[en] Paradigm shifts throughout the history of microbiology have typically been ignored, or met with skepticism and resistance, by the scientific community. This has been especially true in the field of virology, where the discovery of a "contagium vivum fluidum", or infectious fluid remaining after excluding bacteria by filtration, was initially ignored because it did not coincide with the established view of microorganisms. Subsequent studies on such infectious agents, eventually termed "viruses", were met with skepticism. However, after an abundance of proof accumulated, viruses were eventually acknowledged as defined microbiological entities. Next, the proposed role of viruses in oncogenesis in animals was disputed, as was the unique mechanism of genome replication by reverse transcription of RNA by the retroviruses. This same pattern of skepticism holds true for the prediction of the existence of retroviral "antisense" transcripts and genes. From the time of their discovery, it was thought that retroviruses encoded proteins on only one strand of proviral DNA. However, in 1988, it was predicted that human immunodeficiency virus type 1 (HIV-1), and other retroviruses, express an antisense protein encoded on the DNA strand opposite that encoding the known viral proteins. Confirmation came quickly with the characterization of the antisense protein, HBZ, of the human T-cell leukemia virus type 1 (HTLV-1), and the finding that both the protein and its antisense mRNA transcript play key roles in viral replication and pathogenesis. However, acceptance of the existence, and potential importance, of a corresponding antisense transcript and protein (ASP) in HIV-1 infection and pathogenesis has lagged, despite gradually accumulating theoretical and experimental evidence. The most striking theoretical evidence is the finding that asp is highly conserved in group M viruses and correlates exclusively with subtypes, or clades, responsible for the AIDS pandemic. This review outlines the history of the major shifts in thought pertaining to the nature and characteristics of viruses, and in particular retroviruses, and details the development of the hypothesis that retroviral antisense transcripts and genes exist. We conclude that there is a need to accelerate studies on ASP, and its transcript(s), with the view that both may be important, and overlooked, targets in anti-HIV therapeutic and vaccine strategies.
Disciplines :
Biochemistry, biophysics & molecular biology Immunology & infectious disease History
Author, co-author :
Miller, Roger H; CyberGenomics LLC, Brookeville, MD 20833, USA
Zimmer, Alexis ; Université de Liège - ULiège > Département d'Architecture ; DHVS-Département d'Histoire des Sciences de la Vie et de la Santé, Faculté de Médecine, Université de Strasbourg, 4 Rue Kirschleger, CEDEX, F-67085 Strasbourg, France
Moutot, Gilles; Centre d'Etudes Politiques et Sociales (CEPEL), Département de Sciences Humaines et Sociales, Université de Montpellier, 34090 Montpellier, France
Mesnard, Jean-Michel ; Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
Chazal, Nathalie ; Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
Language :
English
Title :
Retroviral Antisense Transcripts and Genes: 33 Years after First Predicted, a Silent Retroviral Revolution?
Pasteur, L. La Théorie Des Germes et Ses Applications à La Médecine et à La Chirurgie, 1st ed.; Académie de médecine: Paris, France, 1878.
Ivanovski, D.I. Über Die Mosaikkrankheit Der Tabakspflanze (Lu Le 12 Février 1892). Bull. Acad. Imp. Sci. St.-Pétersbg. 1894, 35, 67–70.
Beijerinck, M.V. Over Een Contagium Vivum Fluidum Als Oorjaak van de Vlekziekte Der Tabaksbladen. Versl Gewone Vergad Wis En Natnurk. Afa. K. Akad. Wet. Amst. 1898, 7, 229–235.
De Chauliac, G. Le Guidon en François, 1st ed.; B. Buyer: Lyon, France, 1478; pp. 79–423.
Paré, A. Oeuvres Complètes d’Ambroise Paré; Librarie de l’Academie Royale de Medecine: Paris, France, 1575.
Roux, E. Sur Les Microbes Dits «invisibles». Bull. Inst. Pasteur 1903, 1, 7–12/49–56.
Loeffler, F.; Frosch, P. Berichte Der Komission Zur Erforschung Der Maul Und Klauenseuche Bei Dem Institut Für Infectios-Krankheiten in Berlin. Ztbl. Bakt. Parasitkde 1898, 23, 371–391.
Reed, W.; Carroll, J.; Agramonte, A.; Lazear, W. The Etiology of Yellow Fever: A Premilary Note. Phila. Med. 1901, 6, 790–796.
Rous, P.A. Sarcoma of the Fowl Transmissible by an Agent Separable from the Tumor Cells. J. Exp. Med. 1911, 13, 397–411. [CrossRef] [PubMed]
Twort, F.W. An Investigation on the Nature of the Ultramicroscopic Viruses. Lancet 1915, 2, 1241–1243. [CrossRef]
D’Herelle, F. Sur Un Microbe Invisible Antagoniste Des Bacilles Dysentériques. CR Acad. Sci. Paris 1917, 165, 373–375.
Andrewes, C.H.; Laidlaw, P.P.; Smith, W. The Susceptibiliy of Mice to the Viruses of Human and Swine Influenza. Lancet 1934, 2, 859–862. [CrossRef]
Kausche, G.A.; Pfankuch, E.; Ruska, H. Die Sichtbarmachung von Planzlichen Virus Im Ubermikroskop. Naturwissenschaften 1939, 27, 292–299. [CrossRef]
Bernal, J.D. Fankuchen I X-ray and Crystallographic Studies of Plant Virus Preparations. J. Gen. Physiol. 1941, 25, 111–165. [CrossRef]
Ellis, E.L.; Delbrück, M. The Growth of Bacteriophage. J. Gen. Physiol. 1939, 22, 365–384. [CrossRef] [PubMed]
Luria, S.E.; Anderson, T.F. The Identification and Characterization of Bacteriophages with the Electron Microscope. Proc. Natl. Acad. Sci. USA 1942, 28, 127–130. [CrossRef] [PubMed]
Luria, S.E. Bacteriophage: An Assay on Virus Reproduction. Science 1950, 111, 507–511. [CrossRef] [PubMed]
Enders, J.F.; Weller, T.H.; Robbins, F.C. Cultivation of the Lansing Strain of Poliomyelitis Virus in Cultures of Various Human Embryonic Tissues. Science 1949, 109, 85–87. [CrossRef]
Lwoff, A. The Concept of Virus. J. Gen. Microbiol. 1957, 17, 239–253. [CrossRef] [PubMed]
Lwoff, A.; Tournier, P. The Classification of Viruses. Ann. Rev. Microbiol. 1966, 20, 45–74. [CrossRef]
Vallée, H.; Carré, H. Sur La Nature Infectieuse de l’anémie Du Cheval. Comptes Rendus. 1904, 139, 331–333.
Ellermann, V.u.O. Bang Experimentelle Leukämie Bei Hühnern. Zentralbl. Bakteriol. Parasitenkd. Infectionskr. Hyg. Abt. Orig. 1908, 46, 595–609.
Claude, A.; Murphy, J.G. Transmissible Tumors of the Fowl. Physiol. Rev. 1933, 13, 246–275. [CrossRef]
Bittner, J.J. Some Possible Effects of Nursing on the Mammary Gland Tumor Incidence in Mice. Science 1936, 84, 162. [CrossRef]
Gross, L. Development and Serial Cell-Free Passage of a Highly Potent Strain of Mouse Leukemia Virus. Exp. Biol. Med. 1957, 94, 767–771. [CrossRef]
Temin, H.M. The effects of actinomycin d on growth of rous sarcoma virus in vitro. Virology 1963, 20, 577–582. [CrossRef]
Bader, J.P. Transformation of rous sarcoma virus: A requirement of dna synthesis. Science 1965, 149, 757–758. [CrossRef]
Temin, H.M. The participation of dna in rous sarcoma virus production. Virology 1964, 23, 486–494. [CrossRef]
Baltimore, D. RNA-Dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature 1970, 226, 1209–1211. [CrossRef]
Mizutani, S.; Boettiger, D.; Temin, H.M. A DNA-Depenent DNA Polymerase and a DNA Endonuclease in Virions of Rous Sarcoma Virus. Nature 1970, 228, 424–427. [CrossRef] [PubMed]
Spiegelman, S.; Burny, A.; Das, M.R.; Keydar, J.; Schlom, J.; Travnicek, M.; Watson, K. Characterization of the Products of DNA-Directed DNA Polymerases in Oncogenic RNA Viruses. Nature 1970, 227, 563–567. [CrossRef] [PubMed]
Martin, G.S. Rous Sarcoma Virus: A Function Required for the Maintenance of the Transformed State. Nature 1970, 227, 1021–1023. [CrossRef] [PubMed]
Duesberg, P.H.; Vogt, P.K. Differences between the Ribonucleic Acids of Transforming and Nontransforming Avian Tumor Viruses. Proc. Natl. Acad. Sci. USA 1970, 67, 1673–1680. [CrossRef] [PubMed]
Wang, L.H.; Duesberg, P.H.; Kawai, S.; Hanafusa, H. Location of Envelope-Specific and Sarcoma-Specific Oligonucleotides on RNA of Schmidt-Ruppin Rous Sarcoma Virus. Proc. Natl. Acad. Sci. USA 1976, 73, 447–451. [CrossRef] [PubMed]
Duesberg, P.H.; Bister, K.; Vogt, P.K. The RNA of Avian Acute Leukemia Virus MC29. Proc. Natl. Acad. Sci. USA 1977, 74, 4320–4324. [CrossRef]
Duesberg, P.H.; Vogt, P.K. Avian Acute Leukemia Viruses MC29 and MH2 Share Specific RNA Sequences: Evidence for a Second Class of Transforming Genes. Proc. Natl. Acad. Sci. USA 1979, 76, 1633–1637. [CrossRef]
Uchiyama, T.; Yodoi, J.; Sagawa, K.; Takatsuki, K.; Uchino, H. Adult T-Cell Leukemia: Clinical and Hematologic Features of 16 Cases. Blood 1977, 50, 481–492. [CrossRef]
Poiesz, B.J.; Ruscetti, F.W.; Gazdar, A.F.; Bunn, P.A.; Minna, J.D.; Gallo, R.C. Detection and Isolation of Type C Retrovirus Particles from Fresh and Cultured Lymphocytes of a Patient with Cutaneous T-Cell Lymphoma. Proc. Natl. Acad. Sci. USA 1980, 77, 7415–7419. [CrossRef] [PubMed]
Gessain, A.; Barin, F.; Vernant, J.C.; Gout, O.; Maurs, L.; Calender, A.; de Thé, G. Antibodies to Human T-Lymphotropic Virus Type-I in Patients with Tropical Spastic Paraparesis. Lancet 1985, 2, 407–410. [CrossRef]
Matsuoka, M.; Jeang, K.-T. Human T-Cell Leukaemia Virus Type 1 (HTLV-1) Infectivity and Cellular Transformation. Nat. Rev. Cancer 2007, 7, 270–280. [CrossRef]
Marriott, S.J.; Semmes, O.J. Impact of HTLV-I Tax on Cell Cycle Progression and the Cellular DNA Damage Repair Response. Oncogene 2005, 24, 5986–5995. [CrossRef] [PubMed]
Boxus, M.; Willems, L. Mechanisms of HTLV-1 Persistence and Transformation. Br. J. Cancer 2009, 101, 1497–1501. [CrossRef] [PubMed]
Currer, R.; Van Duyne, R.; Jaworski, E.; Guendel, I.; Sampey, G.; Das, R.; Narayanan, A.; Kashanchi, F. HTLV Tax: A Fascinating Multifunctional Co-Regulator of Viral and Cellular Pathways. Front. Microbiol. 2012, 3, 406. [CrossRef] [PubMed]
Romanelli, M.G.; Diani, E.; Bergamo, E.; Casoli, C.; Ciminale, V.; Bex, F.; Bertazzoni, U. Highlights on Distinctive Structural and Functional Properties of HTLV Tax Proteins. Front. Microbiol. 2013, 4, 271. [CrossRef]
Mohanty, S.; Harhaj, E.W. Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens 2020, 9, 543. [CrossRef]
Akkouche, A.; Moodad, S.; Hleihel, R.; Skayneh, H.; Chambeyron, S.; El Hajj, H.; Bazarbachi, A. In Vivo Antagonistic Role of the Human T-Cell Leukemia Virus Type 1 Regulatory Proteins Tax and HBZ. PLoS Pathog. 2021, 17, e1009219. [CrossRef] [PubMed]
Spiegelman, W.G.; Reichardt, L.F.; Yaniv, M.; Heinemann, S.F.; Kaiser, A.D.; Eisen, H. Bidirectional Transcription and the Regulation of Phage Lambda Repressor Synthesis. Proc. Natl. Acad. Sci. USA 1972, 69, 3156–3160. [CrossRef]
Savoret, J.; Mesnard, J.-M.; Gross, A.; Chazal, N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front. Microbiol. 2021, 11, 625941. [CrossRef] [PubMed]
Miller, R.H. Human Immunodeficiency Virus May Encode a Novel Protein on the Genomic DNA plus Strand. Science 1988, 239, 1420–1422. [CrossRef]
Beadle, G.W.; Tatum, E.L. Genetic Control of Biochemical Reactions in Neurospora. Proc. Natl. Acad. Sci. USA 1941, 27, 499–506. [CrossRef] [PubMed]
Horowitz, N.H. The One Gene-One Enzyme Hypothesis. Genetics 1948, 33, 612. [PubMed]
Miller, R.H.; Kaneko, S.; Chung, C.T.; Girones, R.; Purcell, R.H. Compact Organization of the Hepatitis B Virus Genome. Hepatology 1989, 9, 322–327. [CrossRef] [PubMed]
Galibert, F.; Mandart, E.; Fitoussi, F.; Tiollais, P.; Charnay, P. Nucleotide Sequence of the Hepatitis B Virus Genome (Subtype Ayw) Cloned in E. Coli. Nature 1979, 281, 646–650. [CrossRef]
Miller, R.H. Organization of the X Gene Region of the Hepatitis B Virus Genome. Gastroenterol. Jpn. 1990, 25, 1–5. [CrossRef]
Summers, J.; Mason, W.S. Replication of the Genome of a Hepatitis B-like Virus by Reverse Transcription of an RNA Intermediate. Cell 1982, 29, 403–415. [CrossRef]
Miller, R.H.; Marion, P.L.; Robinson, W.S. Hepatitis B Viral DNA-RNA Hybrid Molecules in Particles from Infected Liver Are Converted to Viral DNA Molecules during an Endogenous Dna Polymerase Reaction. Virology 1984, 139, 64–72. [CrossRef]
Miller, R.H.; Robinson, W.S. Common Evolutionary Origin of Hepatitis B Virus and Retroviruses. Proc. Natl. Acad. Sci. USA 1986, 83, 2531–2535. [CrossRef] [PubMed]
Miller, R.H. Evolutionary Relationship between Hepadna Viruses and Retroviruses; CRC Press: Boca Raton, FL, USA, 1991; pp. 227–244.
Cassan, E.; Arigon-Chifolleau, A.-M.; Mesnard, J.-M.; Gross, A.; Gascuel, O. Concomitant Emergence of the Antisense Protein Gene of HIV-1 and of the Pandemic. Proc. Natl. Acad. Sci. USA 2016, 113, 11537–11542. [CrossRef] [PubMed]
Dimonte, S. Different HIV-1 Env Frames: Gp120 and ASP (Antisense Protein) Biosynthesis, and Theirs Co-Variation Tropic Amino Acid Signatures in X4-and R5-Viruses: HIV-1 Antisense Protein and Tropic Co-Variation with Gp120 V3 Signatures. J. Med. Virol. 2017, 89, 112–122. [CrossRef]
Bukrinsky, M.I.; Etkin, A.F. Plus Strand of the HIV Provirus DNA Is Expressed at Early Stages of Infection. AIDS Res. Hum. Retrovir. 1990, 6, 425–426. [CrossRef] [PubMed]
Michael, N.L.; Vahey, M.T.; d’Arcy, L.; Ehrenberg, P.K.; Mosca, J.D.; Rappaport, J.; Redfield, R.R. Negative-Strand RNA Transcripts Are Produced in Human Immunodeficiency Virus Type 1-Infected Cells and Patients by a Novel Promoter Downregulated by Tat. J. Virol. 1994, 68, 979–987. [CrossRef]
Peeters, A.; Lambert, P.F.; Deacon, N.J. A Fourth Sp1 Site in the Human Immunodeficiency Virus Type 1 Long Terminal Repeat Is Essential for Negative-Sense Transcription. J. Virol. 1996, 70, 6665–6672. [CrossRef] [PubMed]
Ludwig, L.B.; Ambrus, J.L.; Krawczyk, K.A.; Sharma, S.; Brooks, S.; Hsiao, C.-B.; Schwartz, S.A. Human Immunodeficiency Virus-Type 1 LTR DNA Contains an Intrinsic Gene Producing Antisense RNA and Protein Products. Retrovirology 2006, 3, 80. [CrossRef]
Landry, S.; Halin, M.; Lefort, S.; Audet, B.; Vaquero, C.; Mesnard, J.-M.; Barbeau, B. Detection, Characterization and Regulation of Antisense Transcripts in HIV-1. Retrovirology 2007, 4, 71. [CrossRef] [PubMed]
Laverdure, S.; Gross, A.; Arpin-André, C.; Clerc, I.; Beaumelle, B.; Barbeau, B.; Mesnard, J.-M. HIV-1 Antisense Transcription Is Preferentially Activated in Primary Monocyte-Derived Cells. J. Virol. 2012, 86, 13785–13789. [CrossRef]
Mancarella, A.; Procopio, F.A.; Achsel, T.; De Crignis, E.; Foley, B.T.; Corradin, G.; Bagni, C.; Pantaleo, G.; Graziosi, C. Detection of Antisense Protein (ASP) RNA Transcripts in Individuals Infected with Human Immunodeficiency Virus Type 1 (HIV-1). J. Gen. Virol. 2019, 100, 863–876. [CrossRef] [PubMed]
Barbagallo, M.S.; Birch, K.E.; Deacon, N.J.; Mosse, J.A. Potential Control of Human Immunodeficiency Virus Type 1 Asp. Expression by Alternative Splicing in the Upstream Untranslated Region. DNA Cell Biol. 2012, 31, 1303–1313. [CrossRef] [PubMed]
Kobayashi-Ishihara, M.; Yamagishi, M.; Hara, T.; Matsuda, Y.; Takahashi, R.; Miyake, A.; Nakano, K.; Yamochi, T.; Ishida, T.; Watanabe, T. HIV-1-Encoded Antisense RNA Suppresses Viral Replication for a Prolonged Period. Retrovirology 2012, 9, 38. [CrossRef] [PubMed]
Zapata, J.C.; Campilongo, F.; Barclay, R.A.; DeMarino, C.; Iglesias-Ussel, M.D.; Kashanchi, F.; Romerio, F. The Human Immunode-ficiency Virus 1 ASP RNA Promotes Viral Latency by Recruiting the Polycomb Repressor Complex 2 and Promoting Nucleosome Assembly. Virology 2017, 506, 34–44. [CrossRef]
Saayman, S.; Ackley, A.; Turner, A.-M.W.; Famiglietti, M.; Bosque, A.; Clemson, M.; Planelles, V.; Morris, K.V. An HIV-Encoded Antisense Long Noncoding RNA Epigenetically Regulates Viral Transcription. Mol. Ther. 2014, 22, 1164–1175. [CrossRef]
Ma, G.; Yasunaga, J.-I.; Shimura, K.; Takemoto, K.; Watanabe, M.; Amano, M.; Nakata, H.; Liu, B.; Zuo, X.; Matsuoka, M. Human Retroviral Antisense MRNAs Are Retained in the Nuclei of Infected Cells for Viral Persistence. Proc. Natl. Acad. Sci. USA 2021, 118, e2014783118. [CrossRef]
Kobayashi-Ishihara, M.; Terahara, K.; Martinez, J.P.; Yamagishi, M.; Iwabuchi, R.; Brander, C.; Ato, M.; Watanabe, T.; Meyerhans, A.; Tsunetsugu-Yokota, Y. HIV LTR-Driven Antisense RNA by Itself Has Regulatory Function and May Curtail Virus Reactivation from Latency. Front. Microbiol. 2018, 9, 1066. [CrossRef]
Tagieva, N.E.; Vaquero, C. Expression of Naturally Occurring Antisense RNA Inhibits Human Immunodeficiency Virus Type 1 Heterologous Strain Replication. J. Gen. Virol. 1997, 78, 2503–2511. [CrossRef]
Torresilla, C.; Mesnard, J.-M.; Barbeau, B. Reviving an Old HIV-1 Gene: The HIV-1 Antisense Protein. CHR 2015, 13, 117–124. [CrossRef]
Li, R.; Sklutuis, R.; Groebner, J.L.; Romerio, F. HIV-1 Natural Antisense Transcription and Its Role in Viral Persistence. Viruses 2021, 13, 795. [CrossRef] [PubMed]
Vanhée-Brossollet, C.; Thoreau, H.; Serpente, N.; D’Auriol, L.; Lévy, J.P.; Vaquero, C. A Natural Antisense RNA Derived from the HIV-1 Env Gene Encodes a Protein Which Is Recognized by Circulating Antibodies of HIV+ Individuals. Virology 1995, 206, 196–202. [CrossRef]
Savoret, J.; Chazal, N.; Moles, J.-P.; Tuaillon, E.; Boufassa, F.; Meyer, L.; Lecuroux, C.; Lambotte, O.; Van De Perre, P.; Mesnard, J.-M.; et al. A Pilot Study of the Humoral Response Against the AntiSense Protein (ASP) in HIV-1-Infected Patients. Front. Microbiol. 2020, 11, 20. [CrossRef]
Bansal, A.; Carlson, J.; Yan, J.; Akinsiku, O.T.; Schaefer, M.; Sabbaj, S.; Bet, A.; Levy, D.N.; Heath, S.; Tang, J.; et al. CD8 T Cell Response and Evolutionary Pressure to HIV-1 Cryptic Epitopes Derived from Antisense Transcription. J. Exp. Med. 2010, 207, 51–59. [CrossRef] [PubMed]
Bet, A.; Maze, E.A.; Bansal, A.; Sterrett, S.; Gross, A.; Graff-Dubois, S.; Samri, A.; Guihot, A.; Katlama, C.; Theodorou, I.; et al. The HIV-1 Antisense Protein (ASP) Induces CD8 T Cell Responses during Chronic Infection. Retrovirology 2015, 12, 15. [CrossRef] [PubMed]
Berger, C.T.; Llano, A.; Carlson, J.M.; Brumme, Z.L.; Brockman, M.A.; Cedeño, S.; Harrigan, P.R.; Kaufmann, D.E.; Heckerman, D.; Meyerhans, A.; et al. Immune Screening Identifies Novel T Cell Targets Encoded by Antisense Reading Frames of HIV-1. J. Virol. 2015, 89, 4015–4019. [CrossRef] [PubMed]
Briquet, S.; Vaquero, C. Immunolocalization Studies of an Antisense Protein in HIV-1-Infected Cells and Viral Particles. Virology 2002, 292, 177–184. [CrossRef]
Clerc, I.; Laverdure, S.; Torresilla, C.; Landry, S.; Borel, S.; Vargas, A.; Arpin-André, C.; Gay, B.; Briant, L.; Gross, A.; et al. Polarized Expression of the Membrane ASP Protein Derived from HIV-1 Antisense Transcription in T Cells. Retrovirology 2011, 8, 74. [CrossRef] [PubMed]
Torresilla, C.; Larocque, É.; Landry, S.; Halin, M.; Coulombe, Y.; Masson, J.-Y.; Mesnard, J.-M.; Barbeau, B. Detection of the HIV-1 Minus-Strand-Encoded Antisense Protein and Its Association with Autophagy. J. Virol. 2013, 87, 5089–5105. [CrossRef] [PubMed]
Liu, Z.; Torresilla, C.; Xiao, Y.; Nguyen, P.T.; Caté, C.; Barbosa, K.; Rassart, É.; Cen, S.; Bourgault, S.; Barbeau, B. HIV-1 Antisense Protein of Different Clades Induces Autophagy and Associates with the Autophagy Factor P62. J. Virol. 2018, 93, e01757-18. [CrossRef]
Affram, Y.; Zapata, J.C.; Gholizadeh, Z.; Tolbert, W.D.; Zhou, W.; Iglesias-Ussel, M.D.; Pazgier, M.; Ray, K.; Latinovic, O.S.; Romerio, F. The HIV-1 Antisense Protein ASP Is a Transmembrane Protein of the Cell Surface and an Integral Protein of the Viral Envelope. J. Virol. 2019, 93, e00574-19. [CrossRef]
Ludwig, L.; Albert, M. MORT, a Locus for Apoptosis in the Human Immunodeficiency Virus-Type 1 Antisense Gene: Implications for AIDS, Cancer, and Covid-19. bioRixv 2020, in press.
Ludwig, L.B. RNA Silencing and HIV: A Hypothesis for the Etiology of the Severe Combined Immunodeficiency Induced by the Virus. Retrovirology 2008, 5, 79. [CrossRef] [PubMed]
Liu, B.; Zhao, X.; Shen, W.; Kong, X. Evidence for the Antisense Transcription in the Proviral R29-127 Strain of Bovine Immunode-ficiency Virus. Virol. Sin. 2015, 30, 224–227. [CrossRef] [PubMed]
Briquet, S.; Richardson, J.; Vanhée-Brossollet, C.; Vaquero, C. Natural Antisense Transcripts Are Detected in Different Cell Lines and Tissues of Cats Infected with Feline Immunodeficiency Virus. Gene 2001, 267, 157–164. [CrossRef]
Miller, C.; Abdo, Z.; Ericsson, A.; Elder, J.; VandeWoude, S. Applications of the FIV Model to Study HIV Pathogenesis. Viruses 2018, 10, 206. [CrossRef] [PubMed]
Larocca, D.; Chao, L.A.; Seto, M.H.; Brunck, T.K. Human T-Cell Leukemia Virus Minus Strand Transcription in Infected T-Cells. Biochem. Biophys. Res. Commun. 1989, 163, 1006–1013. [CrossRef]
Gaudray, G.; Gachon, F.; Basbous, J.; Biard-Piechaczyk, M.; Devaux, C.; Mesnard, J.-M. The Complementary Strand of the Human T-Cell Leukemia Virus Type 1 RNA Genome Encodes a BZIP Transcription Factor That Down-Regulates Viral Transcription. J. Virol. 2002, 76, 12813–12822. [CrossRef]
Barbeau, B.; Mesnard, J.-M. Does Chronic Infection in Retroviruses Have a Sense? Trends Microbiol. 2015, 23, 367–375. [CrossRef] [PubMed]
Satou, Y.; Yasunaga, J.-I.; Zhao, T.; Yoshida, M.; Miyazato, P.; Takai, K.; Shimizu, K.; Ohshima, K.; Green, P.L.; Ohkura, N.; et al. HTLV-1 BZIP Factor Induces T-Cell Lymphoma and Systemic Inflammation in Vivo. PLoS Pathog. 2011, 7, e1001274. [CrossRef]
Ma, G.; Yasunaga, J.-I.; Matsuoka, M. Multifaceted Functions and Roles of HBZ in HTLV-1 Pathogenesis. Retrovirology 2016, 13, 16. [CrossRef]
Miyazato, P.; Matsuo, M.; Katsuya, H.; Satou, Y. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus. Viruses 2016, 8, 171. [CrossRef]
Matsuoka, M.; Mesnard, J.-M. HTLV-1 BZIP Factor: The Key Viral Gene for Pathogenesis. Retrovirology 2020, 17, 2. [CrossRef]
Sintasath, D.M.; Wolfe, N.D.; Zheng, H.; LeBreton, M.; Peeters, M.; Tamoufe, U.; Djoko, C.F.; Diffo, J.L.; Mpoudi-Ngole, E.; Heneine, W.; et al. Genetic Characterization of the Complete Genome of a Highly Divergent Simian T-Lymphotropic Virus (STLV) Type 3 from a Wild Cercopithecus Mona Monkey. Retrovirology 2009, 6, 97. [CrossRef] [PubMed]
Durkin, K.; Rosewick, N.; Artesi, M.; Hahaut, V.; Griebel, P.; Arsic, N.; Burny, A.; Georges, M.; Van den Broeke, A. Characterization of Novel Bovine Leukemia Virus (BLV) Antisense Transcripts by Deep Sequencing Reveals Constitutive Expression in Tumors and Transcriptional Interaction with Viral MicroRNAs. Retrovirology 2016, 13, 33. [CrossRef]
Halin, M.; Douceron, E.; Clerc, I.; Journo, C.; Ko, N.L.; Landry, S.; Murphy, E.L.; Gessain, A.; Lemasson, I.; Mesnard, J.-M.; et al. Human T-Cell Leukemia Virus Type 2 Produces a Spliced Antisense Transcript Encoding a Protein That Lacks a Classic BZIP Domain but Still Inhibits Tax2-Mediated Transcription. Blood 2009, 114, 2427–2438. [CrossRef] [PubMed]
Barbeau, B.; Peloponese, J.-M.; Mesnard, J.-M. Functional Comparison of Antisense Proteins of HTLV-1 and HTLV-2 in Viral Pathogenesis. Front. Microbiol. 2013, 4, 226. [CrossRef] [PubMed]
Panfil, A.R.; Dissinger, N.J.; Howard, C.M.; Murphy, B.M.; Landes, K.; Fernandez, S.A.; Green, P.L. Functional Comparison of HBZ and the Related APH-2 Protein Provides Insight into Human T-Cell Leukemia Virus Type 1 Pathogenesis. J. Virol. 2016, 90, 3760–3772. [CrossRef]
Rasmussen, M.H.; Ballarín-González, B.; Liu, J.; Lassen, L.B.; Füchtbauer, A.; Füchtbauer, E.-M.; Nielsen, A.L.; Pedersen, F.S. Antisense Transcription in Gammaretroviruses as a Mechanism of Insertional Activation of Host Genes. J. Virol. 2010, 84, 3780–3788. [CrossRef]
Robinson, W.S.; Miller, R.H.; Marion, P.L. Hepadnaviruses and Retroviruses Share Genome Homology and Features of Replication. Hepatology 1987, 7, 64S–73S. [CrossRef]
Villesen, P.; Aagaard, L.; Wiuf, C.; Pedersen, F.S. Identification of Endogenous Retroviral Reading Frames in the Human Genome. Retrovirology 2004, 1, 32. [CrossRef]
Xu, L.; Elkahloun, A.G.; Candotti, F.; Grajkowski, A.; Beaucage, S.L.; Petricoin, E.F.; Calvert, V.; Juhl, H.; Mills, F.; Mason, K.; et al. A Novel Function of RNAs Arising from the Long Terminal Repeat of Human Endogenous Retrovirus 9 in Cell Cycle Arrest. J. Virol. 2013, 87, 25–36. [CrossRef]
Domansky, A.N.; Kopantzev, E.P.; Snezhkov, E.V.; Lebedev, Y.B.; Leib-Mosch, C.; Sverdlov, E.D. Solitary HERV-K LTRs Possess Bi-Directional Promoter Activity and Contain a Negative Regulatory Element in the U5 Region. FEBS Lett. 2000, 472, 191–195. [CrossRef]
Manghera, M.; Magnusson, A.; Douville, R.N. The Sense behind Retroviral Anti-Sense Transcription. Virol. J. 2017, 14, 9. [CrossRef]
Chen, H.S.; Kaneko, S.; Girones, R.; Anderson, R.W.; Hornbuckle, W.E.; Tennant, B.C.; Cote, P.J.; Gerin, J.L.; Purcell, R.H.; Miller, R.H. The Woodchuck Hepatitis Virus X Gene Is Important for Establishment of Virus Infection in Woodchucks. J. Virol. 1993, 67, 1218–1226. [CrossRef] [PubMed]
Shimoda, A.; Sugata, F.; Chen, H.; Miller, R.H.; Purcell, R.H. Evidence for a Bidirectional Promoter Complex within the X Gene of Woodchuck Hepatitis Virus. Virus Res. 1998, 56, 25–39. [CrossRef]
Velhagen, I.; Hilger, C.; Lamberts, C.; Zentgraf, H.; Schroder, C.H. An Antisense Promoter within the Hepatitis B Virus X Gene. Intervirology 1995, 38, 127–133. [CrossRef]
Moriyama, K.; Hayashida, K.; Shimada, M.; Nakano, S.; Nakashima, Y.; Fukumaki, Y. Antisense RNAs Transcribed from the Upstream Region of the Precore/Core Promoter of Hepatitis B Virus. J. Gen. Virol. 2003, 84, 1907–1913. [CrossRef] [PubMed]
Gunnery, S.; Mathews, M.B. Functional MRNA Can Be Generated by RNA Polymerase III. Mol. Cell. Biol. 1995, 15, 3597–3607. [CrossRef]
Niwa, H.; Yamamura, K.; Miyazaki, J. Efficient Selection for High-Expression Transfectants with a Novel Eukaryotic Vector. Gene 1991, 108, 193–199. [CrossRef]
Claverie, J.-M.; Abergel, C. Giant Viruses: The Difficult Breaking of Multiple Epistemological Barriers. Stud. Hist. Philos. Sci. Part. C Stud. Hist. Philos. Biol. Biomed. Sci. 2016, 59, 89–99. [CrossRef] [PubMed]
Gholizadeh, Z.; Iqbal, M.S.; Li, R.; Romerio, F. The HIV-1 Antisense Gene ASP: The New Kid on the Block. Vaccines 2021, 9, 513. [CrossRef] [PubMed]
Kuhn, T.S. The Structure of Scientific Revolutions, 1st ed.; University of Chicago Press: Chigaco, IL, USA, 1962.