Bistable nonlinear energy sink; Interpretable sparse identification; Targeted energy transfers
Abstract :
[en] Bistable nonlinear energy sinks have received great interest due to their efficient broad-band targeted energy transfer over a wide range of input energy levels. The precise identification of bistable nonlinear stiffness force is of significance to predict and enhance the system performance of the vibration energy absorption. However, the nonlinear stiffness force in nonlinear energy sink structures with local bistability is difficult to measure and identify because of snap-through characteristics. Inspired by physics-informed data-driven regression in machine learning, an interpretable sparse identification method is proposed to determine the stiffness force of a bistable nonlinear energy sink. The restoring force surface is constructed on bistable nonlinear energy sink equations and the nonlinear stiffness force trajectory is intercepted by assuming two quasi-zero velocity planes. Furthermore, the candidate functions in the sparse regression algorithm can be physically informed by conducting the least-squares parameter fitting of the intercepted nonlinear stiffness force trajectories. Numerical investigations demonstrate that the proposed method not only gives physics information but also improves the accuracy by 0.48%, 3.26% and 22.21% under the noise level of 30 dB, 20 dB, and 10 dB, respectively. Moreover, the reconstructed dynamic response has a good agreement with the theory. Experimental measurements are performed on a magnetically coupled bistable nonlinear energy sink. Results show that the accuracy improves by 4.52% and 11.76% compared to restoring force surface and Hilbert transform-based methods, respectively.
Disciplines :
Mechanical engineering
Author, co-author :
Liu, Qinghua ; Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, China
Cao, Junyi ; Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, China
Zhang, Ying; Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, China
Zhao, Zhenyang; Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, China
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Jing, Xingjian; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
Language :
English
Title :
Interpretable sparse identification of a bistable nonlinear energy sink
Geng, X.F., Ding, H., Mao, X.Y., Chen, L.Q., Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process., 156, 2021, 107625.
Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M., Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn. 108 (2022), 711–741.
Xiong, L., Tang, L., Liu, K., Mace, B.R., Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. D Appl. Phys., 51, 2018, 185502.
Yang, T., Zhang, Y., Zhou, S., Fan, H., Zhang, X., Wideband energy harvesting using nonlinear energy sink with bio-inspired hexagonal skeleton structure. Commun. Nonlinear Sci., 111, 2022, 106465.
Vakakis, A.F., Passive nonlinear targeted energy transfer. Philosoph. Trans. Roy. Soc. London A: Mathemat., Phys. Eng. Sci., 376, 2018 20170132.
Ding, H.u., Chen, L.-Q., Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100:4 (2020), 3061–3107.
AL-Shudeifat, M.A., Nonlinear energy sinks with piecewise-linear nonlinearities. J. Comput. Nonlin. Dyn., 14, 2019, 124501.
Yao, H., Cao, Y., Zhang, S., Wen, B., A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. 94:3 (2018), 2265–2275.
Blanchard, A., Bergman, L.A., Vakakis, A.F., Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99:1 (2020), 593–609.
Farid, M., Gendelman, O.V., Tuned pendulum as nonlinear energy sink for broad energy range. J. Vib. Control. 23:3 (2017), 373–388.
Foroutan, K., Jalali, A., Ahmadi, H., Investigations of energy absorption using tuned bistable nonlinear energy sink with local and global potentials. J. Sound Vib. 447 (2019), 155–169.
Li, H., Li, A., Kong, X., Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates. Nonlinear Dyn. 103:2 (2021), 1475–1497.
Fang, S., Chen, K., Xing, J., Zhou, S., Liao, W.-H., Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting. Int. J. Mech. Sci., 212, 2021, 106838.
Wang, J., Zhang, C., Li, H., Liu, Z., Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct., 237, 2021, 112184.
Habib, G., Romeo, F., The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89:1 (2017), 179–196.
Ding, H., Wang, G.X., Chen, L.Q., Performance evaluation and design criterion of a bistable nonlinear energy sink. Mech. Syst. Signal Process., 169, 2022, 108770.
Zou, D., Liu, G., Rao, Z., Tan, T., Zhang, W., Liao, W.-H., Design of vibration energy harvesters with customized nonlinear forces. Mech. Syst. Signal Process., 153, 2021, 107526.
Zou, D., Chen, K., Rao, Z., Cao, J., Liao, W.-H., Design of a quad-stable piezoelectric energy harvester capable of programming the coordinates of equilibrium points. Nonlinear Dyn. 108:2 (2022), 857–871.
Shaw, A.D., Neild, S.A., Wagg, D.J., Weaver, P.M., Carrella, A., A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332:24 (2013), 6265–6275.
Feldman, M., Nonparametric identification of asymmetric nonlinear vibration systems with the Hilbert transform. J. Sound Vib. 331:14 (2012), 3386–3396.
Liu, Q., Hou, Z., Zhang, Y., Jing, X., Kerschen, G., Cao, J., Nonlinear restoring force identification of strongly nonlinear structures by displacement measurement. ASME. J. Vib. Acoust., 144, 2022, 031002.
Anastasio, D., Fasana, A., Garibaldi, L., Marchesiello, S., Nonlinear dynamics of a duffing-like negative stiffness oscillator: modeling and experimental characterization. Shock Vib. 2020 (2020), 1–13.
Liu, Q., Cao, J., Hu, F., Li, D., Jing, X., Hou, Z., Parameter identification of nonlinear bistable piezoelectric structures by two-stage subspace method. Nonlinear Dyn. 105:3 (2021), 2157–2172.
Zhu, R., Fei, Q., Jiang, D., Marchesiello, S., Anastasio, D., Bayesian model selection in nonlinear subspace identification. AIAA J. 60:1 (2022), 92–101.
Manevitch, L., Sigalov, G., Romeo, F., Bergman, L., Vakakis, A., Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech-T. ASME., 81, 2014.
Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F., Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlin. Dyn., 10, 2015.
Yao, H., Cao, Y., Ding, Z., Wen, B., Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124 (2019), 237–253.
Yao, H., Wang, Y., Xie, L., Wen, B., Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Signal Process., 138, 2020, 106546.
Chen, Y.-Y., Qian, Z.-C., Zhao, W., Chang, C.-M., A magnetic Bi-stable nonlinear energy sink for structural seismic control. J. Sound Vib., 473, 2020, 115233.
AL-Shudeifat, M.A., Saeed, A.S., Frequency–energy plot and targeted energy transfer analysis of coupled bistable nonlinear energy sink with linear oscillator. Nonlinear Dyn. 105:4 (2021), 2877–2898.
AL-Shudeifat, M.A., Saeed, A.S., Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs. Meccanica 56:4 (2021), 735–752.
Wang, X., Geng, X.-F., Mao, X.-Y., Ding, H., Jing, X.-J., Chen, L.-Q., Theoretical and experimental analysis of vibration reduction for piecewise linear system by nonlinear energy sink. Mech. Syst. Signal Process., 172, 2022, 109001.
Zhang, Y.u., Tang, L., Liu, K., Piezoelectric energy harvesting with a nonlinear energy sink. J. Intel. Mat. Syst. Str. 28:3 (2017), 307–322.
Lund, A., Dyke, S.J., Song, W., Bilionis, I., Identification of an experimental nonlinear energy sink device using the unscented Kalman filter. Mech. Syst. Signal Process., 136, 2020, 106512.
Moore, K.J., Characteristic nonlinear system identification: A data-driven approach for local nonlinear attachments. Mech. Syst. Signal Process. 131 (2019), 335–347.
Singh, A., Moore, K.J., Identification of multiple local nonlinear attachments using a single measurement case. J. Sound Vib., 513, 2021, 116410.
Singh, A., Moore, K.J., Characteristic nonlinear system identification of local attachments with clearance nonlinearities. Nonlinear Dyn. 102:3 (2020), 1667–1684.
Brunton, S.L., Kutz, J.N., Data-driven science and engineering: Machine learning, dynamical systems, and control. 2022, Cambridge University Press.
Brunton, S.L., Proctor, J.L., Kutz, J.N., Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A. 113:15 (2016), 3932–3937.
Cheng, C., Zhao, B., Fu, C., Peng, Z., Meng, G., A two-stage sparse algorithm for localization and characterization of local nonlinear structures. J. Sound Vib., 526, 2022, 116823.
Lin, M., Cheng, C., Peng, Z., Dong, X., Qu, Y., Meng, G., Nonlinear dynamical system identification using the sparse regression and separable least squares methods. J. Sound Vib., 505, 2021, 116141.
Lai, Z., Nagarajaiah, S., Sparse structural system identification method for nonlinear dynamic systems with hysteresis/inelastic behavior. Mech. Syst. Signal Process. 117 (2019), 813–842.
Nayek, R., Fuentes, R., Worden, K., Cross, E.J., On spike-and-slab priors for Bayesian equation discovery of nonlinear dynamical systems via sparse linear regression. Mech. Syst. Signal Process., 161, 2021, 107986.
Bai, Z., Wimalajeewa, T., Berger, Z., Wang, G., Glauser, M., Varshney, P.K., Low-dimensional approach for reconstruction of airfoil data via compressive sensing. Aiaa. J. 53:4 (2015), 920–933.
Sun, C., Tian, T., Zhu, X., Du, Z., Sparse identification of nonlinear unsteady aerodynamics of the oscillating airfoil. P. I. Mech. Eng. G-J. Aer. 235 (2021), 809–824.
Rezaei, M., Talebitooti, R., Liao, W.-H., Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation. Int. J. Mech. Sci., 207, 2021, 106618.
Rezaei, M., Talebitooti, R., Liao, W.-H., Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber. Arch. Appl. Mech. 92:1 (2022), 363–382.
Li, S., Wu, H., Chen, J., Global dynamics and performance of vibration reduction for a new vibro-impact bistable nonlinear energy sink. Int. J. of Nonlin. Mech., 139, 2022, 103891.
Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H., The elements of statistical learning: data mining, inference, and prediction. second ed., 2009, Springer-Verlag.
Tibshirani, R., Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B. 58 (1996), 267–288.
Zhang, L., Schaeffer, H., On the convergence of the SINDy algorithm. Multiscale Modeling Sim. 17:3 (2019), 948–972.