biologically active molecules; cancer; drug development; therapy; venom peptides; venomics
Abstract :
[en] Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Abdel-Ghani L. M. Rahmy T. R. Tawfik M. M. Kaziri I. Al-Obaidi A. Rowan E. G. et al. (2019). Cytotoxicity of Nubein6.8 peptide isolated from the snake venom of Naja nubiae on melanoma and ovarian carcinoma cell lines. Toxicon 168, 22–31. 10.1016/j.toxicon.2019.06.220
Abdel-Salam M. A. L. Carvalho-Tavares J. Gomes K. S. Teixeira-Carvalho A. Kitten G. T. Nyffeler J. et al. (2019). The synthetic peptide LyeTxI-b derived from Lycosa erythrognatha spider venom is cytotoxic to U-87 MG glioblastoma cells. Amino Acids 51 (3), 433–449. 10.1007/s00726-018-2678-4
Abdel-Salam M. A. L. Pinto B. Cassali G. Bueno L. Pegas G. Oliveira F. et al. (2021). LyeTx I-b peptide attenuates tumor burden and metastasis in a mouse 4T1 breast cancer model. Antibiot. (Basel) 10 (9), 1136. 10.3390/antibiotics10091136
Acharya K. R. Sturrock E. D. Riordan J. F. Ehlers M. R. (2003). Ace revisited: a new target for structure-based drug design. Nat. Rev. Drug Discov. 2 (11), 891–902. 10.1038/nrd1227
Adams G. L. Pall P. S. Grauer S. M. Zhou X. Ballard J. E. Vavrek M. et al. (2022). Development of ProTx-II analogues as highly selective peptide blockers of Na(v)1.7 for the treatment of pain. J. Med. Chem. 65 (1), 485–496. 10.1021/acs.jmedchem.1c01570
Agnarsson I. Coddington J. A. Kuntner M. (2013). “Systematics: progress in the study of spider diversity and evolution,” in Spider research in the 21st century: trends and perspectives (Siri Scientific Press), 58–111. P. D.
Aguiar F. L. L. Santos N. C. de Paula Cavalcante C. S. Andreu D. Baptista G. R. Goncalves S. (2020). Antibiofilm activity on Candida albicans and mechanism of action on biomembrane models of the antimicrobial peptide ctn[15-34]. Int. J. Mol. Sci. 21 (21), 8339. 10.3390/ijms21218339
Aissaoui-Zid D. Saada M. C. Moslah W. Potier-Cartereau M. Lemettre A. Othman H. et al. (2021). AaTs-1: a tetrapeptide from Androctonus australis scorpion venom, inhibiting U87 glioblastoma cells proliferation by p53 and FPRL-1 up-regulations. Molecules 26 (24), 7610. 10.3390/molecules26247610
Akondi K. B. Muttenthaler M. Dutertre S. Kaas Q. Craik D. J. Lewis R. J. (2014). Discovery, synthesis, and structure-activity relationships of conotoxins. Chem. Rev. 114 (11), 5815–5847. 10.1021/cr400401e
Alexandrou A. J. Brown A. R. Chapman M. L. Estacion M. Turner J. Mis M. A. et al. (2016). Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS One 11 (4), e0152405. 10.1371/journal.pone.0152405
Almaaytah A. Albalas Q. (2014). Scorpion venom peptides with no disulfide bridges: a review. Peptides 51, 35–45. 10.1016/j.peptides.2013.10.021
Almeida C. F. Amaral C. Augusto T. V. Correia-da-Silva G. Marques de Andrade C. Torqueti M. R. et al. (2021). The anti-cancer potential of crotoxin in estrogen receptor-positive breast cancer: its effects and mechanism of action. Toxicon 200, 69–77. 10.1016/j.toxicon.2021.07.003
Anand P. Filipenko P. Huaman J. Lyudmer M. Hossain M. Santamaria C. et al. (2019). Selective inhibition of liver cancer cells using venom peptide. Mar. Drugs 17 (10), 587. 10.3390/md17100587
Arbiser J. L. Kau T. Konar M. Narra K. Ramchandran R. Summers S. A. et al. (2007). Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood 109 (2), 560–565. 10.1182/blood-2006-06-029934
Ashcroft F. M. Rorsman P. (1989). Electrophysiology of the pancreatic β-cell. Prog. Biophys. Mol. Biol. 54 (2), 87–143. 10.1016/0079-6107(89)90013-8
Attarde S. S. Pandit S. V. (2017). Cytotoxic activity of NN-32 toxin from Indian spectacled cobra venom on human breast cancer cell lines. BMC Complement. Altern. Med. 17 (1), 503. 10.1186/s12906-017-2018-3
Attarde S. S. Pandit S. V. (2020). Anticancer potential of nanogold conjugated toxin GNP-NN-32 from Naja naja venom. J. Venom. Anim. Toxins Incl. Trop. Dis. 26, e20190047. 10.1590/1678-9199-JVATITD-2019-0047
Bandeira I. C. J. Bandeira-Lima D. Mello C. P. Pereira T. P. De Menezes R. Sampaio T. L. et al. (2018). Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake's venom gland. Parasitology 145 (8), 1059–1064. 10.1017/S0031182017001846
Banerjee Y. Mizuguchi J. Iwanaga S. Kini R. M. (2005). Hemextin AB complex, a unique anticoagulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. J. Biol. Chem. 280 (52), 42601–42611. 10.1074/jbc.M508987200
Barnwal B. Jobichen C. Girish V. M. Foo C. S. Sivaraman J. Kini R. M. (2016). Ringhalexin from Hemachatus haemachatus: a novel inhibitor of extrinsic tenase complex. Sci. Rep. 6, 25935. 10.1038/srep25935
Bedraoui A. Suntravat M. El Mejjad S. Enezari S. Oukkache N. Sanchez E. E. et al. (2024). Therapeutic potential of snake venom: toxin distribution and opportunities in deep learning for novel drug discovery. Med. Drug Discov. 21, 100175. 10.1016/j.medidd.2023.100175
Bekbossynova A. Zharylgap A. Filchakova O. (2021). Venom-derived neurotoxins targeting nicotinic acetylcholine receptors. Molecules 26 (11), 3373. 10.3390/molecules26113373
Bhattacharjee P. Bhattacharyya D. (2013). Factor V activator from Daboia russelli russelli venom destabilizes β-amyloid aggregate, the hallmark of alzheimer disease. J. Biol. Chem. 288 (42), 30559–30570. 10.1074/jbc.M113.511410
Bhattacharya N. Kolvekar N. Mondal S. Sarkar A. Chakrabarty D. (2023). Biological activities of Vipegrin, an anti-adhesive Kunitz-type serine proteinase inhibitor purified from Russell's viper venom. Toxicon 232, 107213. 10.1016/j.toxicon.2023.107213
Bhowmik T. Gomes A. (2016). NKCT1 (purified Naja kaouthia protein toxin) conjugated gold nanoparticles induced Akt/mTOR inactivation mediated autophagic and caspase 3 activated apoptotic cell death in leukemic cell. Toxicon 121, 86–97. 10.1016/j.toxicon.2016.08.004
Bhowmik T. Gomes A. (2017). Down-regulation of cyclin-dependent kinase-4 and MAPK through estrogen receptor mediated cell cycle arrest in human breast cancer induced by gold nanoparticle tagged toxin protein NKCT1. Chem. Biol. Interact. 268, 119–128. 10.1016/j.cbi.2017.03.009
Bhowmik T. Saha P. P. Dasgupta A. Gomes A. (2013). Antileukemic potential of PEGylated gold nanoparticle conjugated with protein toxin (NKCT1) isolated from Indian cobra (Naja kaouthia) venom. Cancer Nanotechnol. 4 (1-3), 39–55. 10.1007/s12645-013-0036-5
Bhowmik T. Saha P. P. Sarkar A. Gomes A. (2017). Evaluation of cytotoxicity of a purified venom protein from Naja kaouthia (NKCT1) using gold nanoparticles for targeted delivery to cancer cell. Chem. Biol. Interact. 261, 35–49. 10.1016/j.cbi.2016.11.007
Bledzka K. Smyth S. S. Plow E. F. (2013). Integrin alphaIIbbeta3: from discovery to efficacious therapeutic target. Circ. Res. 112 (8), 1189–1200. 10.1161/CIRCRESAHA.112.300570
Boltman T. Meyer M. Ekpo O. (2023). Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancers using chlorotoxin nanoparticles. Cancers (Basel) 15 (13), 3388. 10.3390/cancers15133388
Bordon K. C. F. Cologna C. T. Fornari-Baldo E. C. Pinheiro-Junior E. L. Cerni F. A. Amorim F. G. et al. (2020). From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front. Pharmacol. 11, 1132. 10.3389/fphar.2020.01132
Bowen C. V. DeBay D. Ewart H. S. Gallant P. Gormley S. Ilenchuk T. T. et al. (2013). In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS One 8 (3), e58866. 10.1371/journal.pone.0058866
Brown M. C. Staniszewska I. Del Valle L. Tuszynski G. P. Marcinkiewicz C. (2008). Angiostatic activity of obtustatin as α1β1 integrin inhibitor in experimental melanoma growth. Int. J. Cancer 123 (9), 2195–2203. 10.1002/ijc.23777
Bychkov M. L. Kirichenko A. V. Shulepko M. A. Mikhaylova I. N. Kirpichnikov M. P. Lyukmanova E. N. (2021). Mambalgin-2 inhibits growth, migration, and invasion of metastatic melanoma cells by targeting the channels containing an ASIC1a subunit whose up-regulation correlates with poor survival prognosis. Biomedicines 9 (10), 1324. 10.3390/biomedicines9101324
Bychkov M. L. Shulepko M. A. Vasileva V. Y. Sudarikova A. V. Kirpichnikov M. P. Lyukmanova E. N. (2020). ASIC1a inhibitor mambalgin-2 suppresses the growth of leukemia cells by cell cycle arrest. Acta Naturae 12 (2), 111–116. 10.32607/actanaturae.11158
Calvete J. J. Marcinkiewicz C. Monleon D. Esteve V. Celda B. Juarez P. et al. (2005). Snake venom disintegrins: evolution of structure and function. Toxicon 45 (8), 1063–1074. 10.1016/j.toxicon.2005.02.024
Campeiro J. D. Marinovic M. P. Carapeto F. C. Dal Mas C. Monte G. G. Carvalho Porta L. et al. (2018). Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 50 (2), 267–278. 10.1007/s00726-017-2513-3
Casewell N. R. Wuster W. Vonk F. J. Harrison R. A. Fry B. G. (2013). Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. 28 (4), 219–229. 10.1016/j.tree.2012.10.020
Castle N. A. London D. O. Creech C. Fajloun Z. Stocker J. W. Sabatier J. M. (2003). Maurotoxin: a potent inhibitor of intermediate conductance Ca2+-activated potassium channels. Mol. Pharmacol. 63 (2), 409–418. 10.1124/mol.63.2.409
Castro-Amorim J. Novo de Oliveira A. Da Silva S. L. Soares A. M. Mukherjee A. K. Ramos M. J. et al. (2023). Catalytically active snake venom PLA(2) enzymes: an overview of its elusive mechanisms of reaction. J. Med. Chem. 66 (8), 5364–5376. 10.1021/acs.jmedchem.3c00097
Cavalcante C. S. Falcao C. B. Fontenelle R. O. Andreu D. Radis-Baptista G. (2017). Anti-fungal activity of Ctn[15-34], the C-terminal peptide fragment of crotalicidin, a rattlesnake venom gland cathelicidin. J. Antibiot. (Tokyo) 70 (3), 231–237. 10.1038/ja.2016.135
Chai J. Yang W. Gao Y. Guo R. Peng Q. Abdel-Rahman M. A. et al. (2021). Antitumor effects of scorpion peptide Smp43 through mitochondrial dysfunction and membrane disruption on hepatocellular carcinoma. J. Nat. Prod. 84 (12), 3147–3160. 10.1021/acs.jnatprod.1c00963
Chandy K. G. Norton R. S. (2017). Peptide blockers of K(v)1.3 channels in T cells as therapeutics for autoimmune disease. Curr. Opin. Chem. Biol. 38, 97–107. 10.1016/j.cbpa.2017.02.015
Chandy K. G. Sanches K. Norton R. S. (2023). Structure of the voltage-gated potassium channel K(V)1.3: insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 17 (1), 2253104. 10.1080/19336950.2023.2253104
Chandy K. G. Wulff H. Beeton C. Pennington M. Gutman G. A. Cahalan M. D. (2004). K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25 (5), 280–289. 10.1016/j.tips.2004.03.010
Chassagnon I. R. McCarthy C. A. Chin Y. K. Pineda S. S. Keramidas A. Mobli M. et al. (2017). Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. U. S. A. 114 (14), 3750–3755. 10.1073/pnas.1614728114
Chen Z. Tran D. Li T. Arias K. Griffith B. P. Wu Z. J. (2020). The role of a disintegrin and metalloproteinase proteolysis and mechanical damage in nonphysiological shear stress-induced platelet receptor shedding. ASAIO J. 66 (5), 524–531. 10.1097/MAT.0000000000001028
Chi Q. N. Jia S. X. Yin H. Wang L. E. Fu X. Y. Ma Y. N. et al. (2023). Efficient synthesis and anticancer evaluation of spider toxin peptide LVTX-8-based analogues with enhanced stability. Bioorg Chem. 134, 106451. 10.1016/j.bioorg.2023.106451
Chiou J. T. Shi Y. J. Wang L. J. Huang C. H. Lee Y. C. Chang L. S. (2019). Naja atra cardiotoxin 3 elicits autophagy and apoptosis in U937 human leukemia cells through the Ca(2+)/PP2A/AMPK Axis. Toxins (Basel) 11 (9), 527. 10.3390/toxins11090527
Chiou J. T. Wang L. J. Lee Y. C. Chang L. S. (2021). Naja atra cardiotoxin 1 induces the FasL/fas death pathway in human leukemia cells. Cells 10 (8), 2073. 10.3390/cells10082073
Chong H. P. Tan K. Y. Tan C. H. (2020). Cytotoxicity of snake venoms and cytotoxins from two southeast asian cobras (Naja sumatrana, Naja kaouthia): exploration of anticancer potential, selectivity, and cell death mechanism. Front. Mol. Biosci. 7, 583587. 10.3389/fmolb.2020.583587
Chung E. S. Lee G. Lee C. Ye M. Chung H. S. Kim H. et al. (2015). Bee venom phospholipase A2, a novel Foxp3+ regulatory T cell inducer, protects dopaminergic neurons by modulating neuroinflammatory responses in a mouse model of Parkinson's disease. J. Immunol. 195 (10), 4853–4860. 10.4049/jimmunol.1500386
Ciolek J. Reinfrank H. Quinton L. Viengchareun S. Stura E. A. Vera L. et al. (2017). Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 114 (27), 7154–7159. 10.1073/pnas.1620454114
Colombo S. F. Mazzo F. Pistillo F. Gotti C. (2013). Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem. Pharmacol. 86 (8), 1063–1073. 10.1016/j.bcp.2013.06.023
Conde R. Zamudio F. Z. Rodriguez M. H. Possani L. D. (2000). Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 471 (2-3), 165–168. 10.1016/s0014-5793(00)01384-3
Coulter-Parkhill A. McClean S. Gault V. A. Irwin N. (2021). Therapeutic potential of peptides derived from animal venoms: current views and emerging drugs for diabetes. Clin. Med. Insights Endocrinol. Diabetes 14, 117955142110060. 10.1177/11795514211006071
Craig A. G. Norberg T. Griffin D. Hoeger C. Akhtar M. Schmidt K. et al. (1999). Contulakin-G, an O-glycosylated invertebrate neurotensin. J. Biol. Chem. 274 (20), 13752–13759. 10.1074/jbc.274.20.13752
Cummins T. R. Sheets P. L. Waxman S. G. (2007). The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131 (3), 243–257. 10.1016/j.pain.2007.07.026
Cura J. E. Blanzaco D. P. Brisson C. Cura M. A. Cabrol R. Larrateguy L. et al. (2002). Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA(2), NSC-624244) in patients with advanced cancer. Clin. Cancer Res. 8 (4), 1033–1041.
Cushman D. W. Ondetti M. A. (1991). History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 17 (4), 589–592. 10.1161/01.hyp.17.4.589
Dalmolin G. D. Silva C. R. Rigo F. K. Gomes G. M. do Nascimento Cordeiro M. Richardson M. et al. (2011). Antinociceptive effect of Brazilian armed spider venom toxin Tx3-3 in animal models of neuropathic pain. Pain 152 (10), 2224–2232. 10.1016/j.pain.2011.04.015
D'Amelio F. Vigerelli H. de Brandao Prieto da Silva A. R. Kerkis I. (2021). Bothrops moojeni venom and its components - an overview. J. Venom. Res. 11, 26–33.
Dardevet L. Najlaoui F. Aroui S. Collot M. Tisseyre C. Pennington M. W. et al. (2022). A conjugate between lqh-8/6, a natural peptide analogue of chlorotoxin, and doxorubicin efficiently induces glioma cell death. Biomedicines 10 (10), 2605. 10.3390/biomedicines10102605
da Rocha R. G. Santos E. M. S. Tanaka-Azevedo A. M. Serino-Silva C. Souza M. G. Gomes E. S. B. et al. (2023). The antineoplastic potential of crotoxin isolated from Crotalus durissus terrificus snake venom on oral squamous cell carcinoma. Toxicon 221, 106965. 10.1016/j.toxicon.2022.106965
Das T. Bhattacharya S. Biswas A. Gupta S. D. Gomes A. Gomes A. (2013). Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom. Toxicon 65, 1–4. 10.1016/j.toxicon.2013.01.004
Das T. Bhattacharya S. Halder B. Biswas A. Das Gupta S. Gomes A. et al. (2011). Cytotoxic and antioxidant property of a purified fraction (NN-32) of Indian Naja naja venom on Ehrlich ascites carcinoma in BALB/c mice. Toxicon 57 (7-8), 1065–1072. 10.1016/j.toxicon.2011.04.012
de Avelar Junior J. T. Lima-Batista E. Castro Junior C. J. Pimenta A. M. C. Dos Santos R. G. Souza-Fagundes E. M. et al. (2022). LyeTxI-b, a synthetic peptide derived from a spider venom, is highly active in triple-negative breast cancer cells and acts synergistically with cisplatin. Front. Mol. Biosci. 9, 876833. 10.3389/fmolb.2022.876833
de Azevedo R. A. Figueiredo C. R. Ferreira A. K. Matsuo A. L. Massaoka M. H. Girola N. et al. (2015). Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 68, 113–119. 10.1016/j.peptides.2014.09.024
Debnath A. Saha A. Gomes A. Biswas S. Chakrabarti P. Giri B. et al. (2010). A lethal cardiotoxic-cytotoxic protein from the Indian monocellate cobra (Naja kaouthia) venom. Toxicon 56 (4), 569–579. 10.1016/j.toxicon.2010.05.016
de Carvalho Porta L. Fadel V. D'Arc Campeiro J. Oliveira E. B. Godinho R. O. Hayashi M. A. F. (2020). Biophysical and pharmacological characterization of a full-length synthetic analog of the antitumor polypeptide crotamine. J. Mol. Med. Berl. 98 (11), 1561–1571. 10.1007/s00109-020-01975-y
de Moraes L. Silva P. S. E. Pereira T. Almeida Rodrigues T. A. Farias Frihling B. E. da Costa R. A. et al. (2022). First generation of multifunctional peptides derived from latarcin-3a from Lachesana tarabaevi spider toxin. Front. Microbiol. 13, 965621. 10.3389/fmicb.2022.965621
Deng Z. Gao Y. Nguyen T. Chai J. Wu J. Li J. et al. (2023). The potent antitumor activity of Smp43 against non-small-cell lung cancer A549 cells via inducing membranolysis and mitochondrial dysfunction. Toxins (Basel) 15 (5), 347. 10.3390/toxins15050347
Desai D. Kantliwala S. V. Vybhavi J. Ravi R. Patel H. Patel J. (2024). Review of AlphaFold 3: transformative advances in drug design and therapeutics. Cureus 16 (7), e63646. 10.7759/cureus.63646
de Santana C. J. C. Pires Junior O. R. Fontes W. Palma M. S. Castro M. S. (2022). Mastoparans: a group of multifunctional α-helical peptides with promising therapeutic properties. Front. Mol. Biosci. 9, 824989. 10.3389/fmolb.2022.824989
de Souza A. H. Lima M. C. Drewes C. C. da Silva J. F. Torres K. C. Pereira E. M. et al. (2011). Antiallodynic effect and side effects of Phα1β, a neurotoxin from the spider Phoneutria nigriventer: comparison with ω-conotoxin MVIIA and morphine. Toxicon 58 (8), 626–633. 10.1016/j.toxicon.2011.09.008
De Waard S. Montnach J. Cortinovis C. Chkir O. Erfanian M. Hulin P. et al. (2020). Maurocalcin and its analog MCaE12A facilitate Ca2+ mobilization in cardiomyocytes. Biochem. J. 477 (20), 3985–3999. 10.1042/BCJ20200206
Dintzis S. M. Hansen S. Harrington K. M. Tan L. C. Miller D. M. Ishak L. et al. (2019). Real-time visualization of breast carcinoma in pathology specimens from patients receiving fluorescent tumor-marking agent tozuleristide. Arch. Pathol. Lab. Med. 143 (9), 1076–1083. 10.5858/arpa.2018-0197-OA
Diochot S. Baron A. Salinas M. Douguet D. Scarzello S. Dabert-Gay A. S. et al. (2012). Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490 (7421), 552–555. 10.1038/nature11494
Dobrica E. C. Gaman M. A. Cozma M. A. Bratu O. G. Pantea Stoian A. Diaconu C. C. (2019). Polypharmacy in type 2 diabetes mellitus: insights from an internal medicine department. Med. Kaunas. 55 (8), 436. 10.3390/medicina55080436
Donato N. J. Martin C. A. Perez M. Newman R. A. Vidal J. C. Etcheverry M. (1996). Regulation of epidermal growth factor receptor activity by crotoxin, a snake venom phospholipase A2 toxin. Biochem. Pharmacol. 51 (11), 1535–1543. 10.1016/0006-2952(96)00097-4
Droctove L. Ciolek J. Mendre C. Chorfa A. Huerta P. Carvalho C. et al. (2022). A new Kunitz-type snake toxin family associated with an original mode of interaction with the vasopressin 2 receptor. Br. J. Pharmacol. 179 (13), 3470–3481. 10.1111/bph.15814
Dubovskii P. V. Vassilevski A. A. Kozlov S. A. Feofanov A. V. Grishin E. V. Efremov R. G. (2015). Latarcins: versatile spider venom peptides. Cell Mol. Life Sci. 72 (23), 4501–4522. 10.1007/s00018-015-2016-x
Duggan N. M. Saez N. J. Clayton D. Budusan E. Watson E. E. Tucker I. J. et al. (2021). Total synthesis of the spider-venom peptide Hi1a. Org. Lett. 23 (21), 8375–8379. 10.1021/acs.orglett.1c03112
Eagles D. A. Chow C. Y. King G. F. (2022). Fifteen years of Na(V) 1.7 channels as an analgesic target: why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br. J. Pharmacol. 179 (14), 3592–3611. 10.1111/bph.15327
Elnahriry K. A. Wai D. C. C. Krishnarjuna B. Badawy N. N. Chittoor B. MacRaild C. A. et al. (2019). Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon 168, 104–112. 10.1016/j.toxicon.2019.07.002
Elrayess R. A. Mohallal M. E. Mobarak Y. M. Ebaid H. M. Haywood-Small S. Miller K. et al. (2021). Scorpion venom antimicrobial peptides induce caspase-1 dependant pyroptotic cell death. Front. Pharmacol. 12, 788874. 10.3389/fphar.2021.788874
Er S. Y. Cristofori-Armstrong B. Escoubas P. Rash L. D. (2017). Discovery and molecular interaction studies of a highly stable, tarantula peptide modulator of acid-sensing ion channel 1. Neuropharmacology 127, 185–195. 10.1016/j.neuropharm.2017.03.020
Estrada-Gomez S. Gomez-Rave L. Vargas-Munoz L. J. van der Meijden A. (2017). Characterizing the biological and biochemical profile of six different scorpion venoms from the Buthidae and Scorpionidae family. Toxicon 130, 104–115. 10.1016/j.toxicon.2017.02.007
Falcao C. B. Perez-Peinado C. de la Torre B. G. Mayol X. Zamora-Carreras H. Jimenez M. A. et al. (2015). Structural dissection of crotalicidin, a rattlesnake venom cathelicidin, retrieves a fragment with antimicrobial and antitumor activity. J. Med. Chem. 58 (21), 8553–8563. 10.1021/acs.jmedchem.5b01142
Faure G. Harvey A. L. Thomson E. Saliou B. Radvanyi F. Bon C. (1993). Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur. J. Biochem. 214 (2), 491–496. 10.1111/j.1432-1033.1993.tb17946.x
Ferreira S. H. Bartelt D. C. Greene L. J. (1970). Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9 (13), 2583–2593. 10.1021/bi00815a005
Finol-Urdaneta R. K. Remedi M. S. Raasch W. Becker S. Clark R. B. Struver N. et al. (2012). Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol. Med. 4 (5), 424–434. 10.1002/emmm.201200218
Flinspach M. Xu Q. Piekarz A. D. Fellows R. Hagan R. Gibbs A. et al. (2017). Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci. Rep. 7, 39662. 10.1038/srep39662
Formicola B. Dal Magro R. Montefusco-Pereira C. V. Lehr C. M. Koch M. Russo L. et al. (2019). The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB. J. Nanobiotechnology 17 (1), 115. 10.1186/s12951-019-0546-3
Fry B. G. Roelants K. Champagne D. E. Scheib H. Tyndall J. D. King G. F. et al. (2009). The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 10, 483–511. 10.1146/annurev.genom.9.081307.164356
Fu S. Hirte H. Welch S. Ilenchuk T. T. Lutes T. Rice C. et al. (2017). First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. Invest. New Drugs 35 (3), 324–333. 10.1007/s10637-017-0438-z
Funk C. Gmur J. Herold R. Straub P. W. (1971). Reptilase®‐R—a new reagent in blood coagulation. Br. J. Haematol. 21 (1), 43–52. 10.1111/j.1365-2141.1971.tb03415.x
Gao R. Shen Y. Cai J. Lei M. Wang Z. (2010). Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol. Rep. 23 (5), 1293–1299. 10.3892/or_00000763
Gazerani P. Cairns B. E. (2014). Venom-based biotoxins as potential analgesics. Expert Rev. Neurother. 14 (11), 1261–1274. 10.1586/14737175.2014.962518
Gerard L. Duvivier L. Gillet J. P. (2021). Targeting tumor resistance mechanisms. Fac. Rev. 10, 6. 10.12703/r/10-6
Ghazaryan N. Movsisyan N. Macedo J. C. Vaz S. Ayvazyan N. Pardo L. et al. (2019). The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model. Invest. New Drugs 37 (5), 1044–1051. 10.1007/s10637-019-00734-2
Ghazaryan N. A. Ghulikyan L. A. Kishmiryan A. V. Kirakosyan G. R. Nazaryan O. H. Ghevondyan T. H. et al. (2015). Anti-tumor effect investigation of obtustatin and crude Macrovipera lebetina obtusa venom in S-180 sarcoma bearing mice. Eur. J. Pharmacol. 764, 340–345. 10.1016/j.ejphar.2015.07.011
Ghosh A. Roy R. Nandi M. Mukhopadhyay A. (2019). Scorpion venom-toxins that aid in drug development: a review. Int. J. Pept. Res. Ther. 25 (1), 27–37. 10.1007/s10989-018-9721-x
Girish V. M. Kini R. M. (2016). Exactin: a specific inhibitor of Factor X activation by extrinsic tenase complex from the venom of Hemachatus haemachatus. Sci. Rep. 6, 32036. 10.1038/srep32036
Gnanasambandam R. Ghatak C. Yasmann A. Nishizawa K. Sachs F. Ladokhin A. S. et al. (2017). GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys. J. 112 (1), 31–45. 10.1016/j.bpj.2016.11.013
Gomes G. M. Dalmolin G. D. Cordeiro M. doN. Gomez M. V. Ferreira J. Rubin M. A. (2013). The selective A-type K+ current blocker Tx3-1 isolated from the Phoneutria nigriventer venom enhances memory of naïve and Aβ25-35-treated mice. Toxicon official J. Int. Soc. Toxinology 76, 23–27. 10.1016/j.toxicon.2013.08.059
Gomis-Ruth F. X. Kress L. F. Bode W. (1993). First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. EMBO J. 12 (11), 4151–4157. 10.1002/j.1460-2075.1993.tb06099.x
Gopal G. Muralidar S. Prakash D. Kamalakkannan A. Indhuprakash S. T. Thirumalai D. et al. (2023). The concept of Big Four: road map from snakebite epidemiology to antivenom efficacy. Int. J. Biol. Macromol. 242 (Pt 1), 124771. 10.1016/j.ijbiomac.2023.124771
Graf N. Mokhtari T. E. Papayannopoulos I. A. Lippard S. J. (2012). Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells. J. Inorg. Biochem. 110, 58–63. 10.1016/j.jinorgbio.2012.02.012
Guido-Patino J. C. Plisson F. (2022). Profiling hymenopteran venom toxins: protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 14, 100119. 10.1016/j.toxcx.2022.100119
Guo M. Teng M. Niu L. Liu Q. Huang Q. Hao Q. (2005). Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold. J. Biol. Chem. 280 (13), 12405–12412. 10.1074/jbc.M413566200
Guo Q. Huang M. Li M. Chen J. Cheng S. Ma L. et al. (2024). Diversity and evolutionary analysis of venom insulin derived from cone snails. Toxins (Basel) 16 (1), 34. 10.3390/toxins16010034
Guo R. Chen X. Nguyen T. Chai J. Gao Y. Wu J. et al. (2022). The strong anti-tumor effect of Smp24 in lung adenocarcinoma A549 cells depends on its induction of mitochondrial dysfunctions and ROS accumulation. Toxins (Basel) 14 (9), 590. 10.3390/toxins14090590
Han R. Liang H. Qin Z. H. Liu C. Y. (2014). Crotoxin induces apoptosis and autophagy in human lung carcinoma cells in vitro via activation of the p38MAPK signaling pathway. Acta Pharmacol. Sin. 35 (10), 1323–1332. 10.1038/aps.2014.62
Han S. Yi H. Yin S. J. Chen Z. Y. Liu H. Cao Z. J. et al. (2008). Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. J. Biol. Chem. 283 (27), 19058–19065. 10.1074/jbc.M802054200
Harel M. Kleywegt G. J. Ravelli R. B. Silman I. Sussman J. L. (1995). Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 3 (12), 1355–1366. 10.1016/s0969-2126(01)00273-8
He J. K. Wu X. S. Wang Y. Han R. Qin Z. H. Xie Y. (2013). Growth inhibitory effects and molecular mechanisms of crotoxin treatment in esophageal Eca-109 cells and transplanted tumors in nude mice. Acta Pharmacol. Sin. 34 (2), 295–300. 10.1038/aps.2012.156
Herrington J. (2007). Gating modifier peptides as probes of pancreatic β-cell physiology. Toxicon 49 (2), 231–238. 10.1016/j.toxicon.2006.09.012
Herrington J. Sanchez M. Wunderler D. Yan L. Bugianesi R. M. Dick I. E. et al. (2005). Biophysical and pharmacological properties of the voltage‐gated potassium current of human pancreatic β‐cells. J. Physiol. 567 (Pt 1), 159–175. 10.1113/jphysiol.2005.089375
Herzig V. Cristofori-Armstrong B. Israel M. R. Nixon S. A. Vetter I. King G. F. (2020). Animal toxins - nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol. 181, 114096. 10.1016/j.bcp.2020.114096
Hilchie A. L. Sharon A. J. Haney E. F. Hoskin D. W. Bally M. B. Franco O. L. et al. (2016). Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim. Biophys. Acta 1858 (12), 3195–3204. 10.1016/j.bbamem.2016.09.021
Hirsch E. C. Hunot S. (2009). Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8 (4), 382–397. 10.1016/S1474-4422(09)70062-6
Hiu J. J. Yap M. K. K. (2021). The effects of Naja sumatrana venom cytotoxin, sumaCTX on alteration of the secretome in MCF-7 breast cancer cells following membrane permeabilization. Int. J. Biol. Macromol. 184, 776–786. 10.1016/j.ijbiomac.2021.06.145
Hmed B. Serria H. T. Mounir Z. K. (2013). Scorpion peptides: potential use for new drug development. J. Toxicol. 2013, 1–15. 10.1155/2013/958797
Ho T. N. T. Abraham N. Lewis R. J. (2020). Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins. Front. Neurosci. 14, 609005. 10.3389/fnins.2020.609005
Holford M. Daly M. King G. F. Norton R. S. (2018). Venoms to the rescue. Science 361 (6405), 842–844. 10.1126/science.aau7761
Hurst R. Rollema H. Bertrand D. (2013). Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol. Ther. 137 (1), 22–54. 10.1016/j.pharmthera.2012.08.012
Igarashi T. Araki S. Mori H. Takeda S. (2007). Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins. FEBS Lett. 581 (13), 2416–2422. 10.1016/j.febslet.2007.04.057
Inan S. Y. Yildirim S. Tanriover G. Ilhan B. (2024). P/Q type (Ca(v)2.1) calcium channel blocker omega-agatoxin IVA alters cleaved caspase-3 and BDNF expressions in the rat brain and suppresses seizure activity. Mol. Neurobiol. 61 (4), 1861–1872. 10.1007/s12035-023-03678-0
Izidoro L. F. Sobrinho J. C. Mendes M. M. Costa T. R. Grabner A. N. Rodrigues V. M. et al. (2014). Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. Biomed. Res. Int. 2014, 1–19. 10.1155/2014/196754
Jadvar H. Chen K. Park R. Yap L. P. Vorobyova I. Swenson S. et al. (2019). Preclinical evaluation of a (64)Cu-labeled disintegrin for PET imaging of prostate cancer. Amino Acids 51 (10-12), 1569–1575. 10.1007/s00726-019-02794-3
Jeong J. K. Moon M. H. Bae B. C. Lee Y. J. Seol J. W. Park S. Y. (2011). Bee venom phospholipase A2 prevents prion peptide induced-cell death in neuronal cells. Int. J. Mol. Med. 28 (5), 867–873. 10.3892/ijmm.2011.730
Jian C. Zhang P. Ma J. Jian S. Zhang Q. Liu B. et al. (2018). The roles of fatty-acid modification in the activity of the anticancer peptide R-lycosin-I. Mol. Pharm. 15 (10), 4612–4620. 10.1021/acs.molpharmaceut.8b00605
Jin C. Ye Q. H. Yuan F. L. Gu Y. L. Li J. P. Shi Y. H. et al. (2015). Involvement of acid-sensing ion channel 1α in hepatic carcinoma cell migration and invasion. Tumour Biol. 36 (6), 4309–4317. 10.1007/s13277-015-3070-6
Joubert F. J. Taljaard N. (1979). Some properties and the complete primary structures of two reduced and S-carboxymethylated polypeptides (S5C1 and S5C10) from Dendroaspis jamesoni kaimosae (Jameson's mamba) venom. Biochim. Biophys. Acta 579 (1), 228–233. 10.1016/0005-2795(79)90101-6
Jouiaei M. Yanagihara A. A. Madio B. Nevalainen T. J. Alewood P. F. Fry B. G. (2015). Ancient venom systems: a review on Cnidaria toxins. Toxins (Basel) 7 (6), 2251–2271. 10.3390/toxins7062251
Joviano-Santos J. V. Valadao P. A. C. Magalhaes-Gomes M. P. S. Fernandes L. F. Diniz D. M. Machado T. C. G. et al. (2021). Protective effect of a spider recombinant toxin in a murine model of Huntington's disease. Neuropeptides 85, 102111. 10.1016/j.npep.2020.102111
Ju S. Zhang Y. Guo X. Yan Q. Liu S. Ma B. et al. (2022). Anti-ovarian cancer conotoxins identified from Conus venom. Molecules 27 (19), 6609. 10.3390/molecules27196609
Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596 (7873), 583–589. 10.1038/s41586-021-03819-2
Kampo S. Ahmmed B. Zhou T. Owusu L. Anabah T. W. Doudou N. R. et al. (2019). Scorpion venom analgesic peptide, BmK AGAP inhibits stemness, and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Front. Oncol. 9, 21. 10.3389/fonc.2019.00021
Kampo S. Cui Y. Yu J. Anabah T. W. Falagan A. A. Bayor M. T. et al. (2021). Scorpion Venom peptide, AGAP inhibits TRPV1 and potentiates the analgesic effect of lidocaine. Heliyon 7 (12), e08560. 10.1016/j.heliyon.2021.e08560
Kang T. S. Georgieva D. Genov N. Murakami M. T. Sinha M. Kumar R. P. et al. (2011). Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 278 (23), 4544–4576. 10.1111/j.1742-4658.2011.08115.x
Kerkis I. Hayashi M. A. Prieto da Silva A. R. Pereira A. De Sa Junior P. L. Zaharenko A. J. et al. (2014). State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed. Res. Int. 2014, 1–9. 10.1155/2014/675985
Kharrat R. Mabrouk K. Crest M. Darbon H. Oughideni R. Martin-Eauclaire M. F. et al. (1996). Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K+ channels. Eur. J. Biochem. 242 (3), 491–498. 10.1111/j.1432-1033.1996.0491r.x
Kim J. Koo B. K. Knoblich J. A. (2020). Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21 (10), 571–584. 10.1038/s41580-020-0259-3
King G. F. (2011). Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther. 11 (11), 1469–1484. 10.1517/14712598.2011.621940
King G. F. (2013). Venoms to drugs: translating venom peptides into therapeutics. Aust. Biochem. 44 (3), 13–15.
King G. F. Hardy M. C. (2013). Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 58, 475–496. 10.1146/annurev-ento-120811-153650
King G. F. Vetter I. (2014). No gain, no pain: NaV1.7 as an analgesic target. ACS Chem. Neurosci. 5 (9), 749–751. 10.1021/cn500171p
Kini R. M. (2006). Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem. J. 397 (3), 377–387. 10.1042/BJ20060302
Kini R. M. Koh C. Y. (2020). Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem. Pharmacol. 181, 114105. 10.1016/j.bcp.2020.114105
Klaiss-Luna M. C. Giraldo-Lorza J. M. Jemiola-Rzeminska M. Strzalka K. Manrique-Moreno M. (2023). Biophysical insights into the antitumoral activity of crotalicidin against breast cancer model membranes. Int. J. Mol. Sci. 24 (22), 16226. 10.3390/ijms242216226
Kohn A. J. (2018). Conus envenomation of humans: in fact and fiction. Toxins (Basel) 11 (1), 10. 10.3390/toxins11010010
Koludarov I. Jackson T. N. Sunagar K. Nouwens A. Hendrikx I. Fry B. G. (2014). Fossilized venom: the unusually conserved venom profiles of Heloderma species (beaded lizards and gila monsters). Toxins (Basel) 6 (12), 3582–3595. 10.3390/toxins6123582
Kozlov S. A. Vassilevski A. A. Feofanov A. V. Surovoy A. Y. Karpunin D. V. Grishin E. V. (2006). Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J. Biol. Chem. 281 (30), 20983–20992. 10.1074/jbc.M602168200
Kutzsche J. Guzman G. A. Willuweit A. Kletke O. Wollert E. Gering I. et al. (2024). An orally available Ca(v)2.2 calcium channel inhibitor for the treatment of neuropathic pain. Br. J. Pharmacol. 181 (12), 1734–1756. 10.1111/bph.16309
Kvetkina A. Malyarenko O. Pavlenko A. Dyshlovoy S. von Amsberg G. Ermakova S. et al. (2020). Sea anemone heteractis crispa actinoporin demonstrates in vitro anticancer activities and prevents HT-29 colorectal cancer cell migration. Molecules 25 (24), 5979. 10.3390/molecules25245979
Langenegger N. Nentwig W. Kuhn-Nentwig L. (2019). Spider venom: components, modes of action, and novel strategies in transcriptomic and proteomic analyses. Toxins (Basel) 11 (10), 611. 10.3390/toxins11100611
Lebbe E. K. Peigneur S. Wijesekara I. Tytgat J. (2014). Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar. Drugs 12 (5), 2970–3004. 10.3390/md12052970
Lebbe E. K. Tytgat J. (2016). In the picture: disulfide-poor conopeptides, a class of pharmacologically interesting compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. 22, 30. 10.1186/s40409-016-0083-6
Lebreton L. Tuffigo M. Pillois X. Fiore M. (2016). L’intégrine αIIbβ3: Une actrice insoupçonnée dans la formation des plaquettes sanguines. Med. Sci. Paris. 32 (3), 290–296. 10.1051/medsci/20163203014
Lee B. Shin M. K. Hwang I. W. Jung J. Shim Y. J. Kim G. W. et al. (2021). A deep learning approach with data augmentation to predict novel spider neurotoxic peptides. Int. J. Mol. Sci. 22 (22), 12291. 10.3390/ijms222212291
Lee C. J. Ansell J. E. (2011). Direct thrombin inhibitors. Br. J. Clin. Pharmacol. 72 (4), 581–592. 10.1111/j.1365-2125.2011.03916.x
Li F. Wu S. Chen N. Zhu J. Zhao X. Zhang P. et al. (2021). Fatty acid modification of the anticancer peptide LVTX-9 to enhance its cytotoxicity against malignant melanoma cells. Toxins (Basel) 13 (12), 867. 10.3390/toxins13120867
Li T. Zhao X. M. Li L. (2022). Co-VAE: drug-target binding affinity prediction by Co-regularized variational Autoencoders. IEEE Trans. Pattern Anal. Mach. Intell. 44 (12), 8861–8873. 10.1109/TPAMI.2021.3120428
Liao Q. Feng Y. Yang B. Lee S. M. (2019). Cnidarian peptide neurotoxins: a new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discov. Today 24 (1), 189–197. 10.1016/j.drudis.2018.08.011
Ligabue-Braun R. Verli H. Carlini C. R. (2012). Venomous mammals: a review. Toxicon 59 (7-8), 680–695. 10.1016/j.toxicon.2012.02.012
Limam I. Abdelkarim M. El Ayeb M. Crepin M. Marrakchi N. Di Benedetto M. (2023). Disintegrin-like protein strategy to inhibit aggressive triple-negative breast cancer. Int. J. Mol. Sci. 24 (15), 12219. 10.3390/ijms241512219
Lin E. Wang Q. Swenson S. Jadvar H. Groshen S. Ye W. et al. (2010). The disintegrin contortrostatin in combination with docetaxel is a potent inhibitor of prostate cancer in vitro and in vivo. Prostate 70 (12), 1359–1370. 10.1002/pros.21173
Liu Y. Ming W. Wang Y. Liu S. Qiu Y. Xiang Y. et al. (2019). Cytotoxin 1 from Naja atra Cantor venom induced necroptosis of leukemia cells. Toxicon 165, 110–115. 10.1016/j.toxicon.2019.04.012
Liu Z. Deng M. Xiang J. Ma H. Hu W. Zhao Y. et al. (2012). A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr. Mol. Med. 12 (10), 1350–1360. 10.2174/156652412803833643
Lluisma A. O. Lopez-Vera E. Bulaj G. Watkins M. Olivera B. M. (2008). Characterization of a novel psi-conotoxin from Conus parius Reeve. Toxicon 51 (2), 174–180. 10.1016/j.toxicon.2007.07.009
Lucena S. E. Jia Y. Soto J. G. Parral J. Cantu E. Brannon J. et al. (2012). Anti-invasive and anti-adhesive activities of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (Crotalus viridis viridis). Toxicon 60 (1), 31–39. 10.1016/j.toxicon.2012.03.011
Luna-Ramirez K. Quintero-Hernandez V. Vargas-Jaimes L. Batista C. V. Winkel K. D. Possani L. D. (2013). Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon 63, 44–54. 10.1016/j.toxicon.2012.11.017
Luo Q. Wu T. Wu W. Chen G. Luo X. Jiang L. et al. (2020). The functional role of voltage-gated sodium channel Nav1.5 in metastatic breast cancer. Front. Pharmacol. 11, 1111. 10.3389/fphar.2020.01111
Mamelak A. N. Rosenfeld S. Bucholz R. Raubitschek A. Nabors L. B. Fiveash J. B. et al. (2006). Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J. Clin. Oncol. 24 (22), 3644–3650. 10.1200/JCO.2005.05.4569
Margiotta F. Micheli L. Ciampi C. Ghelardini C. McIntosh J. M. Di Cesare Mannelli L. (2022). Conus regius-derived conotoxins: novel therapeutic opportunities from a marine organism. Mar. Drugs 20 (12), 773. 10.3390/md20120773
Martinez-Hernandez L. Lopez-Vera E. Aguilar M. B. Rodriguez-Ruiz X. C. Ortiz-Arellano M. A. (2023). κO-SrVIA conopeptide, a novel inhibitor peptide for two members of the human EAG potassium channel family. Int. J. Mol. Sci. 24 (14), 11513. 10.3390/ijms241411513
Matteson D. R. Deutsch C. (1984). K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 307 (5950), 468–471. 10.1038/307468a0
McDowell R. S. Dennis M. S. Louie A. Shuster M. Mulkerrin M. G. Lazarus R. A. (1992). Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry 31 (20), 4766–4772. 10.1021/bi00135a004
McIntosh M. Cruz L. J. Hunkapiller M. W. Gray W. R. Olivera B. M. (1982). Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch. Biochem. Biophys. 218 (1), 329–334. 10.1016/0003-9861(82)90351-4
Mendes L. C. Viana G. M. M. Nencioni A. L. A. Pimenta D. C. Beraldo-Neto E. (2023). Scorpion peptides and ion channels: an insightful review of mechanisms and drug development. Toxins (Basel) 15 (4), 238. 10.3390/toxins15040238
Miljanich G. P. (2004). Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11 (23), 3029–3040. 10.2174/0929867043363884
Minea R. O. Helchowski C. M. Zidovetzki S. J. Costa F. K. Swenson S. D. Markland F. S. Jr. (2010). Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities. PLoS One 5 (6), e10929. 10.1371/journal.pone.0010929
Mlayah-Bellalouna S. Aissaoui-Zid D. Chantome A. Jebali J. Souid S. Ayedi E. et al. (2023). Insights into the mechanisms governing P01 scorpion toxin effect against U87 glioblastoma cells oncogenesis. Front. Pharmacol. 14, 1203247. 10.3389/fphar.2023.1203247
Mo Y. Shi Q. Qi G. Chen K. (2023). Potential anti-tumor effects of Solenopsis invicta venom. Front. Immunol. 14, 1200659. 10.3389/fimmu.2023.1200659
Mohan M. K. Abraham N. R P. R. Jayaseelan B. F. Ragnarsson L. Lewis R. J. et al. (2020). Structure and allosteric activity of a single-disulfide conopeptide from Conus zonatus at human alpha3beta4 and alpha7 nicotinic acetylcholine receptors. J. Biol. Chem. 295 (20), 7096–7112. 10.1074/jbc.RA119.012098
Morales Duque H. Campos Dias S. Franco O. L. (2019). Structural and functional analyses of cone snail toxins. Mar. Drugs 17 (6), 370. 10.3390/md17060370
Moreels L. Peigneur S. Yamaguchi Y. Vriens K. Waelkens E. Zhu S. et al. (2017). Expanding the pharmacological profile of kappa-hefutoxin 1 and analogues: a focus on the inhibitory effect on the oncogenic channel K(v)10.1. Peptides 98, 43–50. 10.1016/j.peptides.2016.08.008
Morjen M. Kallech-Ziri O. Bazaa A. Othman H. Mabrouk K. Zouari-Kessentini R. et al. (2013). PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biol. 32 (1), 52–62. 10.1016/j.matbio.2012.11.015
Morsy M. A. Gupta S. Dora C. P. Jhawat V. Dhanawat M. Mehta D. et al. (2023). Venoms classification and therapeutic uses: a narrative review. Eur. Rev. Med. Pharmacol. Sci. 27 (4), 1633–1653. 10.26355/eurrev_202302_31408
Mouhat S. Visan V. Ananthakrishnan S. Wulff H. Andreotti N. Grissmer S. et al. (2005). K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochem. J. 385 (Pt 1), 95–104. 10.1042/BJ20041379
Muller S. P. Silva V. A. O. Silvestrini A. V. P. de Macedo L. H. Caetano G. F. Reis R. M. et al. (2018). Crotoxin from Crotalus durissus terrificus venom: in vitro cytotoxic activity of a heterodimeric phospholipase A(2) on human cancer-derived cell lines. Toxicon 156, 13–22. 10.1016/j.toxicon.2018.10.306
Munawar A. Ali S. A. Akrem A. Betzel C. (2018). Snake venom peptides: tools of biodiscovery. Toxins (Basel) 10 (11), 474. 10.3390/toxins10110474
Munhoz J. Thome R. Rostami A. Ishikawa L. L. W. Verinaud L. Raposo C. (2021). The SNX-482 peptide from Hysterocrates gigas spider acts as an immunomodulatory molecule activating macrophages. Peptides 146, 170648. 10.1016/j.peptides.2021.170648
Murray C. J. Rosenfeld L. C. Lim S. S. Andrews K. G. Foreman K. J. Haring D. et al. (2012). Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379 (9814), 413–431. 10.1016/S0140-6736(12)60034-8
Nadkarni P. Chepurny O. G. Holz G. G. (2014). Regulation of glucose homeostasis by GLP-1. Prog. Mol. Biol. Transl. Sci. 121, 23–65. 10.1016/B978-0-12-800101-1.00002-8
Nascimento F. D. Sancey L. Pereira A. Rome C. Oliveira V. Oliveira E. B. et al. (2012). The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Mol. Pharm. 9 (2), 211–221. 10.1021/mp2000605
Nauck M. A. Quast D. R. Wefers J. Meier J. J. (2021). GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol. Metab. 46, 101102. 10.1016/j.molmet.2020.101102
Neff R. A. Wickenden A. D. (2021). Selective targeting of Nav1.7 with engineered spider venom-based peptides. Channels (Austin) 15 (1), 193–207. 10.1080/19336950.2020.1860382
Newcomb R. Szoke B. Palma A. Wang G. Chen X. Hopkins W. et al. (1998). Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 37 (44), 15353–15362. 10.1021/bi981255g
Nguyen P. T. Nguyen H. M. Wagner K. M. Stewart R. G. Singh V. Thapa P. et al. (2022a). Computational design of peptides to target Na(V)1.7 channel with high potency and selectivity for the treatment of pain. Elife 11, e81727. 10.7554/eLife.81727
Nguyen T. Guo R. Chai J. Wu J. Liu J. Chen X. et al. (2022b). Smp24, a scorpion-venom peptide, exhibits potent antitumor effects against hepatoma HepG2 cells via multi-mechanisms in vivo and in vitro. Toxins (Basel) 14 (10), 717. 10.3390/toxins14100717
Nielsen C. K. Lewis R. J. Alewood D. Drinkwater R. Palant E. Patterson M. et al. (2005). Anti-allodynic efficacy of the chi-conopeptide, Xen2174, in rats with neuropathic pain. Pain 118 (1-2), 112–124. 10.1016/j.pain.2005.08.002
Nimmrich V. Gross G. (2012). P/Q-type calcium channel modulators. Br. J. Pharmacol. 167 (4), 741–759. 10.1111/j.1476-5381.2012.02069.x
Okada M. Corzo G. Romero-Perez G. A. Coronas F. Matsuda H. Possani L. D. (2015). A pore forming peptide from spider Lachesana sp. venom induced neuronal depolarization and pain. Biochim. Biophys. Acta 1850 (4), 657–666. 10.1016/j.bbagen.2014.11.022
Okada M. Ortiz E. Corzo G. Possani L. D. (2019). Pore-forming spider venom peptides show cytotoxicity to hyperpolarized cancer cells expressing K+ channels: a lentiviral vector approach. PLoS One 14 (4), e0215391. 10.1371/journal.pone.0215391
Okkerse P. Hay J. L. Sitsen E. Dahan A. Klaassen E. Houghton W. et al. (2017). Pharmacokinetics and pharmacodynamics of intrathecally administered Xen2174, a synthetic conopeptide with norepinephrine reuptake inhibitor and analgesic properties. Br. J. Clin. Pharmacol. 83 (4), 751–763. 10.1111/bcp.13176
Olaoba O. T. Karina Dos Santos P. Selistre-de-Araujo H. S. Ferreira de Souza D. H. (2020). Snake venom metalloproteinases (SVMPs): a structure-function update. Toxicon X 7, 100052. 10.1016/j.toxcx.2020.100052
Oliveira A. L. Viegas M. F. da Silva S. L. Soares A. M. Ramos M. J. Fernandes P. A. (2022). The chemistry of snake venom and its medicinal potential. Nat. Rev. Chem. 6 (7), 451–469. 10.1038/s41570-022-00393-7
Oliveira-Mendes B. B. R. Horta C. C. R. do Carmo A. O. Biscoto G. L. Sales-Medina D. F. Leal H. G. et al. (2018). CPP-Ts: a new intracellular calcium channel modulator and a promising tool for drug delivery in cancer cells. Sci. Rep. 8 (1), 14739. 10.1038/s41598-018-33133-3
Olsen C. Tarcha E. Probst P. Peckham D. Iadonato S. (2016). LB779 Dalazatide (ShK-186), a first-in-class peptide inhibitor of Kv1.3 potassium channels, demonstrates safety, tolerability and proof of concept of efficacy in patients with active plaque psoriasis. J. Investigative Dermatology 136 (8), B5. 10.1016/j.jid.2016.05.029
Ortiz E. Gurrola G. B. Schwartz E. F. Possani L. D. (2015). Scorpion venom components as potential candidates for drug development. Toxicon 93, 125–135. 10.1016/j.toxicon.2014.11.233
Osteen J. D. Herzig V. Gilchrist J. Emrick J. J. Zhang C. Wang X. et al. (2016). Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 534 (7608), 494–499. 10.1038/nature17976
Ownby C. L. Fletcher J. E. Colberg T. R. (1993). Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon 31 (6), 697–709. 10.1016/0041-0101(93)90376-t
Pandey P. Khan F. Khan M. A. Kumar R. Upadhyay T. K. (2023). An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. Nutrients 15 (14), 3111. 10.3390/nu15143111
Pardo L. A. del Camino D. Sanchez A. Alves F. Bruggemann A. Beckh S. et al. (1999). Oncogenic potential of EAG K(+) channels. EMBO J. 18 (20), 5540–5547. 10.1093/emboj/18.20.5540
Patchett A. A. (1984). The chemistry of enalapril. Br. J. Clin. Pharmacol. 18 (Suppl. 2), 201S–207S. 10.1111/j.1365-2125.1984.tb02599.x
Patil C. G. Walker D. G. Miller D. M. Butte P. Morrison B. Kittle D. S. et al. (2019). Phase 1 safety, pharmacokinetics, and fluorescence imaging study of tozuleristide (BLZ-100) in adults with newly diagnosed or recurrent gliomas. Neurosurgery 85 (4), E641–E649. 10.1093/neuros/nyz125
Pedron C. Antunes F. T. T. Rebelo I. N. Campos M. M. Correa A. P. Klein C. P. et al. (2021). Phoneutria nigriventer Tx3-3 peptide toxin reduces fibromyalgia symptoms in mice. Neuropeptides 85, 102094. 10.1016/j.npep.2020.102094
Peigneur S. de Lima M. E. Tytgat J. (2018). Phoneutria nigriventer venom: a pharmacological treasure. Toxicon 151, 96–110. 10.1016/j.toxicon.2018.07.008
Peigneur S. Devi P. Seldeslachts A. Ravichandran S. Quinton L. Tytgat J. (2019). Structure-function elucidation of a new α-conotoxin, MilIA, from Conus milneedwardsi. Mar. Drugs 17 (9), 535. 10.3390/md17090535
Pereira A. Kerkis A. Hayashi M. A. Pereira A. S. Silva F. S. Oliveira E. B. et al. (2011). Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin. Investig. Drugs 20 (9), 1189–1200. 10.1517/13543784.2011.602064
Perez-Peinado C. Valle J. Freire J. M. Andreu D. (2020). Tumor cell attack by crotalicidin (ctn) and its fragment ctn[15-34]: insights into their dual membranolytic and intracellular targeting mechanism. ACS Chem. Biol. 15 (11), 2945–2957. 10.1021/acschembio.0c00596
Phillips A. J. Govedich F. R. Moser W. E. (2020). Leeches in the extreme: morphological, physiological, and behavioral adaptations to inhospitable habitats. Int. J. Parasitol. Parasites Wildl. 12, 318–325. 10.1016/j.ijppaw.2020.09.003
Phuong H. B. T. Tran V. A. Ngoc K. N. Huu V. N. Thu H. N. Van M. C. et al. (2023). Effect of substituting glutamine with lysine on structural and biological properties of antimicrobial peptide Polybia-MP1. Amino Acids 55 (7), 881–890. 10.1007/s00726-023-03276-3
Ponce-Soto L. A. Lomonte B. Gutierrez J. M. Rodrigues-Simioni L. Novello J. C. Marangoni S. (2007). Structural and functional properties of BaTX, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake Bothrops alternatus. Biochim. Biophys. Acta 1770 (4), 585–593. 10.1016/j.bbagen.2006.11.015
Potter L. R. Yoder A. R. Flora D. R. Antos L. K. Dickey D. M. (2009). Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 191, 341–366. 10.1007/978-3-540-68964-5_15
Prieto A. R. Ma H. Huang R. Khan G. Schwartz K. A. Hage-Korban E. E. et al. (2002). Thrombostatin, a bradykinin metabolite, reduces platelet activation in a model of arterial wall injury. Cardiovasc Res. 53 (4), 984–992. 10.1016/s0008-6363(01)00514-4
Qi J. Wang W. Lu W. Chen W. Sun H. Shang A. (2020). Design and biological evaluation of novel BF-30 analogs for the treatment of malignant melanoma. J. Cancer 11 (24), 7184–7195. 10.7150/jca.47549
Rashid M. H. Huq R. Tanner M. R. Chhabra S. Khoo K. K. Estrada R. et al. (2014). A potent and Kv1.3-selective analogue of the scorpion toxin HsTX1 as a potential therapeutic for autoimmune diseases. Sci. Rep. 4, 4509. 10.1038/srep04509
Ratibou Z. Inguimbert N. Dutertre S. (2024). Predatory and defensive strategies in cone snails. Toxins (Basel) 16 (2), 94. 10.3390/toxins16020094
Reis P. V. M. Boff D. Verly R. M. Melo-Braga M. N. Cortes M. E. Santos D. M. et al. (2018). LyeTxI-b, a synthetic peptide derived from Lycosa erythrognatha spider venom, shows potent antibiotic activity in vitro and in vivo. Front. Microbiol. 9, 667. 10.3389/fmicb.2018.00667
Ren C. Li Y. Cong Z. Li Z. Xie L. Wu S. (2023). Bioengineered bacterial outer membrane vesicles encapsulated Polybia-mastoparan I fusion peptide as a promising nanoplatform for bladder cancer immune-modulatory chemotherapy. Front. Immunol. 14, 1129771. 10.3389/fimmu.2023.1129771
Richards K. L. Milligan C. J. Richardson R. J. Jancovski N. Grunnet M. Jacobson L. H. et al. (2018). Selective Na(V)1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proc. Natl. Acad. Sci. U. S. A. 115 (34), E8077–E8085. 10.1073/pnas.1804764115
Rigo F. K. Trevisan G. Rosa F. Dalmolin G. D. Otuki M. F. Cueto A. P. et al. (2013). Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Sci. 104 (9), 1226–1230. 10.1111/cas.12209
Robinson S. D. Norton R. S. (2014). Conotoxin gene superfamilies. Mar. Drugs 12 (12), 6058–6101. 10.3390/md12126058
Rooj A. K. McNicholas C. M. Bartoszewski R. Bebok Z. Benos D. J. Fuller C. M. (2012). Glioma-specific cation conductance regulates migration and cell cycle progression. J. Biol. Chem. 287 (6), 4053–4065. 10.1074/jbc.M111.311688
Rosso J. P. Schwarz J. R. Diaz-Bustamante M. Ceard B. Gutierrez J. M. Kneussel M. et al. (2015). MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity. Proc. Natl. Acad. Sci. U. S. A. 112 (8), E891–E900. 10.1073/pnas.1415488112
Russell F. E. Bogert C. M. (1981). Gila monster: its biology, venom and bite--a review. Toxicon 19 (3), 341–359. 10.1016/0041-0101(81)90040-4
Sachs F. (2015). Mechanical transduction by ion channels: a cautionary tale. World J. Neurol. 5 (3), 74–87. 10.5316/wjn.v5.i3.74
Sadat S. N. Bagheri K. P. Maghsoudi H. Shahbazzadeh D. (2023). Oxineur, a novel peptide from Caspian cobra Naja naja oxiana against HT-29 colon cancer. Biochim. Biophys. Acta Gen. Subj. 1867 (2), 130285. 10.1016/j.bbagen.2022.130285
Saez N. J. Herzig V. (2019). Versatile spider venom peptides and their medical and agricultural applications. Toxicon 158, 109–126. 10.1016/j.toxicon.2018.11.298
Safavi-Hemami H. Gajewiak J. Karanth S. Robinson S. D. Ueberheide B. Douglass A. D. et al. (2015). Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc. Natl. Acad. Sci. U. S. A. 112 (6), 1743–1748. 10.1073/pnas.1423857112
Sandall D. W. Satkunanathan N. Keays D. A. Polidano M. A. Liping X. Pham V. et al. (2003). A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42 (22), 6904–6911. 10.1021/bi034043e
Sang C. N. Barnabe K. J. Kern S. E. (2016). Phase ia clinical trial evaluating the tolerability, pharmacokinetics, and analgesic efficacy of an intrathecally administered neurotensin A analogue in central neuropathic pain following spinal cord injury. Clin. Pharmacol. Drug Dev. 5 (4), 250–258. 10.1002/cpdd.253
Sanggaard K. W. Dyrlund T. F. Thomsen L. R. Nielsen T. A. Brondum L. Wang T. et al. (2015). Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome. J. Proteomics 117, 1–11. 10.1016/j.jprot.2015.01.004
Santos D. M. Verly R. M. Pilo-Veloso D. de Maria M. de Carvalho M. A. Cisalpino P. S. et al. (2010). LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids 39 (1), 135–144. 10.1007/s00726-009-0385-x
Saverioni D. Notari S. Capellari S. Poggiolini I. Giese A. Kretzschmar H. A. et al. (2013). Analyses of protease resistance and aggregation state of abnormal prion protein across the spectrum of human prions. J. Biol. Chem. 288 (39), 27972–27985. 10.1074/jbc.M113.477547
Schendel V. Rash L. D. Jenner R. A. Undheim E. A. B. (2019). The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins (Basel) 11 (11), 666. 10.3390/toxins11110666
Schonthal A. H. Swenson S. D. Chen T. C. Markland F. S. (2020). Preclinical studies of a novel snake venom-derived recombinant disintegrin with antitumor activity: a review. Biochem. Pharmacol. 181, 114149. 10.1016/j.bcp.2020.114149
Schwartz E. F. Capes E. M. Diego-Garcia E. Zamudio F. Z. Fuentes O. Possani L. D. et al. (2009). Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br. J. Pharmacol. 157 (3), 392–403. 10.1111/j.1476-5381.2009.00147.x
Seo S. Choi J. Park S. Ahn J. (2021). Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions. BMC Bioinforma. 22 (1), 542. 10.1186/s12859-021-04466-0
Serrano S. M. Maroun R. C. (2005). Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 45 (8), 1115–1132. 10.1016/j.toxicon.2005.02.020
Servent D. Blanchet G. Mourier G. Marquer C. Marcon E. Fruchart-Gaillard C. (2011). Muscarinic toxins. Toxicon 58 (6-7), 455–463. 10.1016/j.toxicon.2011.08.004
Shahbazzadeh D. Srairi-Abid N. Feng W. Ram N. Borchani L. Ronjat M. et al. (2007). Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem. J. 404 (1), 89–96. 10.1042/BJ20061404
Shen H. Xie Y. Ye S. He K. Yi L. Cui R. (2018). Spider peptide toxin lycosin-I induces apoptosis and inhibits migration of prostate cancer cells. Exp. Biol. Med. (Maywood) 243 (8), 725–735. 10.1177/1535370218772802
Shiu J. H. Chen C. Y. Chang L. S. Chen Y. C. Chen Y. C. Lo Y. H. et al. (2004). Solution structure of gamma-bungarotoxin: the functional significance of amino acid residues flanking the RGD motif in integrin binding. Proteins 57 (4), 839–849. 10.1002/prot.20269
Sieghart W. (2006). Structure, pharmacology, and function of GABAA receptor subtypes. Adv. Pharmacol. 54, 231–263. 10.1016/s1054-3589(06)54010-4
Silva F. R. Batista E. M. Gomez M. V. Kushmerick C. Da Silva J. F. Cordeiro M. N. et al. (2016). The Phoneutria nigriventer spider toxin, PnTx4-5-5, promotes neuronal survival by blocking NMDA receptors. Toxicon official J. Int. Soc. Toxinology 112, 16–21. 10.1016/j.toxicon.2016.01.056
Simoes-Silva R. Alfonso J. Gomez A. Holanda R. J. Sobrinho J. C. Zaqueo K. D. et al. (2018). Snake venom, A natural library of new potential therapeutic molecules: challenges and current perspectives. Curr. Pharm. Biotechnol. 19 (4), 308–335. 10.2174/1389201019666180620111025
Smith J. J. Lau C. H. Y. Herzig V. Ikonomopoulou M. P. Rash L. D. King G. F. (2015). “Therapeutic applications of spider-venom peptides,” in Venoms to drugs: therapeutic applications of spider-venom peptides, 221–244.
Smith J. J. Vetter I. Lewis R. J. Peigneur S. Tytgat J. Lam A. et al. (2013). Multiple actions of phi-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proc. Natl. Acad. Sci. U. S. A. 110 (22), 8906–8911. 10.1073/pnas.1214062110
Soares S. Lopes K. S. Mortari M. Oliveira H. Bastos V. (2022). Antitumoral potential of Chartergellus-CP1 peptide from Chartergellus communis wasp venom in two different breast cancer cell lines (HR+ and triple-negative). Toxicon 216, 148–156. 10.1016/j.toxicon.2022.07.004
Soltan-Alinejad P. Alipour H. Meharabani D. Azizi K. (2022). Therapeutic potential of bee and scorpion venom phospholipase A2 (PLA2): a narrative review. Iran. J. Med. Sci. 47 (4), 300–313. 10.30476/IJMS.2021.88511.1927
Son D. J. Lee J. W. Lee Y. H. Song H. S. Lee C. K. Hong J. T. (2007). Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 115 (2), 246–270. 10.1016/j.pharmthera.2007.04.004
Sousa S. R. Vetter I. Lewis R. J. (2013). Venom peptides as a rich source of cav2.2 channel blockers. Toxins (Basel) 5 (2), 286–314. 10.3390/toxins5020286
Souza B. M. Mendes M. A. Santos L. D. Marques M. R. Cesar L. M. Almeida R. N. et al. (2005). Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26 (11), 2157–2164. 10.1016/j.peptides.2005.04.026
Souza I. A. Cino E. A. Choy W. Y. Cordeiro M. N. Richardson M. Chavez-Olortegui C. et al. (2012). Expression of a recombinant Phoneutria toxin active in calcium channels. Toxicon official J. Int. Soc. Toxinology 60 (5), 907–918. 10.1016/j.toxicon.2012.05.026
Stepensky D. (2018). Pharmacokinetics of toxin-derived peptide drugs. Toxins (Basel) 10 (11), 483. 10.3390/toxins10110483
Stewart J. M. (2018). Peptide composition for cancer treatment by inhibiting TRPV6 calcium channel activity United States of America patent application 15/088,993.
Stewart J. M. Steeves B. J. Vernes K. (2006). Paralytic peptide for use in neuromuscular therapy United States of America patent application 10/858,233.
Sudarikova A. V. Bychkov M. L. Kulbatskii D. S. Chubinskiy-Nadezhdin V. I. Shlepova O. V. Shulepko M. A. et al. (2022). Mambalgin-2 inhibits lung adenocarcinoma growth and migration by selective interaction with ASIC1/α-ENaC/γ-ENaC heterotrimer. Front. Oncol. 12, 904742. 10.3389/fonc.2022.904742
Swartz K. J. MacKinnon R. (1995). An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15 (4), 941–949. 10.1016/0896-6273(95)90184-1
Swenson S. Costa F. Minea R. Sherwin R. P. Ernst W. Fujii G. et al. (2004). Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol. cancer Ther. 3 (4), 499–511. 10.1158/1535-7163.499.3.4
Swenson S. Minea R. O. Tuan C. D. Thein T. Z. Chen T. C. Markland F. S. (2018). A novel venom-derived peptide for brachytherapy of glioblastoma: preclinical studies in mice. Molecules 23 (11), 2918. 10.3390/molecules23112918
Tadokoro T. Modahl C. M. Maenaka K. Aoki-Shioi N. (2020). Cysteine-rich secretory proteins (CRISPs) from venomous snakes: an overview of the functional diversity in A large and underappreciated superfamily. Toxins (Basel) 12 (3), 175. 10.3390/toxins12030175
Tan H. Huang Y. Xu J. Chen B. Zhang P. Ye Z. et al. (2017). Spider toxin peptide lycosin-I functionalized gold nanoparticles for in vivo tumor targeting and therapy. Theranostics 7 (12), 3168–3178. 10.7150/thno.19780
Tan H. Liu S. He Y. Cheng G. Zhang Y. Wei X. et al. (2021). Spider toxin peptide-induced NIR gold nanocluster fabrication for GSH-responsive cancer cell imaging and nuclei translocation. Front. Bioeng. Biotechnol. 9, 780223. 10.3389/fbioe.2021.780223
Tan H. Luo W. Wei L. Chen B. Li W. Xiao L. et al. (2016). Quantifying the distribution of the stoichiometric composition of anticancer peptide lycosin-I on the lipid membrane with single molecule spectroscopy. J. Phys. Chem. B 120 (12), 3081–3088. 10.1021/acs.jpcb.5b12618
Tarcha E. J. Olsen C. M. Probst P. Peckham D. Munoz-Elias E. J. Kruger J. G. et al. (2017). Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: a randomized phase 1b trial. PLoS One 12 (7), e0180762. 10.1371/journal.pone.0180762
Tasoulis T. Isbister G. K. (2017). A review and database of snake venom proteomes. Toxins (Basel) 9 (9), 290. 10.3390/toxins9090290
Tasoulis T. Isbister G. K. (2023). A current perspective on snake venom composition and constituent protein families. Arch. Toxicol. 97 (1), 133–153. 10.1007/s00204-022-03420-0
Teesalu T. Sugahara K. N. Kotamraju V. R. Ruoslahti E. (2009). C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. U. S. A. 106 (38), 16157–16162. 10.1073/pnas.0908201106
Teoh S. Yap M. (2020). Naja sumatrana venom cytotoxin, suma CTX exhibits concentration-dependent cytotoxicity via caspase-activated mitochondrial-mediated apoptosis without transitioning to necrosis. Toxin Rev. 40, 886–900. 10.1080/15569543.2020.1799408
Terlau H. Olivera B. M. (2004). Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84 (1), 41–68. 10.1152/physrev.00020.2003
Tonello R. Rigo F. Gewehr C. Trevisan G. Pereira E. M. Gomez M. V. et al. (2014). Action of Phα1β, a peptide from the venom of the spider Phoneutria nigriventer, on the analgesic and adverse effects caused by morphine in mice. J. Pain 15 (6), 619–631. 10.1016/j.jpain.2014.02.007
Tsend-Ayush E. He C. Myers M. A. Andrikopoulos S. Wong N. Sexton P. M. et al. (2016). Monotreme glucagon-like peptide-1 in venom and gut: one gene - two very different functions. Sci. Rep. 6, 37744. 10.1038/srep37744
Tuba Z. Maho S. Vizi E. S. (2002). Synthesis and structure-activity relationships of neuromuscular blocking agents. Curr. Med. Chem. 9 (16), 1507–1536. 10.2174/0929867023369466
Ullah A. (2020). Structure-function studies and mechanism of action of snake venom L-amino acid oxidases. Front. Pharmacol. 11, 110. 10.3389/fphar.2020.00110
Urra F. A. Pulgar R. Gutierrez R. Hodar C. Cambiazo V. Labra A. (2015). Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: dipsadidae). Toxicon 108, 19–31. 10.1016/j.toxicon.2015.09.032
Utkin Y. Vassilevski A. Kudryavtsev D. Undheim E. A. B. (2019). Editorial: animal toxins as comprehensive pharmacological tools to identify diverse ion channels. Front. Pharmacol. 10, 423. 10.3389/fphar.2019.00423
Utkin Y. N. (2015). Animal venom studies: current benefits and future developments. World J. Biol. Chem. 6 (2), 28–33. 10.4331/wjbc.v6.i2.28
Utkin Y. N. (2019). Last decade update for three-finger toxins: newly emerging structures and biological activities. World J. Biol. Chem. 10 (1), 17–27. 10.4331/wjbc.v10.i1.17
Valdivia H. H. Kirby M. S. Lederer W. J. Coronado R. (1992). Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. Proc. Natl. Acad. Sci. U. S. A. 89 (24), 12185–12189. 10.1073/pnas.89.24.12185
Vannini E. Mori E. Tantillo E. Schmidt G. Caleo M. Costa M. (2021). CTX-CNF1 recombinant protein selectively targets glioma cells in vivo. Toxins (Basel) 13 (3), 194. 10.3390/toxins13030194
Vargas-Jaimes L. Xiao L. Zhang J. Possani L. D. Valdivia H. H. Quintero-Hernandez V. (2017). Recombinant expression of Intrepicalcin from the scorpion Vaejovis intrepidus and its effect on skeletal ryanodine receptors. Biochim. Biophys. Acta Gen. Subj. 1861 (4), 936–946. 10.1016/j.bbagen.2017.01.032
Vasconcelos A. A. Estrada J. C. David V. Wermelinger L. S. Almeida F. C. L. Zingali R. B. (2021). Structure-function relationship of the disintegrin family: sequence signature and integrin interaction. Front. Mol. Biosci. 8, 783301. 10.3389/fmolb.2021.783301
Veiseh M. Gabikian P. Bahrami S. B. Veiseh O. Zhang M. Hackman R. C. et al. (2007). Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 67 (14), 6882–6888. 10.1158/0008-5472.CAN-06-3948
Vieira L. B. Kushmerick C. Hildebrand M. E. Garcia E. Stea A. Cordeiro M. N. et al. (2005). Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J. Pharmacol. Exp. Ther. 314 (3), 1370–1377. 10.1124/jpet.105.087023
Vines J. B. Yoon J. H. Ryu N. E. Lim D. J. Park H. (2019). Gold nanoparticles for photothermal cancer therapy. Front. Chem. 7, 167. 10.3389/fchem.2019.00167
Vu T. T. Stafford A. R. Leslie B. A. Kim P. Y. Fredenburgh J. C. Weitz J. I. (2013). Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin. J. Biol. Chem. 288 (23), 16862–16871. 10.1074/jbc.M113.464750
Wang H. Ke M. Tian Y. Wang J. Li B. Wang Y. et al. (2013). BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur. J. Pharmacol. 707 (1-3), 1–10. 10.1016/j.ejphar.2013.03.028
Wang J. Qin X. Zhang Z. Chen M. Wang Y. Gao B. (2014). Crotoxin suppresses the tumorigenic properties and enhances the antitumor activity of Iressa® (gefinitib) in human lung adenocarcinoma SPCA-1 cells. Mol. Med. Rep. 10 (6), 3009–3014. 10.3892/mmr.2014.2620
Wang J. H. Xie Y. Wu J. C. Han R. Reid P. F. Qin Z. H. et al. (2012). Crotoxin enhances the antitumor activity of gefinitib (Iressa) in SK-MES-1 human lung squamous carcinoma cells. Oncol. Rep. 27 (5), 1341–1347. 10.3892/or.2012.1677
Wang K. Yan J. Liu X. Zhang J. Chen R. Zhang B. et al. (2011). Novel cytotoxity exhibition mode of polybia-CP, a novel antimicrobial peptide from the venom of the social wasp Polybia paulista. Toxicology 288 (1-3), 27–33. 10.1016/j.tox.2011.06.014
Wang K. R. Zhang B. Z. Zhang W. Yan J. X. Li J. Wang R. (2008). Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29 (6), 963–968. 10.1016/j.peptides.2008.01.015
Wang Y. Li K. Han S. Tian Y. H. Hu P. C. Xu X. L. et al. (2019). Chlorotoxin targets ERα/VASP signaling pathway to combat breast cancer. Cancer Med. 8 (4), 1679–1693. 10.1002/cam4.2019
Wang Y. Wang J. Cao Z. Barati Farimani A. (2022). Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4, 279–287. 10.1038/s42256-022-00447-x
Wang Y. Zhang J. Jiang P. Li K. Sun Y. Huang Y. (2021). ASIC1a promotes acidic microenvironment-induced HCC cells migration and invasion by inducing autophagy. Eur. J. Pharmacol. 907, 174252. 10.1016/j.ejphar.2021.174252
Waqar M. Batool S. (2015). In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer's disease. J. Theor. Biol. 372, 107–117. 10.1016/j.jtbi.2015.02.028
Ward C. W. Sachs F. Bush E. D. Suchyna T. M. (2018). GsMTx4-D provides protection to the D2.mdx mouse. Neuromuscul. Disord. 28 (10), 868–877. 10.1016/j.nmd.2018.07.005
Warkentin T. E. (2004). Bivalent direct thrombin inhibitors: hirudin and bivalirudin. Best. Pract. Res. Clin. Haematol. 17 (1), 105–125. 10.1016/j.beha.2004.02.002
Wattam B. Shang D. Rahman S. Egglezou S. Scully M. Kakkar V. et al. (2001). Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of β1 and β3 integrins. Biochem. J. 356 (Pt 1), 11–17. 10.1042/0264-6021:3560011
Wei B. Zhang Y. Gong X. (2022). DeepLPI: a novel deep learning-based model for protein-ligand interaction prediction for drug repurposing. Sci. Rep. 12 (1), 18200. 10.1038/s41598-022-23014-1
Westerlund B. Nordlund P. Uhlin U. Eaker D. Eklund H. (1992). The three-dimensional structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 A resolution. FEBS Lett. 301 (2), 159–164. 10.1016/0014-5793(92)81238-h
WHO (2021). Snake antivenoms. Available at: http://www.who.int/mediacentre/factsheets/fs337/en/(Accessed August 22, 2023).
Winblad B. Jelic V. (2004). Long-term treatment of Alzheimer disease: efficacy and safety of acetylcholinesterase inhibitors. Alzheimer Dis. Assoc. Disord. 18 (Suppl. 1), S2–S8. 10.1097/01.wad.0000127495.10774.a4
Wong E. S. Morgenstern D. Mofiz E. Gombert S. Morris K. M. Temple-Smith P. et al. (2012). Proteomics and deep sequencing comparison of seasonally active venom glands in the platypus reveals novel venom peptides and distinct expression profiles. Mol. Cell Proteomics 11 (11), 1354–1364. 10.1074/mcp.M112.017491
World Spider Catalog (2023). World Spider Catalog. Version 25.5. Natural History Museum Bern, Available at: http://wsc.nmbe.ch. (Accessed October 21, 2023).
Wu M. Ming W. Tang Y. Zhou S. Kong T. Dong W. (2013). The anticancer effect of cytotoxin 1 from Naja atra Cantor venom is mediated by a lysosomal cell death pathway involving lysosomal membrane permeabilization and cathepsin B release. Am. J. Chin. Med. 41 (3), 643–663. 10.1142/S0192415X13500456
Wu W. Yin Y. Feng P. Chen G. Pan L. Gu P. et al. (2023). Spider venom-derived peptide JZTX-14 prevents migration and invasion of breast cancer cells via inhibition of sodium channels. Front. Pharmacol. 14, 1067665. 10.3389/fphar.2023.1067665
Wulff H. Castle N. A. Pardo L. A. (2009). Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 8 (12), 982–1001. 10.1038/nrd2983
Xia Z. He D. Wu Y. Kwok H. F. Cao Z. (2023). Scorpion venom peptides: molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol. Res. 197, 106978. 10.1016/j.phrs.2023.106978
Xiao L. Gurrola G. B. Zhang J. Valdivia C. R. SanMartin M. Zamudio F. Z. et al. (2016). Structure-function relationships of peptides forming the calcin family of ryanodine receptor ligands. J. Gen. Physiol. 147 (5), 375–394. 10.1085/jgp.201511499
Xiong X. Menting J. G. Disotuar M. M. Smith N. A. Delaine C. A. Ghabash G. et al. (2020). A structurally minimized yet fully active insulin based on cone-snail venom insulin principles. Nat. Struct. Mol. Biol. 27 (7), 615–624. 10.1038/s41594-020-0430-8
Xiong Z. G. Zhu X. M. Chu X. P. Minami M. Hey J. Wei W. L. et al. (2004). Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118 (6), 687–698. 10.1016/j.cell.2004.08.026
Yacoub T. Rima M. Karam M. Fajloun J. Fajloun Z. (2020). Antimicrobials from venomous animals: an overview. Molecules 25 (10), 2402. 10.3390/molecules25102402
Yamada M. Miller D. M. Lowe M. Rowe C. Wood D. Soyer H. P. et al. (2021). A first-in-human study of BLZ-100 (tozuleristide) demonstrates tolerability and safety in skin cancer patients. Contemp. Clin. Trials Commun. 23, 100830. 10.1016/j.conctc.2021.100830
Yan C. H. Liang Z. Q. Gu Z. L. Yang Y. P. Reid P. Qin Z. H. (2006). Contributions of autophagic and apoptotic mechanisms to CrTX-induced death of K562 cells. Toxicon 47 (5), 521–530. 10.1016/j.toxicon.2006.01.010
Yan C. H. Yang Y. P. Qin Z. H. Gu Z. L. Reid P. Liang Z. Q. (2007). Autophagy is involved in cytotoxic effects of crotoxin in human breast cancer cell line MCF-7 cells. Acta Pharmacol. Sin. 28 (4), 540–548. 10.1111/j.1745-7254.2007.00530.x
Yang C. Zhu Z. Ouyang X. Yu R. Wang J. Ding G. et al. (2020). Overexpression of acid-sensing ion channel 1a (ASIC1a) promotes breast cancer cell proliferation, migration and invasion. Transl. Cancer Res. 9 (12), 7519–7530. 10.21037/tcr-20-2115
Ye M. Chung H. S. Lee C. Yoon M. S. Yu A. R. Kim J. S. et al. (2016). Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. J. Neuroinflammation 13, 10. 10.1186/s12974-016-0476-z
Zamponi G. W. (2016). Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 15 (1), 19–34. 10.1038/nrd.2015.5
Zhang J. Tang D. Liu S. Hu H. Liang S. Tang C. et al. (2018). Purification and characterization of JZTx-14, a potent antagonist of mammalian and prokaryotic voltage-gated sodium channels. Toxins (Basel) 10 (10), 408. 10.3390/toxins10100408
Zhang J. Zhang K. Ren Y. Wei D. (2021). The expression, purification, and functional evaluation of the novel tumor suppressor fusion protein IL-24-CN. Appl. Microbiol. Biotechnol. 105 (20), 7889–7898. 10.1007/s00253-021-11558-7
Zhang P. Ma J. Yan Y. Chen B. Liu B. Jian C. et al. (2017). Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org. Biomol. Chem. 15 (44), 9379–9388. 10.1039/c7ob02233f
Zhang P. Yan Y. Wang J. Dong X. Zhang G. Zeng Y. et al. (2020a). An anti-cancer peptide LVTX-8 inhibits the proliferation and migration of lung tumor cells by regulating causal genes' expression in p53-related pathways. Toxins (Basel) 12 (6), 367. 10.3390/toxins12060367
Zhang Q. Zhang P. Jian S. Li J. Li F. Sun X. et al. (2020b). Drug-bearing peptide-based nanospheres for the inhibition of metastasis and growth of cancer. Mol. Pharm. 17 (9), 3165–3176. 10.1021/acs.molpharmaceut.0c00118
Zhou Q. Hu P. Ritter M. R. Swenson S. D. Argounova S. Epstein A. L. et al. (2000a). Molecular cloning and functional expression of contortrostatin, a homodimeric disintegrin from southern copperhead snake venom. Arch. Biochem. Biophys. 375 (2), 278–288. 10.1006/abbi.1999.1682
Zhou Q. Sherwin R. P. Parrish C. Richters V. Groshen S. G. Tsao-Wei D. et al. (2000b). Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression. Breast Cancer Res. Treat. 61 (3), 249–260. 10.1023/a:1006457903545
Zhu S. Darbon H. Dyason K. Verdonck F. Tytgat J. (2003). Evolutionary origin of inhibitor cystine knot peptides. FASEB J. 17 (12), 1765–1767. 10.1096/fj.02-1044fje