[en] In magnetic tunnel junctions (MTJs), an antiferromagnetic iridium manganese (IrMn) layer neighboring a ferromagnetic electrode is indispensable for pinning the magnetization of the ferromagnet. The effect of its antiferromagnetism on adjacent ferromagnet and, thus, the quantum transport is, nevertheless, scarcely studied. Here, we investigate the role of antiferromagnetically orientated Mn spins in IrMn on the spin-dependent tunneling transport in IrMn/FeCo/MgO/FeCo/IrMn MTJ by analyzing the tunneling magnetoresistance (TMR) effect. The opposite spin orientation of Mn induces the mixing of Bloch symmetries, Δ 1 and Δ 5 , irrespective of the spin alignment of the FeCo electrode. This auxiliary contribution from the Mn spins improves the tunneling in majority- and minority-spin channels in parallel configuration. In the antiparallel configuration, the tunneling in majority- and minority-spin channels is non-identical. The TMR as high as 8643% is obtained under equilibrium. In addition, the non-equilibrium behavior of TMR and the spin-filtering effect are examined in the voltage bias range of 10-50 mV. The TMR ratio of 3600% with the spin-filtering efficiency of ∼ 98% is maintained at 50 mV, presenting the MTJ as an effective spin-filtering device robust to the bias endurance. Finally, it is speculated that our device structure can be a potential spin-orbit torque-based MTJ that offers a giant TMR and promotes upscaling of the generation of multi-bit devices with a simplified design strategy.
Disciplines :
Physics
Author, co-author :
Chandrashekhar Koli, Shradha ; School of Integrated Circuit Science and Engineering, MIIT Key Laboratory of Spintronics, Beihang University, Beijing, China ; Institut fur Physik, Johannes Gutenberg Universität Mainz, Mainz, Germany
Dupé, Bertrand ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Institut fur Physik, Johannes Gutenberg Universität Mainz, Mainz, Germany ; Fonds de la Recherche Scientifique (FNRS), Brussels, Belgium
Zhou, Hangyu ; School of Integrated Circuit Science and Engineering, MIIT Key Laboratory of Spintronics, Beihang University, Beijing, China
Zhao, Weisheng ; School of Integrated Circuit Science and Engineering, MIIT Key Laboratory of Spintronics, Beihang University, Beijing, China
Language :
English
Title :
Improvement of tunneling magnetoresistance induced by antiferromagnetic spin orientation
S.C.K and W.Z. thank Jiaqi Zhou for her participation in the early stages of this work. This work was funded by the National Key R&D Program of China (No. 2018YFB0407602), the Beijing Municipal Science and Technology Project (No. Z201100004220002), the International Collaboration Project (No. B16001), and the Beihang Hefei Innovation Research Institute (Project No. BHKX-19-02). Shradha C. Koli acknowledges the China Scholarship Council (CSC) for financial support. Shradha C. Koli also gratefully acknowledges financial support from the Graduate School of Excellence Materials Science in Mainz (MAINZ), Germany. Parts of this research were conducted using the supercomputer Mogon and advisory services offered by Johannes Gutenberg University Mainz (hpc.uni-mainz.de), which is a member of the AHRP (Alliance for High-Performance Computing in Rhineland Palatinate, www.ahrp.info) and the Gauss Alliance e.V. We acknowledge the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de) and computing time at Mogon supercomputers.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J. Godinho, H. Reichlová, D. Kriegner, V. Novák, K. Olejník, Z. Kašpar, Z. Šobáň, P. Wadley, R. Campion, R. Otxoa et al., “ Electrically induced and detected Néel vector reversal in a collinear antiferromagnet,” Nat. Commun. 9, 4686 ( 2018). 10.1038/s41467-018-07092-2
N. Djavid and R. K. Lake, “ Electron transport through antiferromagnetic spin textures and skyrmions in a magnetic tunnel junction,” Phys. Rev. B 102, 024419 ( 2020). 10.1103/PhysRevB.102.024419
J. Tong, Y. Wu, L. Ruan, B. Yang, G. Xie, G. Qin, F. Tian, and X. Zhang, “ Breaking the symmetry of spin-sublattices in antiferromagnet by interfacial tailoring in the L1-MnPt/NaCl/Fe junction,” Appl. Phys. Lett. 119, 172401 ( 2021). 10.1063/5.0064931
L. Šmejkal, A. B. Hellenes, R. González-Hernández, J. Sinova, and T. Jungwirth, “ Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling,” Phys. Rev. X 12, 011028 ( 2022). 10.1103/PhysRevX.12.011028
S. Shim, M. Mehraeen, J. Sklenar, J. Oh, J. Gibbons, H. Saglam, A. Hoffmann, S. S.-L. Zhang, and N. Mason, “ Unidirectional magnetoresistance in antiferromagnet/heavy-metal bilayers,” Phys. Rev. X 12, 021069 ( 2022). 10.1103/PhysRevX.12.021069
D.-F. Shao, Y.-Y. Jiang, J. Ding, S.-H. Zhang, Z.-A. Wang, R.-C. Xiao, G. Gurung, W. Lu, Y. Sun, and E. Y. Tsymbal, “ Néel spin currents in antiferromagnets,” Phys. Rev. Lett. 130, 216702 ( 2023). 10.1103/PhysRevLett.130.216702
S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno, “ Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system,” Nat. Mater. 15, 535- 541 ( 2016). 10.1038/nmat4566
Y.-W. Oh, S.-H. C. Chris Baek, Y. M. Kim, H. Y. Lee, K.-D. Lee, C.-G. Yang, E.-S. Park, K.-S. Lee, K.-W. Kim, G. Go, J.-R. Jeong, B.-C. Min, H.-W. Lee, K.-J. Lee, and B.-G. Park, “ Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures,” Nat. Nanotechnol. 11, 878- 884 ( 2016). 10.1038/nnano.2016.109
J. Zhou, X. Wang, Y. Liu, J. Yu, H. Fu, L. Liu, S. Chen, J. Deng, W. Lin, and X. Shu et al., “ Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn,” Sci. Adv. 5, eaau6696 ( 2019). 10.1126/sciadv.aau6696
C. O. Avci, K. Garello, C. Nistor, S. Godey, B. Ballesteros, A. Mugarza, A. Barla, M. Valvidares, E. Pellegrin, A. Ghosh, I. M. Miron, O. Boulle, S. Auffret, G. Gaudin, and P. Gambardella, “ Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers,” Phys. Rev. B 89, 214419 ( 2014). 10.1103/PhysRevB.89.214419
C. Zhang, S. Fukami, H. Sato, F. Matsukura, and H. Ohno, “ Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO,” Appl. Phys. Lett. 107, 012401 ( 2015). 10.1063/1.4926371
C.-F. Pai, L. Liu, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, “ Spin transfer torque devices utilizing the giant spin Hall effect of tungsten,” Appl. Phys. Lett. 101, 122404 ( 2012). 10.1063/1.4753947
S. Cho, S.-H. C. Baek, K.-D. Lee, Y. Jo, and B.-G. Park, “ Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures,” Sci. Rep. 5, 1- 9 ( 2015). 10.1038/srep14668
S. Isogami, Y. Shiokawa, A. Tsumita, E. Komura, Y. Ishitani, K. Hamanaka, T. Taniguchi, S. Mitani, T. Sasaki, and M. Hayashi, “ Spin-orbit torque driven magnetization switching in W/CoFeB/MgO-based type-Y three terminal magnetic tunnel junctions,” Sci. Rep. 11, 1- 8 ( 2021). 10.1038/s41598-021-95422-8
Y. Liu, B. Zhou, and J.-G. Zhu, “ Field-free magnetization switching by utilizing the spin Hall effect and interlayer exchange coupling of iridium,” Sci. Rep. 9, 325 ( 2019). 10.1038/s41598-018-37586-4
M. Cubukcu, O. Boulle, M. Drouard, K. Garello, C. Onur Avci, I. Mihai Miron, J. Langer, B. Ocker, P. Gambardella, and G. Gaudin, “ Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction,” Appl. Phys. Lett. 104, 042406 ( 2014). 10.1063/1.4863407
V. Krizakova, M. Perumkunnil, S. Couet, P. Gambardella, and K. Garello, “ Spin-orbit torque switching of magnetic tunnel junctions for memory applications,” J. Magn. Magn. Mater. 562, 169692 ( 2022). 10.1016/j.jmmm.2022.169692
W. H. Butler, “ Tunneling magnetoresistance from a symmetry filtering effect,” Sci. Technol. Adv. Mater. 9, 014106 ( 2008). 10.1088/1468-6996/9/1/014106
X. Zhang and W. Butler, “ Band structure, evanescent states, and transport in spin tunnel junctions,” J. Phys.: Condens. Matter 15, R1603 ( 2003). 10.1088/0953-8984/15/41/R01
D. Odkhuu, S. Rhim, N. Park, and S. Hong, “ Extremely large perpendicular magnetic anisotropy of an Fe (001) surface capped by 5D transition metal monolayers: A density functional study,” Phys. Rev. B 88, 184405 ( 2013). 10.1103/PhysRevB.88.184405
S. Peng, M. Wang, H. Yang, L. Zeng, J. Nan, J. Zhou, Y. Zhang, A. Hallal, M. Chshiev, and K. L. Wang et al., “ Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures,” Sci. Rep. 5, 1- 6 ( 2015). 10.1038/srep18173
D. Odkhuu, “ Giant strain control of magnetoelectric effect in Ta—Fe—MgO,” Sci. Rep. 6, 32742 ( 2016). 10.1038/srep32742
J. Zhou, W. Zhao, Y. Wang, S. Peng, J. Qiao, L. Su, L. Zeng, N. Lei, L. Liu, and Y. Zhang et al., “ Large influence of capping layers on tunnel magnetoresistance in magnetic tunnel junctions,” Appl. Phys. Lett. 109, 242403 ( 2016). 10.1063/1.4972030
S. Peng, D. Zhu, W. Li, H. Wu, A. J. Grutter, D. A. Gilbert, J. Lu, D. Xiong, W. Cai, P. Shafer, K. L. Wang, and W. Zhao et al., “ Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin-orbit torque,” Nat. Electron. 3, 757- 764 ( 2020). 10.1038/s41928-020-00504-6
X.-G. Zhang and W. Butler, “ Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions,” Phys. Rev. B 70, 172407 ( 2004). 10.1103/PhysRevB.70.172407
J. Hafner, “ A b − i n i t i o simulations of materials using VASP: Density-functional theory and beyond,” J. Comput. Chem. 29, 2044- 2078 ( 2008). 10.1002/jcc.21057
L. Pál, E. Krén, G. Kádár, P. Szabó, and T. Tarnóczi, “ Magnetic structures and phase transformations in Mn-based Cu-I type alloys,” J. Appl. Phys. 39, 538- 544 ( 1968). 10.1063/1.2163510
H. Fuke, Y. Kamiguchi, S. Hashimoto, T. Funayama, K. Saito, H. Iwasaki, and M. Sahashi, “Exchange coupling film and magnetoresistive element,” U.S. patent 6,057,049 (2 May 2000).
K. Brun, A. Kjekshus, and W. Pearson, “ Equiatomic transition metal alloys of manganese,” Acta Chem. Scand. 19, 107- 112 ( 1965). 10.3891/acta.chem.scand.19-0107
Z. Lu, S.-H. Wei, A. Zunger, S. Frota-Pessoa, and L. Ferreira, “ First-principles statistical mechanics of structural stability of intermetallic compounds,” Phys. Rev. B 44, 512 ( 1991). 10.1103/PhysRevB.44.512
P. Ravindran, A. Kjekshus, H. Fjellvåg, P. James, L. Nordström, B. Johansson, and O. Eriksson, “ Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations,” Phys. Rev. B 63, 144409 ( 2001). 10.1103/PhysRevB.63.144409
J. Zhou, X. Shu, Y. Liu, X. Wang, W. Lin, S. Chen, L. Liu, Q. Xie, T. Hong, P. Yang, B. Yan, X. Han, and J. Chen, “ Magnetic asymmetry induced anomalous spin-orbit torque in IrMn,” Phys. Rev. B 101, 184403 ( 2020). 10.1103/PhysRevB.101.184403
R. Umetsu, M. Miyakawa, K. Fukamichi, and A. Sakuma, “ Pseudogap in the density of states and the highest Néel temperature of the L 1 0 -type MnIr alloy system,” Phys. Rev. B 69, 104411 ( 2004). 10.1103/PhysRevB.69.104411
S. Wang, A. Kohn, C. Wang, A. Petford-Long, S. Lee, R. Fan, J. Goff, L. Singh, Z. Barber, and R. Ward, “ Exchange bias in epitaxial Fe/ Ir 0.2 Mn 0.8 bilayers grown on MgO (001),” J. Phys. D: Appl. Phys. 42, 225001 ( 2009). 10.1088/0022-3727/42/22/225001
C. Yang and C. Lai, “Exchange anisotropy in epitaxial (001) Co50Fe50/IrMn system,” in 2006 IEEE International Magnetics Conference (INTERMAG) (IEEE, 2006), pp. 579-579.
J. D. Burton, S. S. Jaswal, E. Y. Tsymbal, O. Mryasov, and O. Heinonen, “ Atomic and electronic structure of CoFeB/MgO interface from first principles,” Appl. Phys. Lett. 89, 142507 ( 2006). 10.1063/1.2360189
J. Taylor, H. Guo, and J. Wang, “ A b i n i t i o modeling of quantum transport properties of molecular electronic devices,” Phys. Rev. B 63, 245407 ( 2001). 10.1103/PhysRevB.63.245407
Y. Cai, Z. Bai, M. Yang, and Y. P. Feng, “ Effect of interfacial strain on spin injection and spin polarization of Co 2 CrAl/NaNbO 3 /Co 2 CrAl magnetic tunneling junction,” Europhys. Lett. 99, 37001 ( 2012). 10.1209/0295-5075/99/37001
D. Waldron, L. Liu, and H. Guo, “ A b i n i t i o simulation of magnetic tunnel junctions,” Nanotechnology 18, 424026 ( 2007). 10.1088/0957-4484/18/42/424026
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.