[en] One of the challenges faced by current CRISPR/Cas9 editing strategies is the difficulty in rapidly selecting clonal populations of biallelically edited cells. Here we present Surface engiNeered fluorEscence Assisted Kit with Protein Epitope Enhanced Capture (SNEAK PEEC), a platform that combines human genome editing with cell-surface display, which enables the direct identification of biallelically edited clones with minimal screening.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Singh, Sameer; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, 10065, USA. ; Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
Banerjee, Anoosha; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, 10065, USA.
Vanden Broeck, Arnaud ; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, 10065, USA.
Klinge, Sebastian; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, 10065, USA. klinge@rockefeller.edu.
Language :
English
Title :
Rapid clonal identification of biallelic CRISPR/Cas9 knock-ins using SNEAK PEEC.
Jiang, F. & Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 10.1146/annurev-biophys-062215-010822 (2017). DOI: 10.1146/annurev-biophys-062215-010822
Xiong, X., Chen, M., Lim, W. A., Zhao, D. & Qi, L. S. CRISPR/Cas9 for human genome engineering and disease research. Annu. Rev. Genomics Hum. Genet. 10.1146/annurev-genom-083115-022258 (2016). DOI: 10.1146/annurev-genom-083115-022258
Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 10.1038/s41586-020-1978-5 (2020). DOI: 10.1038/s41586-020-1978-5
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 10.1038/s41587-020-0561-9 (2020). DOI: 10.1038/s41587-020-0561-9
Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 10.7554/eLife.04766 (2014). DOI: 10.7554/eLife.04766
Ling, X. et al. Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci. Adv. 10.1126/sciadv.aaz0051 (2020). DOI: 10.1126/sciadv.aaz0051
Peng, R., Lin, G. & Li, J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 10.1111/febs.13586 (2016). DOI: 10.1111/febs.13586
Koch, B. et al. Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat. Protoc. 10.1038/nprot.2018.042 (2018). DOI: 10.1038/nprot.2018.042
Weisheit, I. et al. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Rep. 10.1016/j.celrep.2020.107689 (2020). DOI: 10.1016/j.celrep.2020.107689
Jillette, N., Du, M., Zhu, J. J., Cardoz, P. & Cheng, A. W. Split selectable markers. Nat. Commun. 10.1038/s41467-019-12891-2 (2019). DOI: 10.1038/s41467-019-12891-2
Zotova, A. et al. Isolation of gene-edited cells via knock-in of short glycophosphatidylinositol-anchored epitope tags. Sci. Rep. 10.1038/s41598-019-40219-z (2019). DOI: 10.1038/s41598-019-40219-z
Makhija, S. et al. Versatile labeling and detection of endogenous proteins using tag-assisted split enzyme complementation. ACS Chem. Biol. 10.1021/acschembio.0c00925 (2021). DOI: 10.1021/acschembio.0c00925
Supharattanasitthi, W., Carlsson, E., Sharif, U. & Paraoan, L. CRISPR/Cas9-mediated one step bi-allelic change of genomic DNA in iPSCs and human RPE cells in vitro with dual antibiotic selection. Sci. Rep. 10.1038/s41598-018-36740-2 (2019). DOI: 10.1038/s41598-018-36740-2
Bento, F. M. et al. Over expression of the selectable marker blasticidin S deaminase gene is toxic to human keratinocytes and murine BALB/MK cells. BMC Biotechnol. 10.1186/1472-6750-4-29 (2004). DOI: 10.1186/1472-6750-4-29
Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 10.1371/journal.pone.0018556 (2011). DOI: 10.1371/journal.pone.0018556
Buchholz, F., Angrand, P. O. & Stewart, A. F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998). DOI: 10.1038/nbt0798-657
Tran, N. T. et al. Efficient CRISPR/Cas9-mediated gene knockin in mouse hematopoietic stem and progenitor cells. Cell Rep. 28, 3510–3522 (2019). DOI: 10.1016/j.celrep.2019.08.065
Dai, X. et al. One-step generation of modular CAR-T cells with AAV–Cpf1. Nat. Methods 16, 247–254 (2019). DOI: 10.1038/s41592-019-0329-7
Singh, S., Vanden Broeck, A., Miller, L., Chaker-Margot, M. & Klinge, S. Nucleolar maturation of the human small subunit processome. Science 80, 373 (2021).
Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 10.1126/science.aad5227 (2016). DOI: 10.1126/science.aad5227
Concordet, J. P. & Haeussler, M. CRISPOR: Intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 10.1093/nar/gky354 (2018). DOI: 10.1093/nar/gky354
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 10.1038/nmeth.2019 (2012). DOI: 10.1038/nmeth.2019
Gray, E. R. et al. Unravelling the molecular basis of high affinity nanobodies against HIV p24 in vitro functional, structural, and in silico insights. ACS Infect. Dis. 10.1021/acsinfecdis.6b00189 (2017). DOI: 10.1021/acsinfecdis.6b00189
Mireku, S. A., Sauer, M. M., Glockshuber, R. & Locher, K. P. Structural basis of nanobody-mediated blocking of BtuF, the cognate substrate-binding protein of the Escherichia coli vitamin B12 transporter BtuCD. Sci. Rep. 10.1038/s41598-017-14512-8 (2017). DOI: 10.1038/s41598-017-14512-8