[en] The traditional crop calendar for yam (Dioscorea spp.) in South-Kivu, eastern Democratic Republic of Congo (DRC), is becoming increasingly inadequate given the significant climatic variability observed over the last three decades. This study aimed at: (i) assessing trends in weather data across time and space to ascertain climate change, and (ii) optimizing the yam crop calendar for various South-Kivu agro-ecological zones (AEZs) to adapt to the changing climate. The 1990-2022 weather data series were downloaded from the NASA-MERRA platform, bias correction was carried out using local weather stations' records, and analyses were performed using RClimDex 1.9. Local knowledge and CROPWAT 8.0 were used to define planting dates for yam in different AEZs. Results showed the existence of four AEZs in the South-Kivu province, with contrasting altitudes, temperatures, and rainfall patterns. Climate change is real in all these South-Kivu's AEZs, resulting either in rainfall deficits in some areas, or extreme rainfall events in others, with significant temperature increases across all AEZs. Suitable yam planting dates varied with AEZs, September 15th and 20th were recommended for the AEZ 2 while October 15th was optimal for AEZ 1, AEZ 3, and AEZ 4. However, none of the planting date scenarios could meet the yam water requirements in AEZ1, AEZ3, and AEZ4, since the effective rainfall (Pmm) was always inferior to the plant water demand (ETc), meaning that soil water conservation practices are needed for optimum plant growth and yield in these AEZs. This study does not recommend planting yam during the short rainy season owing to prolonged droughts coinciding with critical growth phases of yam, unless supplemental irrigation is envisaged. This study provided insights on the nature of climate change across the past three decades and suggested a yam crop calendar that suits the changing climate of eastern DRC.
Disciplines :
Agriculture & agronomy
Author, co-author :
Mondo, Jean M; Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo ; Doctoral School of Agroecology and Climate Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo ; Department of Agriculture, Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of Congo
Chuma Basimine, Géant ; Université de Liège - ULiège > Sphères ; Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo ; Doctoral School of Agroecology and Climate Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
Matiti, Henri M; Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
Kihye, Jacques B ; Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
Bagula, Espoir M; Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
Karume, Katcho; Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo ; Doctoral School of Agroecology and Climate Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
Kahindo, Charles; Doctoral School of Agroecology and Climate Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo ; Faculty of Sciences, Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of Congo
Egeru, Anthony; RUFORUM, Makerere University Main Campus, Kampala, Uganda
Majaliwa, Jackson-Gilbert M; RUFORUM, Makerere University Main Campus, Kampala, Uganda
Agre, Paterne A; International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
Adebola, Patrick A; International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
Asfaw, Asrat; International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
Language :
English
Title :
Crop calendar optimization for climate change adaptation in yam farming in South-Kivu, eastern D.R. Congo.
BMGF - Bill and Melinda Gates Foundation UM - University of Malaya
Funding text :
Bill & Melinda Gates Foundation (BMGF) through the RTB Breeding project of the International Institute of Tropical Agriculture (IITA) (INV-003446); Carnegie Cooperation of New York through the Regional University Forum for Capacity Building in Agriculture (RUFORUM), grant No RU/ 2024/Post-Doc/02. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors are thankful to farmers who participated in focus group discussions to select test planting date scenarios as well as weather stations that availed field data used for bias corrections.
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang. In The Core Writing Team, Pachauri RK, Meyer L. (Eds.), Intergovernmental Panel on Climate Change. 2014. https://doi.org/10.1017/CBO9781139177245.003.
Gomez-Zavaglia A, Mejuto JC, Simal-Gandara J. Mitigation of emerging implications of climate change on food production systems. Food Research International. 2020; 134: p.109256. https://doi.org/10.1016/j.foodres.2020.109256 PMID: 32517948
Partey ST, Zougmoré RB, Ouédraogo M, Campbell BM. Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt. Journal of Cleaner Production. 2018; 187: p.285–295. https://doi.org/10.1016/j.jclepro.2018.03.199.
Karume K, Mondo JM, Chuma GB, Ibanda A, Bagula EM, Aleke AL et al. Current practices and prospects of climate-smart agriculture in Democratic Republic of Congo: a review. Land. 2022; 11(10): p.1850. https://doi.org/10.3390/land11101850.
Karume K, Mondo JM, and Kiyala JCK. Drought, the war in Europe and its impacts on food insecurity in sub-Saharan Africa, East Africa. In: Kiyala JCK, Chivasa N. (eds.), Climate change and socio-political violence in sub-Saharan Africa in the Anthropocene, the Anthropocene: Politik–Economics–Society–Sciences. 2024; 37: pp.91–111. Springer Nature Switzerland AG.
Wang X, Wang S, Folberth C, Skalsky R, Li H, Liu Y et al. Limiting global warming to 2̊ C benefits building climate resilience in rice-wheat systems in India through crop calendar management. Agricultural Systems. 2024; 213: p.103806. https://doi.org/10.1016/j.agsy.2023.103806.
Franch B, Cintas J, Becker-Reshef I, Sanchez-Torres MJ, Roger J, Skakun S et al. Global crop calendars of maize and wheat in the framework of the WorldCereal project. GIScience & Remote Sensing. 2022; 59(1): pp.885–913. https://doi.org/10.1080/15481603.2022.2079273.
Wang X, Folberth C, Skalsky R, Wang S, Chen B, Liu Y et al. Crop calendar optimization for climate change adaptation in rice-based multiple cropping systems of India and Bangladesh. Agricultural and Forest Meteorology. 2022; 315: p.108830. https://doi.org/10.1016/j.agrformet.2022.108830.
Beetstra M, Wilson R, Toman E. The influence of the seasons: How the agricultural calendar impacts farmer perceptions of cover crops. Renewable Agriculture and Food Systems. 2022; 37(3): p.187–197. https://doi.org/10.1017/S1742170521000521.
Akinbile CO. Crop water requirements, biomass and grain yields estimation for upland rice using CROPWAT, AQUACROP and CERES simulation models. Agricultural Engineering International: CIGR Journal. 2020; 22(2): p.1–20.
Mitku DT. Application of Aquacrop and CropWat Models for Estimating Crop Water Requirements and Irrigation Scheduling for Hot Pepper in Metekel Zone. Advances. 2021; 2(3): 50–63. https://doi.org/10.11648/j.advances.20210203.13
Irawan ANR, Komori D. Beyond Fixed Dates and Coarse Resolution: Developing a Dynamic Dry Season Crop Calendar for Paddy in Indonesia from 2001 to 2021. Agronomy. 2024; 14(3): p.564. https://doi.org/10.3390/agronomy14030564.
OCHA. Achieving long-term food security in DRC is all about building resilience. 2022. https://reliefweb.int/report/democratic-republic-congo/achieving-long-term-food-security-drc-all-about-buildingresilience (Accessed on 8th February 2024).
World Bank. Democratic Republic of Congo: Overview. 2023. https://www.worldbank.org/en/country/drc/overview (Accessed on 8th February 2024).
Bagula EM, Majaliwa JGM, Mushagalusa NG, Basamba TA, Tumuhairwe JB, Mondo JM et al. Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo. Land. 2022; 11: p.1409. https://doi.org/10.3390/ land11091409.
Zuma-Netshiukhwi G, Stigter K, Walker S. Use of traditional weather/climate knowledge by farmers in the South-western Free State of South Africa: Agrometeorological learning by scientists. Atmosphere. 2013; 4(4): pp.383–410. https://doi.org/10.3390/atmos4040383.
Alemayehu A, Behaylu A, Agumass G, Dejen A. Farmers’ traditional knowledge on climate change and weather forecast: The case of Menze Gera Midir district, Ethiopia. Environmental Development. 2023; 47: p.100908. https://doi.org/10.1016/j.envdev.2023.100908.
Benoît M, Fournier T, de La Torre C. Impacts du changement climatique sur les calendriers agricoles: exemples de cultures céréalières du Plateau Lorrain. Agronomie, Environnement & Sociétés. 2015; 5 (1): p.55–65. https://hal.inrae.fr/hal-02632007.
Apriyana Y, Surmaini E, Estiningtyas W, Pramudia A, Ramadhani F, Suciantini S et al. The Integrated Cropping Calendar Information System: A coping mechanism to climate variability for sustainable agriculture in Indonesia. Sustainability. 2021; 13(11): p.6495. https://doi.org/10.3390/su13116495.
Kephe PN, Ayisi KK, Petja BM. Challenges and opportunities in crop simulation modelling under seasonal and projected climate change scenarios for crop production in South Africa. Agriculture & Food Security. 2021; 10: pp.1–24. https://doi.org/10.1186/s40066-020-00283-5.
Surendran U, Sushanth CM, Mammen G, Joseph EJ. FAO-CROPWAT model-based estimation of crop water need and appraisal of water resources for sustainable water resource management: Pilot study for Kollam district–humid tropical region of Kerala, India. Current Science. 2017; 112(1): p.76–86. https://doi.org/10.18520/cs/v112/i01/76-86 76–86.
Shaw SK, Sharma A, Khatua KK, Oliveto G. An Integrated Approach to Evaluating Crop Water Requirements and Irrigation Schedule for Optimizing Furrow Irrigation Design Parameters in Kurnool District, India. Water. 2023; 15(10): p.1801. https://doi.org/10.3390/w15101801.
Cavero J, Farre I, Debaeke P, Faci JM. Simulation of maize yield under water stress with the EPIC-phase and CROPWAT models. Agronomy Journal. 2000; 92(4):p.679–90. https://doi.org/10.2134/agronj2000.924679x.
Clarke D, Smith M, El-Askari K. CropWat for Windows: user guide. Oak Brook, IL, USA: IHE, 2001. http://tarwi.lamolina.edu.pe/~jgoicochea/Manuales/CROPWAT4W.pdf.
Gabr MES. Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt. Modeling Earth Systems and Environment. 2022; 8(3): p.3127–3142. https://doi.org/10.1007/ s40808-021-01199-0.
Mushagalusa NG, Karume K, Bagula E, Mondo MJ, Ntole R, Karume OO et al. Ajustement du calendrier agricole et des intrants pour les filières café, soja et haricot au Sud-Kivu, est de la RD Congo. Rapport de Consultance, UEA, Bukavu, DRC. 2019; p.94.
Adifon FH, Yabi I, Vissoh P, Balogoun I, Dossou J, Saïdou A. Écologie, systèmes de culture et utilisations alimentaires des ignames en Afrique tropicale: synthèse bibliographique. Cahiers Agricultures. 2019; 28: p.22. https://doi.org/10.1051/cagri/2019022.
Agre PA, Mondo JM, Edemodu A, Matsumoto R, Asiedu R, Akoroda M et al. Breeding for abiotic stress resistance in yam (Dioscorea spp.) using biotechnology approaches: present practices and prospects. In: Kole C. (eds), Genomic designing for abiotic stress resistant technical crops. 2022; pp. 429–457. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-05706-9_11.
Mondo JM, Chuma BG, Matiti HM, Balezi AZ, Kihye JB, Ayagirwe RB et al. Farming Practices, Varietal Preferences, and Land Suitability Analyses for Yam Production in Eastern DR Congo: Implications for Breeding Initiatives and Food Sovereignty. Frontiers in Sustainable Food Systems. 2024; 8: p.1324646. https://doi.org/10.3389/fsufs.2024.1324646.
Neina D. Ecological and edaphic drivers of yam production in West Africa. Applied and Environmental Soil Science. 2021; 2021: pp.1–13. https://doi.org/10.1155/2021/5019481.
Thiele G, Khan A, Heider B, Kroschel J, Harahagazwe D, Andrade M et al. Roots, tubers and bananas: planning and research for climate resilience. Open Agriculture. 2017; 2(1): p.350–61. https://doi.org/10.1515/opag-2017-0039.
Manners R, Vandamme E, Adewopo J, Thornton P, Friedmann M, Carpentier S et al. Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates. Agricultural Systems. 2021; 193: p.103246. https://doi.org/10.1016/j.agsy.2021.103246.
Mondo JM, Chuma GB, Kwalya PB, Balagizi SA, Ndjadi SS, Mugumaarhahama Y et al. Neglected and underutilized crop species in Kabare and Walungu territories, Eastern DR Congo: Identification, uses and socio-economic importance. Journal of Agriculture and Food Research. 2021; 6: p.100234. https://doi.org/10.1016/j.jafr.2021.100234.
Chuma BG, Mushagalusa NG, Schmitz S. Mapping small inland wetlands in the South-Kivu province by integrating optical and SAR data with statistical models for accurate distribution assessment. Scientific Reports. 2023; 13(1): p.17626. https://doi.org/10.1038/s41598-023-43292-7 PMID: 37848488
Mondo JM, Chuma GB, Muke MB, Fadhili BB, Kihye JB, Matiti HM et al. Utilization of Non-Timber Forest Products as Alternative Sources of Food and Income in the Highland Regions of the Kahuzi-Biega National Park, eastern Democratic Republic of Congo. Trees, Forests and People. 2024; 16: p.100547. https://doi.org/10.1016/j.tfp.2024.100547.
Walangululu MJ, Shukuru BL, Bamuleke KD, Bashagaluke BJ, Angelani AA, Baijukya F. Response of introduced soybean varieties to inoculation with rhizobium in Sud Kivu province, Democratic Republic of Congo. Research Application Summary. 2014; p. 273–279. https://www.ruforum.org/sites/default/files/Walangalulu.pdf.
Heri-Kazi AB, Bielders CL. Dégradation des terres cultivées au Sud-Kivu, RD Congo: perceptions paysannes et caractéristiques des exploitations agricoles. Biotechnology, Agronomy, Society and Environment. 2020; 24(2): p.99–116. https://doi.org/10.25518/1780-4507.18544
Zamukulu PM, Bagula EM, Mondo JM, Chuma GB, Bulonza GM, Mwaluke S et al. Assessment of the nitrogen fertilizer split-application on maize grain yield and profitability on Nitisols of South-Kivu, Eastern DR Congo. CABI Agriculture and Bioscience. 2024; 5(1): p.22. https://doi.org/10.1186/s43170-024-00224-3
Mondo JM, Irenge AB, Ayagirwe RB, Dontsop-Nguezet PM, Karume K, Njukwe E et al. Determinants of adoption and farmers’ preferences for cassava varieties in Kabare Territory, Eastern Democratic Republic of Congo. American Journal of Rural Development. 2019; 7(2):44–52. https://doi.org/10.12691/ajrd-7-2-1
Zhang X, Yang F. RClimDex (1.0) user manual. Climate Research Branch Environment Canada. 2004; 22: p.13–14. https://www.acmad.net/rcc/procedure/RClimDexUserManual.pdf.
Dobor L, Barcza Z, Hlásny T, Árendás T, Spitkó T, Fodor N. Crop planting date matters: Estimation methods and effect on future yields. Agricultural and Forest Meteorology. 2016; 223: p.103–115. https://doi.org/10.1016/j.agrformet.2016.03.023.
Abbas G, Younis H, Naz S, Fatima Z, Hussain S, Ahmed M, et al. Effect of planting dates on agronomic crop production. In: Hasanuzzaman M. (eds) Agronomic Crops, 2019; 1: p.131–147. Springer, Singapore. https://doi.org/10.1007/978-981-32-9151-5_8.
Hossain MB, Yesmin S, Maniruzzaman M, Biswas JC. Irrigation scheduling of rice (Oryza sativa L.) using CROPWAT model in the western region of Bangladesh. The Agriculturists. 2017; 15(1): p.19–27.
Rahimi J, Bazrafshan J, Khalili A. A comparative study on empirical methods for estimating effective rainfall for rainfed wheat crop in different climates of Iran. Physical Geography Research. 2013; 45(3): p.31–46. https://doi.org/10.22059/JPHGR.2013.35833
Ali M, Mubarak S. Effective rainfall calculation methods for field crops: an overview, analysis and new formulation. Asian Research Journal of Agriculture. 2017; 7(1): p.1–12. https://doi.org/10.9734/ARJA/2017/36812
Beven K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology. 1979; 44(3–4):169–90. https://doi.org/10.1016/0022-1694(79)90130-6.
Srivastava AK, Gaiser T. Simulating biomass accumulation and yield of yam (Dioscorea alata) in the Upper Ouémé Basin (Benin Republic)-I. Compilation of physiological parameters and calibration at the field scale. Field Crops Research. 2010; 116(1–2): p.23–29. https://doi.org/10.1016/j.fcr.2009.10.018.
Raymundo R, Asseng S, Cammarano D, Quiroz R. Potato, sweet potato, and yam models for climate change: A review. Field Crops Research. 2014; 166: p.173–185. https://doi.org/10.1016/j.fcr.2014.06. 017.
Scheierling S, Treguer DO, Booker JF. Water productivity in agriculture: Looking for water in the agricultural productivity and efficiency literature. Water Economics and Policy. 2016; 2(03): p.1650007. https://doi.org/10.1142/S2382624X16500077.
Shao Y, Xie Y, Wang C, Yue J, Yao Y, Li X et al. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. European Journal of Agronomy. 2016; 81: p.37–45. https://doi.org/10.1016/j.eja.2016.08.014.
Nyagumbo I, Mkuhlani S, Mupangwa W, Rodriguez D. Planting date and yield benefits from conservation agriculture practices across Southern Africa. Agricultural Systems. 2017; 150: p.21–33. https://doi.org/10.1016/j.agsy.2016.09.016.
Sacks WJ, Deryng D, Foley JA, Ramankutty N. Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography. 2010; 19(5): p.607–620. https://doi.org/10.1111/j.1466-8238.2010.00551.x.
Shili-Touzi I. Analyse du fonctionnement d’une association de blé d’hiver (Triticum aestivum L.) et d’une plante de couverture sur une échelle annuelle par modélisation et expérimentation. Doctoral Dissertation, AgroParisTech, Paris, France, 2009; p.188. https://pastel.hal.science/pastel-00606113/.
Drouet JL, Pagès L. GRAAL: a model of GRowth, Architecture and carbon ALlocation during the vegetative phase of the whole maize plant: model description and parameterisation. Ecological Modelling. 2003; 165(2–3): p.147–173. https://doi.org/10.1016/S0304-3800(03)00072-3.
Muller B, Martre P. Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics. Journal of Experimental Botany. 2019; 70(9): 2339–2344. https://doi.org/10.1093/jxb/ erz175 PMID: 31091319
Pati K, Kaliyappan R, Chauhan VBS, Bansode V, Nedunchezhiyan M, Hegde V. et al. Phenological growth stages of underutilised crop yam bean (Pachyrhizus erosus L. Urban) according to the extended BBCH scale. Annals of Applied Biology. 2020; 177(3): p.417–423. https://doi.org/10.1111/aab.12637.
Reynolds CA, Yitayew M, Slack DC, Hutchinson CF, Huete A, Petersen MS. Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data. International Journal of Remote Sensing. 2000; 21(18): p.3487–3508. https://doi.org/10.1080/014311600750037516.
Van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z. Yield gap analysis with local to global relevance—a review. Field Crops Research. 2013; 143: p.4–17. https://doi.org/10.1016/j.fcr.2012.09.009.
Nachtergaele F, van Velthuizen H, Verelst L, Wiberg D, Henry M, Chiozza F et al. Harmonized World Soil Database version 2.0. Food and Agriculture Organization of the United Nations and International Institute for Applied Systems Analysis, Rome and Laxenburg, Italy, 2023; p.87. https://doi.org/10.4060/ cc3823en.
Saxton KE, Willey PH. The SPAW model for agricultural field and pond hydrologic simulation. Watershed models. 2006; p.401–435. In book: Watershed Models, CRC Press. https://doi.org/10.1201/9781420037432.ch17
R Core Team. R Core Team R: a language and environment for statistical computing. Foundation for Statistical Computing. Vienna, Austria. 2020. https://www.r-project.org/.
Yue S, Pilon P. A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrological Sciences Journal. 2004; 49(1): p.21–37. https://doi.org/10.1623/hysj.49.1.21.53996.
Gensler G, Buchot C. Introduction à la Bioclimatologie. Sensibilités aux changements de temps et au foehn. Revue de Géographie Alpine. 1979; 67(3): p.349–358.
Beyene T, Ludwig F, Franssen WHP The potential consequences of climate change in hydrology regime of the Congo River Basin. In: Haensler A, Jacob D, Kabat P, Ludwig F. (Eds.), Climate change scenarios for the Congo Basin. 2012; 11: pp. 59–104. Climate Service Centre, Hamburg, Germany.
Karam S, Seidou O, Nagabhatla N, Perera D, Tshimanga RM. Assessing the impacts of climate change on climatic extremes in the Congo River Basin. Climatic Change. 2022; 170(3): p. 40. https://doi.org/10.1007/s10584-022-03326-x PMID: 35250125
Wickham L. Successful manipulation of the growth cycle of yam (Dioscorea spp.) for year-round production for food security and climate change. Tropical Agriculture. 2019; 96(1). https://doi.org/10.37234/TA96012019/0000960103.
Iseki K, Olaleye O, Matsumoto R. Impact of different planting date on shoot growth and tuber development of white Guinea yam grown in Guinea Savanna. Plant Production Science. 2024; 27(3):1–9. https://doi.org/10.1080/1343943X.2024.2351623.
Chuma GB, Mondo JM, Ndeko AB, Bagula EM, Lucungu PB, Bora SF et al. Farmers’ knowledge and Practices of Soil Conservation Techniques in Smallholder Farming Systems of Northern Kabare, East of DR Congo. Environmental Challenges. 2022; 5: p.100516. https://doi.org/10.1016/j.envc.2022. 100516.
Mondo JM, Bashagaluke JB. Renforcement de la résilience aux aléas climatiques par la vulgarisation de bonnes pratiques agricoles adaptées aux changements climatiques pour les filières porteuses dans les ETD Kabare & Ngweshe. Rapport de Consultance, UEA & UCB, Bukavu, DRC. 2022; p.89.
Karume KC. Biomass and hydropower potential and demand in the Uganda Albertine Rift Region. Unpublished Doctoral Thesis, Makerere University, Kampala, Uganda, 2006. http://hdl.handle.net/10570/3839.
Bagula EM. Analyse des risques climatiques sur les moyens d’existence des communautés locales du territoire d’Uvira. Rapport technique réalisé pour le compte de la Croix Rouge R.D. Congo et Espagnole, Université Evangélique en Afrique (UEA), Bukavu, DRC, 2023; p.198.
Bagula EM. Étude des risques climatiques et des possibles stratégies de protection et d’adaptation des moyens d’existence aux effets du changement et de la variabilité climatique dans le territoire de Fizi (province de Sud-Kivu, RDC). Rapport technique réalisé pour le compte de la Croix Rouge R.D. Congo et Espagnole, Université Evangélique en Afrique (UEA), Bukavu, DRC, 2024; p.155.
Grace D, Bett BK, Lindahl JF, Robinson TP. Climate and livestock disease: assessing the vulnerability of agricultural systems to livestock pests under climate change scenarios. CCAFS Working Paper no. 116. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). 2015. https://hdl.handle.net/10568/66595.
Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L et al. Robust cropping systems to tackle pests under climate change. A review. Agronomy for Sustainable Development. 2015; 35: p.443–459. https://doi.org/10.1007/s13593-014-0275-9.
Jhariya MK, Banerjee A, Yadav DK, Raj A. Agroforestry and climate change: issues, challenges, and the way forward. In: Jhariya MK, Yadav DK, Arnab Banerjee A. (Eds), Agroforestry and Climate Change. 2019; pp. 1–34. Apple Academic Press, New York, USA. https://doi.org/10.1201/ 9780429057274.
Bagula E.M., Majaliwa J.G., Mushagalusa G.N., Basamba T.A., Tumuhairwe J.B., Akello S et al. Water and nutrient balances under selected soil and water conservation practices in semi-arid Ruzizi plain, Eastern Democratic Republic of Congo. African Journal of Agricultural Research. 2021; 17 (11): pp.1407–1419. https://doi.org/10.5897/AJAR2021.15699.
Bagula EM, Majaliwa JGM, Basamba TA, Mondo JGM, Vanlauwe B, Gabiri G. et al. Water use efficiency of maize (Zea mays L.) crop under selected soil and water conservation practices along the slope gradient in Ruzizi watershed, eastern DR Congo. Land. 2022; 11(10): p.1833. https://doi.org/10.3390/land11101833.
Clay N, Zimmerer KS. Who is resilient in Africa’s green revolution? Sustainable intensification and climate smart agriculture in Rwanda. Land use policy. 2020; 97: p.104558. https://doi.org/10.1016/j.landusepol.2020.104558 PMID: 32884163
Pypers P, Bimponda W, Lodi-Lama JP, Lele B, Mulumba R, Kachaka C et al. Combining mineral fertilizer and green manure for increased, profitable cassava production. Agronomy Journal. 2012; 104(1): p.178–87. https://doi.org/10.2134/agronj2011.0219.
Nchanji E, Nduwarugira E, Ndabashinze B, Bararyenya A, Hakizimana MB, Nyamolo V et al. Gender norms and differences in access and use of climate-smart agricultural technology in Burundi. Frontiers in Sustainable Food Systems. 2023; 7: p.1040977. https://doi.org/10.3389/fsufs.2023.1040977.
IPCC. Climate change 2022. Mitigation of climate change, Working Group III, contribution to the Sixth Assessment Report of the IPCC 2022; p. 2912.