[en] Herein, the long-standing challenge of the ring-opening aminolysis of CO2-derived tetrasubstituted cyclic carbonates at room temperature (r.T) is overcome under catalyst-free conditions. Molecular design of the cyclic carbonate by substitution of an alkyl group by a thioether unlocks quantitative conversion at r.T and ensures total regioselectivity toward highly substituted oxazolidone scaffolds. An in-depth rationalization of the high reactivity of these cyclic carbonate structures and of the aminolysis reaction mechanism is provided by a computational study supporting experimental observations. The high efficiency of the reaction is then translated to the deconstruction of high-performance thermoplastics containing tetrasubstituted cyclic carbonate linkages to deliver building blocks that are reused for designing recyclable thermosets bearing dynamic N,S-acetal linkages.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CERM - Center for Education and Research on Macromolecules - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Habets, Thomas ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Méreau, Raphaël ; University of Bordeaux - Institut des Sciences Moléculaires [ISM] - Bordeaux INP - France
Siragusa, Fabiana ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of Liège [ULiège] - FRITCO2T Platform - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Language :
English
Title :
Fast, Regioselective Aminolysis of Tetrasubstituted Cyclic Carbonates and Application to Recyclable Thermoplastics and Thermosets
Publication date :
19 November 2024
Journal title :
ACS Macro Letters
eISSN :
2161-1653
Publisher :
American Chemical Society (ACS)
Volume :
13
Pages :
1425-1432
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Région Nouvelle-Aquitaine F.R.S.-FNRS - Fonds de la Recherche Scientifique Région wallonne
Funding text :
The authors of Liege thank FNRS for the financial support in the frame of the CO2Switch project under grant T.0075.20. C.D. is a F.R.S.-FNRS Research Director and J.M.R is a F.R.S.-FNRS Senior Research Associate. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. Computer time was provided by the Pôle Modélisation HPC facilities of the Institut des Sciences Moléculaires UMR 5255 CNRS – Université de Bordeaux, cofunded by the Nouvelle Aquitaine region.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using Carbon Dioxide as a Building Block in Organic Synthesis. Nat. Commun. 2015, 6 ( 1), 5933, 10.1038/ncomms6933
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48 ( 16), 4466- 4514, 10.1039/C9CS00047J
Dabral, S.; Schaub, T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv. Synth Catal 2019, 361 ( 2), 223- 246, 10.1002/adsc.201801215
Vidal, F.; Van Der Marel, E. R.; Kerr, R. W. F.; McElroy, C.; Schroeder, N.; Mitchell, C.; Rosetto, G.; Chen, T. T. D.; Bailey, R. M.; Hepburn, C.; Redgwell, C.; Williams, C. K. Designing a Circular Carbon and Plastics Economy for a Sustainable Future. Nature 2024, 626 ( 7997), 45- 57, 10.1038/s41586-023-06939-z
Siragusa, F.; Detrembleur, C.; Grignard, B. The Advent of Recyclable CO2 -Based Polycarbonates. Polym. Chem. 2023, 14 ( 11), 1164- 1183, 10.1039/D2PY01258H
Rosetto, G.; Vidal, F.; McGuire, T. M.; Kerr, R. W. F.; Williams, C. K. High Molar Mass Polycarbonates as Closed-Loop Recyclable Thermoplastics. J. Am. Chem. Soc. 2024, 146 ( 12), 8381- 8393, 10.1021/jacs.3c14170
Bhat, G. A.; Darensbourg, D. J. Progress in the Catalytic Reactions of CO2 and Epoxides to Selectively Provide Cyclic or Polymeric Carbonates. Green Chem. 2022, 24 ( 13), 5007- 5034, 10.1039/D2GC01422J
Cokoja, M.; Wilhelm, M. E.; Anthofer, M. H.; Herrmann, W. A.; Kühn, F. E. Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Organocatalysts. ChemSusChem 2015, 8 ( 15), 2436- 2454, 10.1002/cssc.201500161
Guo, L.; Lamb, K. J.; North, M. Recent Developments in Organocatalysed Transformations of Epoxides and Carbon Dioxide into Cyclic Carbonates. Green Chem. 2021, 23 ( 1), 77- 118, 10.1039/D0GC03465G
Martín, C.; Fiorani, G.; Kleij, A. W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5 ( 2), 1353- 1370, 10.1021/cs5018997
Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. Direct Conversion of CO2 with Diols, Aminoalcohols and Diamines to Cyclic Carbonates, Cyclic Carbamates and Cyclic Ureas Using Heterogeneous Catalysts. J. of Chemical Tech & Biotech 2014, 89 ( 1), 19- 33, 10.1002/jctb.4209
Honda, M.; Tamura, M.; Nakao, K.; Suzuki, K.; Nakagawa, Y.; Tomishige, K. Direct Cyclic Carbonate Synthesis from CO2 and Diol over Carboxylation/Hydration Cascade Catalyst of CeO2 with 2-Cyanopyridine. ACS Catal. 2014, 4 ( 6), 1893- 1896, 10.1021/cs500301d
Kindermann, N.; Jose, T.; Kleij, A. W. Synthesis of Carbonates from Alcohols and CO2. Top Curr. Chem. (Z) 2017, 375 ( 1), 15, 10.1007/s41061-016-0101-8
Guo, W.; Gómez, J. E.; Cristòfol, À.; Xie, J.; Kleij, A. W. Catalytic Transformations of Functionalized Cyclic Organic Carbonates. Angew. Chem. Int. Ed 2018, 57 ( 42), 13735- 13747, 10.1002/anie.201805009
Guo, W.; Gónzalez-Fabra, J.; Bandeira, N. A. G.; Bo, C.; Kleij, A. W. A Metal-Free Synthesis of N-Aryl Carbamates under Ambient Conditions. Angew. Chem. Int. Ed 2015, 54 ( 40), 11686- 11690, 10.1002/anie.201504956
Ni, J.; Lanzi, M.; Kleij, A. W. Unusual DBU-Catalyzed Decarboxylative Formation of Allylic Thioethers from Vinyl Cyclic Carbonates and Thiols. Org. Chem. Front. 2022, 9 ( 24), 6780- 6785, 10.1039/D2QO01511K
Lanzi, M.; Kleij, A. W. Recent Advances in the Synthesis and Polymerization of New CO2 -BASED Cyclic †. Chin. J. Chem. 2024, 42 ( 4), 430- 443, 10.1002/cjoc.202300502
Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-Free Routes to Polyurethanes and Poly(Hydroxy Urethane)s. Chem. Rev. 2015, 115 ( 22), 12407- 12439, 10.1021/acs.chemrev.5b00355
Lamarzelle, O.; Hibert, G.; Lecommandoux, S.; Grau, E.; Cramail, H. A Thioglycerol Route to Bio-Based Bis-Cyclic Carbonates: Poly(Hydroxyurethane) Preparation and Post-Functionalization. Polym. Chem. 2017, 8 ( 22), 3438- 3447, 10.1039/C7PY00556C
Cornille, A.; Blain, M.; Auvergne, R.; Andrioletti, B.; Boutevin, B.; Caillol, S. A Study of Cyclic Carbonate Aminolysis at Room Temperature: Effect of Cyclic Carbonate Structures and Solvents on Polyhydroxyurethane Synthesis. Polym. Chem. 2017, 8 ( 3), 592- 604, 10.1039/C6PY01854H
Tomita, H.; Sanda, F.; Endo, T. Model Reaction for the Synthesis of Polyhydroxyurethanes from Cyclic Carbonates with Amines: Substituent Effect on the Reactivity and Selectivity of Ring-opening Direction in the Reaction of Five-membered Cyclic Carbonates with Amine. J. Polym. Sci. A Polym. Chem. 2001, 39 ( 21), 3678- 3685, 10.1002/pola.10009
Ochiai, B.; Koda, K.; Endo, T. Branched Cationic Polyurethane Prepared by Polyaddition of Chloromethylated Five-membered Cyclic Carbonate and Diethylenetriamine in Molten Salts. J. Polym. Sci. A Polym. Chem. 2012, 50 ( 1), 47- 51, 10.1002/pola.24969
Salvado, V.; Dolatkhani, M.; Grau, É.; Vidil, T.; Cramail, H. Sequence-Controlled Polyhydroxyurethanes with Tunable Regioregularity Obtained from Sugar-Based Vicinal Bis-Cyclic Carbonates. Macromolecules 2022, 55 ( 16), 7249- 7264, 10.1021/acs.macromol.2c01112
Blain, M.; Jean-Gérard, L.; Auvergne, R.; Benazet, D.; Caillol, S.; Andrioletti, B. Rational Investigations in the Ring Opening of Cyclic Carbonates by Amines. Green Chem. 2014, 16 ( 9), 4286- 4291, 10.1039/C4GC01032A
Alves, M.; Méreau, R.; Grignard, B.; Detrembleur, C.; Jérôme, C.; Tassaing, T. DFT Investigation of the Reaction Mechanism for the Guanidine Catalysed Ring-Opening of Cyclic Carbonates by Aromatic and Alkyl-Amines. RSC Adv. 2017, 7 ( 31), 18993- 19001, 10.1039/C7RA00220C
Quienne, B.; Poli, R.; Pinaud, J.; Caillol, S. Enhanced Aminolysis of Cyclic Carbonates by β-Hydroxylamines for the Production of Fully Biobased Polyhydroxyurethanes. Green Chem. 2021, 23 ( 4), 1678- 1690, 10.1039/D0GC04120C
Ngassam Tounzoua, C.; Grignard, B.; Detrembleur, C. Exovinylene Cyclic Carbonates: Multifaceted CO2-Based Building Blocks for Modern Chemistry and Polymer Science. Angew. Chem. Int. Ed 2022, 61 ( 22), e202116066 10.1002/anie.202116066
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(Urethane)s and Poly(Carbonate)s. Angew. Chem., Int. Ed. 2017, 56 ( 35), 10394- 10398, 10.1002/anie.201704467
Ouhib, F.; Grignard, B.; Van Den Broeck, E.; Luxen, A.; Robeyns, K.; Van Speybroeck, V.; Jerome, C.; Detrembleur, C. A Switchable Domino Process for the Construction of Novel CO2-Sourced Sulfur-Containing Building Blocks and Polymers. Angew. Chem., Int. Ed. 2019, 58 ( 34), 11768- 11773, 10.1002/anie.201905969
Wong, A. R.; Barrera, M.; Pal, A.; Lamb, J. R. Improved Characterization of Polyoxazolidinones by Incorporating Solubilizing Side Chains. Macromolecules 2022, 55 ( 24), 11006- 11012, 10.1021/acs.macromol.2c02104
Dabral, S.; Licht, U.; Rudolf, P.; Bollmann, G.; Hashmi, A. S. K.; Schaub, T. Synthesis and Polymerisation of α-Alkylidene Cyclic Carbonates from Carbon Dioxide, Epoxides and the Primary Propargylic Alcohol 1,4-Butynediol. Green Chem. 2020, 22 ( 5), 1553- 1558, 10.1039/C9GC04320A
Li, X.; Villar-Yanez, A.; Ngassam Tounzoua, C.; Benet-Buchholz, J.; Grignard, B.; Bo, C.; Detrembleur, C.; Kleij, A. W. Cascade Transformation of Carbon Dioxide and Alkyne-1, n -Diols into Densely Substituted Cyclic Carbonates. ACS Catal. 2022, 12 ( 5), 2854- 2860, 10.1021/acscatal.1c05773
Laserna, V.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Substrate-Triggered Stereoselective Preparation of Highly Substituted Organic Carbonates. ACS Catal. 2017, 7 ( 8), 5478- 5482, 10.1021/acscatal.7b01748
Sopeña, S.; Cozzolino, M.; Maquilón, C.; Escudero-Adán, E. C.; Martínez Belmonte, M.; Kleij, A. W. Organocatalyzed Domino [3 + 2] Cycloaddition/Payne-Type Rearrangement Using Carbon Dioxide and Epoxy Alcohols. Angew. Chem. Int. Ed 2018, 57 ( 35), 11203- 11207, 10.1002/anie.201803967
Longwitz, L.; Steinbauer, J.; Spannenberg, A.; Werner, T. Calcium-Based Catalytic System for the Synthesis of Bio-Derived Cyclic Carbonates under Mild Conditions. ACS Catal. 2018, 8 ( 1), 665- 672, 10.1021/acscatal.7b03367
Martínez, J.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Castro-Osma, J. A.; Lara-Sánchez, A.; Otero, A. An Efficient and Versatile Lanthanum Heteroscorpionate Catalyst for Carbon Dioxide Fixation into Cyclic Carbonates. ChemSusChem 2017, 10 ( 14), 2886- 2890, 10.1002/cssc.201700898
Fiorani, G.; Stuck, M.; Martín, C.; Belmonte, M. M.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio-Based Organic Carbonates. ChemSusChem 2016, 9 ( 11), 1304- 1311, 10.1002/cssc.201600238
Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero-Adán, E. C.; Kleij, A. W. Substrate-Controlled Product Divergence: Conversion of CO2 into Heterocyclic Products. Angew. Chem. Int. Ed 2016, 55 ( 12), 3972- 3976, 10.1002/anie.201511521
Maeda, C.; Shimonishi, J.; Miyazaki, R.; Hasegawa, J.; Ema, T. Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide. Chem. Eur. J. 2016, 22 ( 19), 6556- 6563, 10.1002/chem.201600164
Sopeña, S.; Laserna, V.; Guo, W.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Regioselective Organocatalytic Formation of Carbamates from Substituted Cyclic Carbonates. Adv. Synth Catal 2016, 358 ( 13), 2172- 2178, 10.1002/adsc.201600290
De La Cruz-Martínez, F.; Francés-Poveda, E.; North, M.; Castro-Osma, J. A.; Lara-Sánchez, A. Base-Catalyzed Highly Regioselective Synthesis of Bio-Based Hydroxyurethanes. Eur. J. Org. Chem. 2024, 27, e202400275 10.1002/ejoc.202400275
Scholten, P. B. V.; Demarteau, J.; Gennen, S.; De Winter, J.; Grignard, B.; Debuigne, A.; Meier, M. A. R.; Detrembleur, C. Merging CO2 -Based Building Blocks with Cobalt-Mediated Radical Polymerization for the Synthesis of Functional Poly(Vinyl Alcohol)s. Macromolecules 2018, 51 ( 9), 3379- 3393, 10.1021/acs.macromol.8b00492
Chiu, S.-K.; Keifer, L.; Timberlake, J. W. Synthesis of Imidazolidinediones and Oxazolidinediones from Cyclization of Propargylureas and Propargyl Carbamates. J. Med. Chem. 1979, 22 ( 6), 746- 748, 10.1021/jm00192a026
Jo, Y. W.; Im, W. B.; Rhee, J. K.; Shim, M. J.; Kim, W. B.; Choi, E. C. Synthesis and Antibacterial Activity of Oxazolidinones Containing Pyridine Substituted with Heteroaromatic Ring. Bioorg. Med. Chem. 2004, 12 ( 22), 5909- 5915, 10.1016/j.bmc.2004.08.025
Fernandes, G. F. S.; Scarim, C. B.; Kim, S.-H.; Wu, J.; Castagnolo, D. Oxazolidinones as Versatile Scaffolds in Medicinal Chemistry. RSC Med. Chem. 2023, 14 ( 5), 823- 847, 10.1039/D2MD00415A
Armentano, B.; Curcio, R.; Brindisi, M.; Mancuso, R.; Rago, V.; Ziccarelli, I.; Frattaruolo, L.; Fiorillo, M.; Dolce, V.; Gabriele, B.; Cappello, A. R. 5-(Carbamoylmethylene)-Oxazolidin-2-Ones as a Promising Class of Heterocycles Inducing Apoptosis Triggered by Increased ROS Levels and Mitochondrial Dysfunction in Breast and Cervical Cancer. Biomedicines 2020, 8 ( 2), 35, 10.3390/biomedicines8020035
Pathania, S.; Petrova-Szczasiuk, K.; Pentikäinen, O.; Singh, P. K. Oxazolidinones: Are They Only Good for the Discovery of Antibiotics? A Worm’s Eye View. J. Mol. Struct. 2023, 1286, 135630 10.1016/j.molstruc.2023.135630
Altmann, H. J.; Clauss, M.; König, S.; Frick-Delaittre, E.; Koopmans, C.; Wolf, A.; Guertler, C.; Naumann, S.; Buchmeiser, M. R. Synthesis of Linear Poly(Oxazolidin-2-One)s by Cooperative Catalysis Based on N -Heterocyclic Carbenes and Simple Lewis Acids. Macromolecules 2019, 52 ( 2), 487- 494, 10.1021/acs.macromol.8b02403
Habets, T.; Siragusa, F.; Grignard, B.; Detrembleur, C. Advancing the Synthesis of Isocyanate-Free Poly(Oxazolidones)s: Scope and Limitations. Macromolecules 2020, 53 ( 15), 6396- 6408, 10.1021/acs.macromol.0c01231
Habets, T.; Siragusa, F.; Müller, A. J.; Grossman, Q.; Ruffoni, D.; Grignard, B.; Detrembleur, C. Facile Construction of Functional Poly(Monothiocarbonate) Copolymers under Mild Operating Conditions. Polym. Chem. 2022, 13 ( 21), 3076- 3090, 10.1039/D2PY00307D
Lin, S.-K. Handbook of Polymers. By George Wypych, ChemTec Publishing, 2012; 680 Pages. Price $395.00, ISBN 978-1-895198-47-8. Polymers 2013, 5 ( 1), 225- 233, 10.3390/polym5010225
Ouhib, F.; Meabe, L.; Mahmoud, A.; Grignard, B.; Thomassin, J.-M.; Boschini, F.; Zhu, H.; Forsyth, M.; Mecerreyes, D.; Detrembleur, C. Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO2 -Sourced Polymer Electrolytes for Lithium Batteries. ACS Appl. Polym. Mater. 2020, 2 ( 2), 922- 931, 10.1021/acsapm.9b01130
Habets, T.; Seychal, G.; Caliari, M.; Raquez, J.-M.; Sardon, H.; Grignard, B.; Detrembleur, C. Covalent Adaptable Networks through Dynamic N, S -Acetal Chemistry: Toward Recyclable CO2 -Based Thermosets. J. Am. Chem. Soc. 2023, 145 ( 46), 25450- 25462, 10.1021/jacs.3c10080
Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Efficient Chemical Fixation of CO2 Promoted by a Bifunctional Ag2WO4/Ph3P System. Green Chem. 2014, 16 ( 3), 1633, 10.1039/c3gc42406e
Elling, B. R.; Dichtel, W. R. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?. ACS Cent. Sci. 2020, 6 ( 9), 1488- 1496, 10.1021/acscentsci.0c00567
Scheutz, G. M.; Lessard, J. J.; Sims, M. B.; Sumerlin, B. S. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. J. Am. Chem. Soc. 2019, 141 ( 41), 16181- 16196, 10.1021/jacs.9b07922
Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: Permanent Organic Networks with Glass-like Fluidity. Chem. Sci. 2016, 7 ( 1), 30- 38, 10.1039/C5SC02223A
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.