[en] The human small subunit processome mediates early maturation of the small ribosomal subunit by coupling RNA folding to subsequent RNA cleavage and processing steps. We report the high-resolution cryo–electron microscopy structures of maturing human small subunit (SSU) processomes at resolutions of 2.7 to 3.9 angstroms. These structures reveal the molecular mechanisms that enable crucial progressions during SSU processome maturation. RNA folding states within these particles are communicated to and coordinated with key enzymes that drive irreversible steps such as targeted exosome-mediated RNA degradation, protein-guided site-specific endonucleolytic RNA cleavage, and tightly controlled RNA unwinding. These conserved mechanisms highlight the SSU processome’s impressive structural plasticity, which endows this 4.5-megadalton nucleolar assembly with the distinctive ability to mature the small ribosomal subunit from within.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Singh, Sameer ; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
Vanden Broeck, Arnaud ; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
Miller, Linamarie ; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA. ; Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA.
Chaker-Margot, Malik ; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA. ; Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA.
Klinge, Sebastian ; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
Language :
English
Title :
Nucleolar maturation of the human small subunit processome.
Publication date :
10 September 2021
Journal title :
Science
ISSN :
0036-8075
eISSN :
1095-9203
Publisher :
American Association for the Advancement of Science, Washington, Us dc
Volume :
373
Issue :
6560
Pages :
eabj5338
Peer reviewed :
Peer Reviewed verified by ORBi
Funding number :
DP2 GM123459/GM/NIGMS NIH HHS/United States; R01 GM129325/GM/NIGMS NIH HHS/United States
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
K. E. Bohnsack, M. T. Bohnsack, Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 38, e100278 (2019). doi: 10.15252/embj.2018100278; pmid: 31268599
D. L. J. Lafontaine, J. A. Riback, R. Bascetin, C. P. Brangwynne, The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021). doi: 10.1038/s41580-020-0272-6; pmid: 32873929
B. Michot, J. P. Bachellerie, Secondary structure of the 5′ external transcribed spacer of vertebrate pre-rRNA. Presence of phylogenetically conserved features. Eur. J. Biochem. 195, 601–609 (1991). doi: 10.1111/j.1432-1033.1991.tb15743.x; pmid: 1999184
M. Hunziker et al., Conformational switches control early maturation of the eukaryotic small ribosomal subunit. eLife 8, e45185 (2019). doi: 10.7554/eLife.45185; pmid: 31206356
R.-W. Yao et al., Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767–783.e11 (2019). doi: 10.1016/j.molcel.2019.08.014; pmid: 31540874
F. Dragon et al., A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002). doi: 10.1038/nature00769; pmid: 12068309
M. Chaker-Margot, M. Hunziker, J. Barandun, B. D. Dill, S. Klinge, Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat. Struct. Mol. Biol. 22, 920–923 (2015). doi: 10.1038/nsmb.3111; pmid: 26479197
L. Zhang, C. Wu, G. Cai, S. Chen, K. Ye, Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Dev. 30, 718–732 (2016). doi: 10.1101/gad.274688.115; pmid: 26980190
M. Kornprobst et al., Architecture of the 90S pre-ribosome: A structural view on the birth of the eukaryotic ribosome. Cell 166, 380–393 (2016). doi: 10.1016/j.cell.2016.06.014; pmid: 27419870
M. Chaker-Margot, J. Barandun, M. Hunziker, S. Klinge, Architecture of the yeast small subunit processome. Science 355, eaal1880 (2017). doi: 10.1126/science.aal1880; pmid: 27980088
J. Barandun et al., The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 24, 944–953 (2017). doi: 10.1038/nsmb.3472; pmid: 28945246
J. Cheng, N. Kellner, O. Berninghausen, E. Hurt, R. Beckmann, 3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage. Nat. Struct. Mol. Biol. 24, 954–964 (2017). doi: 10.1038/nsmb.3476; pmid: 28967883
J. Cheng et al., 90S pre-ribosome transformation into the primordial 40S subunit. Science 369, 1470–1476 (2020). doi: 10.1126/science.abb4119; pmid: 32943521
Y. Du et al., Cryo-EM structure of 90S small ribosomal subunit precursors in transition states. Science 369, 1477–1481 (2020). doi: 10.1126/science.aba9690; pmid: 32943522
B. Lau et al., Structure of the maturing 90S pre-ribosome in association with the RNA exosome. Mol. Cell 81, 293–303. e4 (2021). doi: 10.1016/j.molcel.2020.11.009; pmid: 33326748
M. Ameismeier, J. Cheng, O. Berninghausen, R. Beckmann, Visualizing late states of human 40S ribosomal subunit maturation. Nature 558, 249–253 (2018). doi: 10.1038/s41586-018-0193-0; pmid: 29875412
M. Ameismeier et al., Structural basis for the final steps of human 40S ribosome maturation. Nature 587, 683–687 (2020). doi: 10.1038/s41586-020-2929-x; pmid: 33208940
L. Tafforeau et al., The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors. Mol. Cell 51, 539–551 (2013). doi: 10.1016/j.molcel.2013.08.011; pmid: 23973377
L. Badertscher et al., Genome-wide RNAi screening identifies protein modules required for 40S subunit synthesis in human cells. Cell Rep. 13, 2879–2891 (2015). doi: 10.1016/j.celrep.2015.11.061; pmid: 26711351
K. I. Farley-Barnes et al., Diverse regulators of human ribosome biogenesis discovered by changes in nucleolar number. Cell Rep. 22, 1923–1934 (2018). doi: 10.1016/j.celrep.2018.01.056; pmid: 29444442
S. B. Sondalle, S. J. Baserga, Human diseases of the SSU processome. Biochim. Biophys. Acta 1842, 758–764 (2014). doi: 10.1016/j.bbadis.2013.11.004; pmid: 24240090
S. K. Natchiar, A. G. Myasnikov, H. Kratzat, I. Hazemann, B. P. Klaholz, Visualization of chemical modifications in the human 80S ribosome structure. Nature 551, 472–477 (2017). doi: 10.1038/nature24482; pmid: 29143818
M. Taoka et al., Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 46, 9289–9298 (2018). doi: 10.1093/nar/gky811 pmid: 30202881
J. Cheng et al., Thermophile 90S pre-ribosome structures reveal the reverse order of co-transcriptional 18S rRNA subdomain integration. Mol. Cell 75, 1256–1269.e7 (2019). doi: 10.1016/j.molcel.2019.06.032; pmid: 31378463
S. Kass, N. Craig, B. Sollner-Webb, Primary processing of mammalian rRNA involves two adjacent cleavages and is not species specific. Mol. Cell. Biol. 7, 2891–2898 (1987). doi: 10.1128/MCB.7.8.2891; pmid: 3670298
N. J. Watkins, M. T. Bohnsack, The box C/D and H/ACA snoRNPs: Key players in the modification, processing and the dynamic folding of ribosomal RNA. WIREs RNA 3, 397–414 (2012). doi: 10.1002/wrna.117; pmid: 22065625
Q. Sun et al., Molecular architecture of the 90S small subunit pre-ribosome. eLife 6, e22086 (2017). doi: 10.7554/eLife.22086; pmid: 28244370
E. V. Wasmuth, C. D. Lima, The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res. 45, 846–860 (2017). doi: 10.1093/nar/gkw1152; pmid: 27899565
M. Thoms et al., The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162, 1029–1038 (2015). doi: 10.1016/j.cell.2015.07.060; pmid: 26317469
F. M. Boneberg et al., Molecular mechanism of the RNA helicase DHX37 and its activation by UTP14A in ribosome biogenesis. RNA 25, 685–701 (2019). doi: 10.1261/rna.069609.118; pmid: 30910870
A. Roychowdhury et al., The DEAH-box RNA helicase Dhr1 contains a remarkable carboxyl terminal domain essential for small ribosomal subunit biogenesis. Nucleic Acids Res. 47, 7548–7563 (2019). doi: 10.1093/nar/gkz529; pmid: 31188444
J. Zhu, X. Liu, M. Anjos, C. C. Correll, A. W. Johnson, Utp14 recruits and activates the RNA helicase Dhr1 to undock U3 snoRNA from the preribosome. Mol. Cell. Biol. 36, 965–978 (2016). doi: 10.1128/MCB.00773-15; pmid: 26729466
P. Choudhury, P. Hackert, I. Memet, K. E. Sloan, M. T. Bohnsack, The human RNA helicase DHX37 is required for release of the U3 snoRNP from pre-ribosomal particles. RNA Biol. 16, 54–68 (2019). doi: 10.1080/15476286.2018.1556149; pmid: 30582406
G. R. Wells et al., The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. Nucleic Acids Res. 44, 5399–5409 (2016). doi: 10.1093/nar/gkw213; pmid: 27034467
K. I. Farley-Barnes, L. M. Ogawa, S. J. Baserga, Ribosomopathies: Old concepts, new controversies. Trends Genet. 35, 754–767 (2019). doi: 10.1016/j.tig.2019.07.004; pmid: 31376929
J. C. Ulirsch et al., The genetic landscape of Diamond-Blackfan anemia. Am. J. Hum. Genet. 103, 930–947 (2018). doi: 10.1016/j.ajhg.2018.10.027; pmid: 30503522
N. Draptchinskaia et al., The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 21, 169–175 (1999). doi: 10.1038/5951; pmid: 9988267
J. Flygare et al., Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 109, 980–986 (2007). doi: 10.1182/blood-2006-07-038232; pmid: 16990592
J. R. P. Knight, A. E. Willis, J. Milner, Active regulator of SIRT1 is required for ribosome biogenesis and function. Nucleic Acids Res. 41, 4185–4197 (2013). doi: 10.1093/nar/gkt129; pmid: 23462953
N. Maeda, S. Toku, N. Kenmochi, T. Tanaka, A novel nucleolar protein interacts with ribosomal protein S19. Biochem. Biophys. Res. Commun. 339, 41–46 (2006). doi: 10.1016/j.bbrc.2005.10.184; pmid: 16289379
B. L. Ebert et al., Identification of RPS14 as a 5q-syndrome gene by RNA interference screen. Nature 451, 335–339 (2008). doi: 10.1038/nature06494; pmid: 18202658
N. A. Paolini et al., A ribosomopathy reveals decoding defective ribosomes driving human dysmorphism. Am. J. Hum. Genet. 100, 506–522 (2017). doi: 10.1016/j.ajhg.2017.01.034; pmid: 28257692
A. G. Marneros, BMS1 is mutated in aplasia cutis congenita. PLOS Genet. 9, e1003573 (2013). doi: 10.1371/journal. pgen.1003573; pmid: 23785305
J. Armistead et al., Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. Am. J. Hum. Genet. 84, 728–739 (2009). doi: 10.1016/j.ajhg.2009.04.017; pmid: 19463982
P. Chagnon et al., A missense mutation (R565W) in Cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am. J. Hum. Genet. 71, 1443–1449 (2002). doi: 10.1086/344580; pmid: 12417987
I. M. Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016). doi: 10.1126/science.aad5227; pmid: 26628643
J.-P. Concordet, M. Haeussler, CRISPOR: Intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018). doi: 10.1093/nar/gky354; pmid: 29762716
D. N. Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). doi: 10.1016/j.jsb.2005.07.007; pmid: 16182563
J. Zivanov et al., New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). doi: 10.7554/eLife.42166; pmid: 30412051
S. Q. Zheng et al., MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). doi: 10.1038/nmeth.4193; pmid: 28250466
K. Zhang, Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). doi: 10.1016/j.jsb.2015.11.003; pmid: 26592709
T. Wagner et al., SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019). doi: 10.1038/s42003-019-0437-z; pmid: 31240256
J. Zivanov, T. Nakane, S. H. W. Scheres, Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020). doi: 10.1107/S2052252520000081; pmid: 32148853
T. C. Terwilliger, S. J. Ludtke, R. J. Read, P. D. Adams, P. V. Afonine, Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020). doi: 10.1038/s41592-020-0914-9; pmid: 32807957
D. Liebschner et al., Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019). doi: 10.1107/S2059798319011471; pmid: 31588918
P. B. Rosenthal, R. Henderson, Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003). doi: 10.1016/j.jmb.2003.07.013; pmid: 14568533
S. Chen et al., High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013). doi: 10.1016/j.ultramic.2013.06.004; pmid: 23872039
J. B. Heymann, Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci. 27, 159–171 (2018). doi: 10.1002/pro.3293; pmid: 28891250
A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). doi: 10.1038/nmeth.4169; pmid: 28165473
B. Webb, A. Sali, Protein structure modeling with MODELLER. Methods Mol. Biol. 2199, 239–255 (2021). doi: 10.1007/978-1-0716-0892-0_14; pmid: 33125654
J. Pfab, N. M. Phan, D. Si, DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl. Acad. Sci. U.S.A. 118, e2017525118 (2021). doi: 10.1073/pnas.2017525118; pmid: 33361332
A. Casañal, B. Lohkamp, P. Emsley, Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data. Protein Sci. 29, 1069–1078 (2020). doi: 10.1002/pro.3791; pmid: 31730249
J. Yang et al., Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. U.S.A. 117, 1496–1503 (2020). doi: 10.1073/pnas.1914677117; pmid: 31896580
P. V. Afonine, B. K. Poon, R. J. Read, O. V. Sobolev, T. C. Terwilliger, A. Urzhumtsev, P. D. Adams, Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Biol. Crystallogr. 74, 531–544 (2018). doi: 10.1107/S2059798318006551; pmid: 29872004
E. F. Pettersen et al., UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). doi: 10.1002/jcc.20084; pmid: 15264254
E. F. Pettersen et al., UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). doi: 10.1002/pro.3943; pmid: 32881101
The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC, 2017).
P. D. Adams et al., R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). doi: 10.1107/S0907444909052925; pmid: 20124702
P. Emsley, K. Cowtan, Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). doi: 10.1107/S0907444904019158; pmid: 15572765
J.-H. Kim et al., Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing. Nucleic Acids Res. 46, 6712–6725 (2018). doi: 10.1093/nar/gky442; pmid: 29788454
F. Sievers et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). doi: 10.1038/msb.2011.75; pmid: 21988835
H. Ashkenazy et al., ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016). doi: 10.1093/nar/gkw408; pmid: 27166375
D. W. A. Buchan, D. T. Jones, The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019). doi: 10.1093/nar/gkz297; pmid: 31251384
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.