[en] This study proposes to carry out the experimental modal analysis of nonlinear systems under the assumption of almost invariant modal shapes by coupling video analysis from a high speed/resolution camera and extended Kalman filtering. A clamped-clamped beam with a local nonlinearity is considered, and its vibrations are measured by detecting and tracking a large set of (virtual) sensors bonded to the beam outer surface. Specific image processing and video tracking techniques are employed and detailed herein. Then, the instantaneous natural frequencies and modal amplitudes are identified by means of a data assimilation method based on extended Kalman and modal filters. Finally, the proposed method of identification is assessed using a numerical example possessing 3 degrees of freedom and a strong nonlinearity. The performance and limits of the identification process are discussed.
Disciplines :
Mechanical engineering
Author, co-author :
Lo Feudo, Stefania ; QUARTZ Laboratory (EA7393), Vibrations, Acoustics, Mechanical Structures and Shapes, ISAE-Supméca, Saint-Ouen-sur-Seine, France
Dion, Jean-Luc ; QUARTZ Laboratory (EA7393), Vibrations, Acoustics, Mechanical Structures and Shapes, ISAE-Supméca, Saint-Ouen-sur-Seine, France
Renaud, Franck ; QUARTZ Laboratory (EA7393), Vibrations, Acoustics, Mechanical Structures and Shapes, ISAE-Supméca, Saint-Ouen-sur-Seine, France
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Noël, Jean-Philippe; Mechanical Engineering Department, KU Leuven, Leuven, Belgium
Language :
English
Title :
Video analysis of nonlinear systems with extended Kalman filtering for modal identification
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics - a review. Mech. Syst. Signal Process. 86, 17–34 (2017). 10.1016/j.ymssp.2016.02.011 DOI: 10.1016/j.ymssp.2016.02.011
Wang, W., Mottershead, J.E., Siebert, T., Pipino, A.: Frequency response functions of shape features from full-field vibration measurements using digital image correlation. Mech. Syst. Signal Process. 28, 333–347 (2012). 10.1016/j.ymssp.2011.11.023 DOI: 10.1016/j.ymssp.2011.11.023
Beberniss, T.J., Ehrhardt, D.A.: High-speed 3D digital image correlation vibration measurement: recent advancements and noted limitations. Mech. Syst. Signal Process. 86(B), 35–48 (2016). 10.1016/j.ymssp.2016.04.014 DOI: 10.1016/j.ymssp.2016.04.014
Pan, B., Yu, L., Zhang, Q.: Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement. Sci. China Technol. Sci. 61, 2–20 (2018) DOI: 10.1007/s11431-017-9090-x
Romaszko, M., Sapiński, B., Sioma, A.: Forced vibrations analysis of a cantilever beam using the vision method. J. Theor. Appl. Mech. (2015). 10.15632/jtam-pl.53.1.243 DOI: 10.15632/jtam-pl.53.1.243
Busca, G., Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp. Mech. 54, 255–271 (2014). 10.1007/s11340-013-9784-8 DOI: 10.1007/s11340-013-9784-8
Ferrer, B., Mas, D., García-Santos, J., et al.: Parametric study of the errors obtained from the measurement of the oscillating movement of a bridge using image processing. J. Nondestruct. Eval. (2016). 10.1007/s10921-016-0372-6 DOI: 10.1007/s10921-016-0372-6
Jeon, H., Bang, Y., Myung, H.: A paired visual servoing system for 6-dof displacement measurement of structures. Smart Mater. Struct. 20, 045019 (2011). 10.1088/0964-1726/20/4/045019 DOI: 10.1088/0964-1726/20/4/045019
Ribeiro, D., Calçada, R., Ferreira, J., Martins, T.: Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Eng. Struct. 75, 164–180 (2014). 10.1016/j.engstruct.2014.04.051 DOI: 10.1016/j.engstruct.2014.04.051
Henke, K., Pawlowski, R., Schregle, P., et al.: Use of digital image processing in the monitoring of deformations in building structures. J. Civ. Struct. Health Monit. 5, 141–152 (2015). 10.1007/s13349-014-0091-6 DOI: 10.1007/s13349-014-0091-6
de Figueiredo, H.V., Castillo-Zúñiga, D.F., Costa, N.C., Saotome, O., da Silva, R.G.A.: Aeroelastic vibration measurement based on laser and computer vision technique. Exp. Tech. 45, 95–107 (2021). 10.1007/s40799-020-00399-0 DOI: 10.1007/s40799-020-00399-0
Mas, D., Espinosa, J., Roig, A.B., Ferrer, B., Perez, J., Illueca, C.: Measurement of wide frequency range structural microvibrations with a pocket digital camera and sub-pixel techniques. Appl. Opt. 51(14), 2664 (2012). 10.1364/ao.51.002664 DOI: 10.1364/ao.51.002664
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005). 10.1109/TPAMI.2005.188 DOI: 10.1109/TPAMI.2005.188
Fraundorfer, F., Bischof, H.: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops (2005), pp. 33–33. 10.1109/CVPR.2005.393
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004) DOI: 10.1016/j.imavis.2004.02.006
Ferrarini, B., Ehsan, S., Leonardis, A., Rehman, N.U., McDonald-Maier, K.D.: Performance characterization of image feature detectors in relation to the scene content utilizing a large image database. IEEE Access 6, 8564–8573 (2018). 10.1109/ACCESS.2018.2795460 DOI: 10.1109/ACCESS.2018.2795460
Renaud, F., Lo Feudo, S., Dion, J.L., Goeller, A.: 3D vibrations reconstruction with only one camera. Mech. Syst. Signal Process. 162, 108,032 (2022). 10.1016/j.ymssp.2021.108032 DOI: 10.1016/j.ymssp.2021.108032
Reu, P.L., Rohe, D.P., Jacobs, L.D.: Comparison of DIC and LDV for practical vibration and modal measurements. Mech. Syst. Signal Process. 86, 2–16 (2017). 10.1016/j.ymssp.2016.02.006 DOI: 10.1016/j.ymssp.2016.02.006
Durand-Texte, T., Melon, M., Simonetto, E., Durand, S., Moulet, M.H.: Single-camera single-axis vision method applied to measure vibrations. J. Sound Vib. 465, 115012 (2020). 10.1016/j.jsv.2019.115012 DOI: 10.1016/j.jsv.2019.115012
Kohut, P., Kurowski, P.: Application of modal analysis supported by 3D vision-based measurements. J. Theor. Appl. Mech. 47(4), 855–870 (2009)
Gorjup, D., Slavič, J., Boltežar, M.: Frequency domain triangulation for full-field 3D operating-deflection-shape identification. Mech. Syst. Signal Process. 133, 106287 (2019). 10.1016/j.ymssp.2019.106287 DOI: 10.1016/j.ymssp.2019.106287
Golinval, J.C., Argoul, P.: COST ACTION F3 “structural dynamics” 1997-2001 presentation and some preliminary results. Structural Control for Civil and Infrastructure Engineering pp. 263–280 (2001)
Goeller, A., Dion, J.L., Le Breton, R., Soriano, T.: Kinematic SAMI: a new real-time multi-sensor data assimilation strategy for nonlinear modal identification. Mech. Ind. 21(4), 413 (2020). 10.1051/meca/2020035 DOI: 10.1051/meca/2020035
Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). 10.1016/j.ymssp.2008.04.002 DOI: 10.1016/j.ymssp.2008.04.002
Goeller, A.: Modéles réduits dynamiques pour la synthése de séquences vidéo - application à la compression de données, la réalité augmentée et la prédiction. Ph.D. thesis, Univ. Paris Saclay SMEMAG (2018)
Shi, J., Tomasi, C.: Good features to track. IEEE Conference on Computer Vision and Pattern Recognition pp. 593–600 (1994)
Torr, P., Zisserman, A.: Mlesac: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000). 10.1006/cviu.1999.0832 DOI: 10.1006/cviu.1999.0832
Dion, J.L., Stephan, C., Chevallier, G., Festjens, H.: Tracking and removing modulated sinusoidal components: a solution based on the kurtosis and the extended Kalman filter. Mech. Syst. Signal Process. 38(2), 428–439 (2013). 10.1016/j.ymssp.2013.04.001 DOI: 10.1016/j.ymssp.2013.04.001
Peeters, M., Kerschen, G., Golinval, J.C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech. Syst. Signal Process. 25(4), 1227–1247 (2011). 10.1016/j.ymssp.2010.11.006 DOI: 10.1016/j.ymssp.2010.11.006
Peeters, M., Kerschen, G., Golinval, J.C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330(3), 486–509 (2011). 10.1016/j.jsv.2010.08.028 DOI: 10.1016/j.jsv.2010.08.028
Jones, E., Iadicola (eds.), M.E.: A Good Practices Guide for Digital Image Correlation (International Digital Image Correlation Society, 2018). 10.32720/idics/gpg.ed1
Feldman, M.: Hilbert Transform Applications in Mechanical Vibration. Wiley, New York (2011) DOI: 10.1002/9781119991656
Le, T.P., Argoul, P.: Continuous wavelet transform for modal identification using free decay response. J. Sound Vib. 277(1), 73–100 (2004). 10.1016/j.jsv.2003.08.049 DOI: 10.1016/j.jsv.2003.08.049
Chui, C.K., Chen, G.: Kalman Filtering with Real-Time Applications. Springer, Berlin (2013)
Gade, S., Herlufsen, H.: Use of weighting functions in DFT/FFT analysis (part I). Tech. Rep. 3, Brüel & Kjær Technical Review (1987)
Heinzel, G., Rüdiger, A.O., Schilling, R.: Spectrum and spectral density estimation by the discrete fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. Tech. rep., Max Planck Institute für Gravitationsphysik / Laser Interferometry & Gravitational Wave Astronomy (2002)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.