Award 2022 (to R.R.-P.) from International Brain Research Association. L.B. is a postdoctoral student (Postdoctoral fellowship CONACYT-838783).ACKNOWLEDGMENTS. We thank Hector Diaz for his technical assistance. This work was supported by grants PAPIIT-IN205022 from the Direcci\u00F3n de Asuntos del Personal Acad\u00E9mico de la Universidad Nacional Aut\u00F3noma de M\u00E9xico (to R.R.-P.) and CONAHCYT-319347 (to R.R.-P.) from Consejo Nacional de Ciencia y Tecnolog\u00EDa; International Brain Research Organization (IBRO) Early Career Award 2022 (to R.R.-P.) from International Brain Research Association. L.B. is a postdoctoral student (Postdoctoral fellowship CONACYT-838783).
G. Diaz-deLeon et al., An abstract categorical decision code in dorsal premotor cortex. Proc. Natl. Acad. Sci. U.S.A. 119, e2214562119 (2022).
M. T. Kaufman, M. M. Churchland, S. I. Ryu, K. V. Shenoy, Cortical activity in the null space: Permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).
G. F. Elsayed, A. H. Lara, M. T. Kaufman, M. M. Churchland, J. P. Cunningham, Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239 (2016).
A. Libby, T. J. Buschman, Rotational dynamics reduce interference between sensory and memory representations. Nat. Neurosci. 24, 715–726 (2021).
R. Rossi-Pool et al., Decoding a decision process in the neuronal population of dorsal premotor cortex. Neuron 96, 1432–1446.e7 (2017).
B. M. Dekleva et al., Motor cortex retains and reorients neural dynamics during motor imagery. Nat. Hum. Behav. 8, 729–742 (2024).
Y. Xie et al., Geometry of sequence working memory in macaque prefrontal cortex. Science 375, 632–639 (2022).
D. Kobak et al., Demixed principal component analysis of neural population data. Elife 5, e10989 (2016).
A. S. Morcos, C. D. Harvey, History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19, 1672–1681 (2016).
S. A. Koay, A. S. Charles, S. Y. Thiberge, C. D. Brody, D. W. Tank, Sequential and efficient neural-population coding of complex task information. Neuron 110, 328–349.e11 (2022).
T. Flesch, K. Juechems, T. Dumbalska, A. Saxe, C. Summerfield, Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 110, 1258–1270.e11 (2022).
B. DePasquale, D. Sussillo, L. F. Abbott, M. M. Churchland, The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks. Neuron 111, 631–649.e10 (2023).
J. Wang, D. Narain, E. A. Hosseini, M. Jazayeri, Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).
E. D. Remington, D. Narain, E. A. Hosseini, M. Jazayeri, Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics. Neuron 98, 1005–1019.e5 (2018).
M. Beiran, N. Meirhaeghe, H. Sohn, M. Jazayeri, S. Ostojic, Parametric control of flexible timing through low-dimensional neural manifolds. Neuron 111, 739–753.e8 (2023).
W. Chaisangmongkon, S. K. Swaminathan, D. J. Freedman, X.-J. Wang, Computing by Robust transience: How the fronto-parietal network performs sequential, category-based decisions. Neuron 93, 1504–1517.e4 (2017).
O. I. Rumyantsev et al., Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 100–105 (2020).
R. Rossi-Pool, A. Zainos, M. Alvarez, G. Diaz-deLeon, R. Romo, A continuum of invariant sensory and behavioral-context perceptual coding in secondary somatosensory cortex. Nat. Commun. 12, 2000 (2021).
E. Salinas, A. Hernández, A. Zainos, R. Romo, Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000).
R. Romo, A. Hernández, A. Zainos, L. Lemus, C. D. Brody, Neuronal correlates of decision-making in secondary somatosensory cortex. Nat. Neurosci. 5, 1217–1225 (2002).
R. Rossi-Pool et al., Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli. Proc. Natl. Acad. Sci. U.S.A. 113, E7966–E7975 (2016).
F. Carnevale, V. de Lafuente, R. Romo, N. Parga, An optimal decision population code that accounts for correlated variability unambiguously predicts a subject’s choice. Neuron 80, 1532–1543 (2013).
R. Romo, A. Hernández, A. Zainos, E. Salinas, Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003).
R. Rossi-Pool et al., Temporal signals underlying a cognitive process in the dorsal premotor cortex. Proc. Natl. Acad. Sci. U.S.A. 116, 7523–7532 (2019).
G. F. Elsayed, J. P. Cunningham, Structure in neural population recordings: An expected byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318 (2017).
M. C. Aoi, V. Mante, J. W. Pillow, Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nat. Neurosci. 23, 1410–1420 (2020).
J. D. Murray et al., Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 114, 394–399 (2017).
Y. Yang et al., Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data. Cell Rep. 36, 109442 (2021).
L. McInnes, J. Healy, N. Saul, L. Großberger, UMAP: Uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
E. K. Lee et al., Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex. Elife 10, e67490 (2021).
E. Becht et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
R. J. Gardner et al., Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).
S. Parra et al., Hierarchical unimodal processing within the primary somatosensory cortex during a bimodal detection task. Proc. Natl. Acad. Sci. U.S.A. 119, e2213847119 (2022), 10.1073/ pnas.2213847119.
A. Chadwick et al., Learning shapes cortical dynamics to enhance integration of relevant sensory input. Neuron 111, 106–120.e10 (2023).
V. Mante, D. Sussillo, K. V. Shenoy, W. T. Newsome, Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).
S. Kira, H. Safaai, A. S. Morcos, S. Panzeri, C. D. Harvey, A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions. Nat. Commun. 14, 2121 (2023).
S. Fusi, E. K. Miller, M. Rigotti, Why neurons mix: High dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).
M. Rigotti etal., The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).
E. Salinas, P. Thier, Gain modulation: A major computational principle of the central nervous system. Neuron 27, 15–21 (2000).
M. Carandini, D. J. Heeger, Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).
S. Ganguli, H. Sompolinsky, Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annu. Rev. Neurosci. 35, 485–508 (2012).
D. Badre, A. Bhandari, H. Keglovits, A. Kikumoto, The dimensionality of neural representations for control. Curr. Opin. Behav. Sci. 38, 20–28 (2021).
J. D. Semedo, A. Zandvakili, C. K. Machens, B. M. Yu, A. Kohn, Cortical areas interact through a communication subspace. Neuron 102, 249–259.e4 (2019).
A. Akrami, C. D. Kopec, M. E. Diamond, C. D. Brody, Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).
F. Carnevale, V. de Lafuente, R. Romo, O. Barak, N. Parga, Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty. Neuron 86, 1067–1077 (2015).
Z. Bi, C. Zhou, Understanding the computation of time using neural network models. Proc. Natl. Acad. Sci. U.S.A. 117, 10530–10540 (2020).
A. Barri, M. T. Wiechert, M. Jazayeri, D. A. DiGregorio, Synaptic basis of a sub-second representation of time in a neural circuit model. Nat. Commun. 13, 7902 (2022).
T. van Kerkoerle et al., Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 14332–14341 (2014).
J. Ni et al., Gamma-rhythmic gain modulation. Neuron 92, 240–251 (2016).
S. Haegens, V. Nácher, R. Luna, R. Romo, O. Jensen, α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc. Natl. Acad. Sci. U.S.A. 108, 19377–19382 (2011).
A. Zainos et al., Single neuron activity of S1, S2 and DPC of Macaca Mulatta subjects performing the temporal pattern discrimination task. Zenodo (2021). https://doi.org/10.5281/ZENODO.4421855. Accessed 10 February 2021.