[en] The human type IIA topoisomerases (Top2) are essential enzymes that regulate DNA topology and chromosome organization. The Topo IIα isoform is a prime target for antineoplastic compounds used in cancer therapy that form ternary cleavage complexes with the DNA. Despite extensive studies, structural information on this large dimeric assembly is limited to the catalytic domains, hindering the exploration of allosteric mechanism governing the enzyme activities and the contribution of its non-conserved C-terminal domain (CTD). Herein we present cryo-EM structures of the entire human Topo IIα nucleoprotein complex in different conformations solved at subnanometer resolutions (3.6-7.4 Å). Our data unveils the molecular determinants that fine tune the allosteric connections between the ATPase domain and the DNA binding/cleavage domain. Strikingly, the reconstruction of the DNA-binding/cleavage domain uncovers a linker leading to the CTD, which plays a critical role in modulating the enzyme's activities and opens perspective for the analysis of post-translational modifications.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Vanden Broeck, Arnaud ; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. ; Department of Integrated Structural Biology, IGBMC, Illkirch, France.
Lotz, Christophe ; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. ; Department of Integrated Structural Biology, IGBMC, Illkirch, France.
Drillien, Robert; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. ; Department of Integrated Structural Biology, IGBMC, Illkirch, France.
Haas, Léa ; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. ; Department of Integrated Structural Biology, IGBMC, Illkirch, France.
Bedez, Claire; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. ; Department of Integrated Structural Biology, IGBMC, Illkirch, France.
Lamour, Valérie ; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. lamourv@igbmc.fr. ; Department of Integrated Structural Biology, IGBMC, Illkirch, France. lamourv@igbmc.fr. ; Hôpitaux Universitaires de Strasbourg, Strasbourg, France. lamourv@igbmc.fr.
Language :
English
Title :
Structural basis for allosteric regulation of Human Topoisomerase IIα.
Vos, S. M., Tretter, E. M., Schmidt, B. H. & Berger, J. M. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 12, 827–841 (2011). DOI: 10.1038/nrm3228
Chen, T., Sun, Y., Ji, P., Kopetz, S. & Zhang, W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 34, 4019–4031 (2015). DOI: 10.1038/onc.2014.332
Akimitsu, N. et al. Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIα. Genes Cells 10.1046/j.1365-2443.2003.00643.x (2003). DOI: 10.1046/j.1365-2443.2003.00643.x
Ali, Y. & Abd Hamid, S. Human topoisomerase II alpha as a prognostic biomarker in cancer chemotherapy. Tumor Biol. 10.1007/s13277-015-4270-9 (2016). DOI: 10.1007/s13277-015-4270-9
Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009). DOI: 10.1038/nrc2607
Roca, J., Berger, J. M., Harrison, S. C. & Wang, J. C. DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc. Natl Acad. Sci. USA 10.1073/pnas.93.9.4057 (1996). DOI: 10.1073/pnas.93.9.4057
Schoeffler, A. J. & Berger, J. M. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys. 10.1017/S003358350800468X (2008). DOI: 10.1017/S003358350800468X
Wei, H., Ruthenburg, A. J., Bechis, S. K. & Verdine, G. L. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J. Biol. Chem. 10.1074/jbc.M506520200 (2005). DOI: 10.1074/jbc.M506520200
Dong, K. C. & Berger, J. M. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 10.1038/nature06396 (2007). DOI: 10.1038/nature06396
Wu, C. C. et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science (80-.) 10.1126/science.1204117 (2011). DOI: 10.1126/science.1204117
Wendorff, T. J., Schmidt, B. H., Heslop, P., Austin, C. A. & Berger, J. M. The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J. Mol. Biol. 10.1016/j.jmb.2012.07.014 (2012). DOI: 10.1016/j.jmb.2012.07.014
Schmidt, B. H., Osheroff, N. & Berger, J. M. Structure of a topoisomerase II–DNA–nucleotide complex reveals a new control mechanism for ATPase activity. Nat. Struct. Mol. Biol. 10.1038/nsmb.2388 (2012). DOI: 10.1038/nsmb.2388
Berger, J. M., Gamblin, S. J., Harrison, S. C. & Wang, J. C. Structure and mechanism of DNA topoisomerase II. Nature 10.1038/379225a0 (1996). DOI: 10.1038/379225a0
Bjergbaek, L. et al. Communication between the ATPase and cleavage/religation domains of human topoisomerase IIalpha. J. Biol. Chem. 275, 13041–13048 (2000). DOI: 10.1074/jbc.275.17.13041
Chen, S. F. et al. Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate. Nat. Commun. 10.1038/s41467-018-05406-y (2018). DOI: 10.1038/s41467-018-05406-y
Clarke, D. J. & Azuma, Y. Non-catalytic roles of the topoisomerase IIα C-terminal domain. Int. J. Mol. Sci. 10.3390/ijms18112438 (2017). DOI: 10.3390/ijms18112438
Sengupta, T., Mukherjee, M., Mandal, C., Das, A. & Majumder, H. K. Functional dissection of the C‐terminal domain of type II DNA topoisomerase from the kinetoplastid hemoflagellate Leishmania donovani. Nucleic Acids Res. 31, 5305–5316 (2003). DOI: 10.1093/nar/gkg727
Lane, A. B., Giménez-Abián, J. F. & Clarke, D. J. A novel chromatin tether domain controls topoisomerase IIα dynamics and mitotic chromosome formation. J. Cell Biol. 10.1083/jcb.201303045 (2013). DOI: 10.1083/jcb.201303045
Lotz, C. & Lamour, V. The interplay between DNA topoisomerase 2α post-translational modifications and drug resistance. Cancer Drug Resist. 10.20517/cdr.2019.114 (2020). DOI: 10.20517/cdr.2019.114
Meczes, E. L., Gilroy, K. L., West, K. L. & Austin, C. A. The impact of the human DNA topoisomerse II C-terminal domain on activity. PLoS ONE 10.1371/journal.pone.0001754 (2008). DOI: 10.1371/journal.pone.0001754
McClendon, A. K., Dickey, J. S. & Osheroff, N. Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes. Biochemistry 10.1021/bi0520838 (2006). DOI: 10.1021/bi0520838
Kozuki, T. et al. Roles of the C-terminal domains of topoisomerase IIα’ and topoisomerase IIβ in regulation of the decatenation checkpoint. Nucleic Acids Res. 10.1093/nar/gkx325 (2017). DOI: 10.1093/nar/gkx325
Gilroy, K. L. & Austin, C. A. The impact of the C-Terminal domain on the interaction of human DNA topoisomerase II α and β with DNA. PLoS ONE 10.1371/journal.pone.0014693 (2011). DOI: 10.1371/journal.pone.0014693
Laponogov, I. et al. Structure of an ‘open’ clamp type II topoisomerase–DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res. 10.1093/nar/gkt749 (2013). DOI: 10.1093/nar/gkt749
Bouige, A. et al. Mycobacterium tuberculosis DNA gyrase possesses two functional GyrA-boxes. Biochem. J. 10.1042/BJ20130430 (2013). DOI: 10.1042/BJ20130430
Corbett, K. D., Shultzaberger, R. K. & Berger, J. M. The C-terminal domain of DNA gyrase A adopts a DNA-bending β-pinwheel fold. Proc. Natl Acad. Sci. USA 10.1073/pnas.0401595101 (2004). DOI: 10.1073/pnas.0401595101
Wang, Y. R. et al. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Res. 10.1093/nar/gkx742 (2017). DOI: 10.1093/nar/gkx742
Vanden Broeck, A., Lotz, C., Ortiz, J. & Lamour, V. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat. Commun. 10.1038/s41467-019-12914-y (2019). DOI: 10.1038/s41467-019-12914-y
Gibson, E. G., Bax, B., Chan, P. F. & Osheroff, N. Mechanistic and structural basis for the actions of the antibacterial gepotidacin against staphylococcus aureus gyrase. ACS Infect. Dis. 10.1021/acsinfecdis.8b00315 (2019). DOI: 10.1021/acsinfecdis.8b00315
Roca, J. The path of the DNA along the dimer interface of topoisomerase II. J. Biol. Chem. 10.1074/jbc.M402555200 (2004). DOI: 10.1074/jbc.M402555200
Vaughn, J. et al. Stability of the Topoisomerase II closed clamp conformation may influence DNA-stimulated ATP hydrolysis*. J. Biol. Chem. 280, 11920–11929 (2005). DOI: 10.1074/jbc.M411841200
Glatter, O. & Kratky, O. General theory X-ray scattering. Small-Angle X-ray Scatt. 10.1002/actp.1985.010360520 (1982). DOI: 10.1002/actp.1985.010360520
McClendon, A. K. et al. Bimodal recognition of DNA geometry by human topoisomerase IIα: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 10.1021/bi800453h (2008). DOI: 10.1021/bi800453h
McClendon, A. K., Rodriguez, A. C. & Osheroff, N. Human topoisomerase IIα rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J. Biol. Chem. 10.1074/jbc.M503320200 (2005). DOI: 10.1074/jbc.M503320200
Dickey, J. S. & Osheroff, N. Impact of the C-terminal domain of topoisomerase IIα on the DNA cleavage activity of the human enzyme. Biochemistry 10.1021/bi050811l (2005). DOI: 10.1021/bi050811l
Kawano, S. et al. DNA-binding activity of rat DNA topoisomerase II α C-terminal domain contributes to efficient DNA catenation in vitro. J. Biochem. 10.1093/jb/mvv110 (2015). DOI: 10.1093/jb/mvv110
Soczek, K. M., Grant, T., Rosenthal, P. B. & Mondragón, A. CryoEM structures of open dimers of gyrase A in complex with DNA illuminate mechanism of strand passage. Elife 7, e41215 (2018). DOI: 10.7554/eLife.41215
Roca, J. & Wang, J. C. DNA transport by a type II DNA topoisomerase: Evidence in favor of a two-gate mechanism. Cell 10.1016/0092-8674(94)90222-4 (1994). DOI: 10.1016/0092-8674(94)90222-4
Osheroff, N. Eukaryotic topoisomerase II. Characterization of enzyme turnover. J. Biol. Chem. https://doi.org/10.1016/S0021-9258(18)67607-0 (1986).
Laponogov, I. et al. Trapping of the transport-segment DNA by the ATPase domains of a type II topoisomerase. Nat. Commun. 9, 2579 (2018). DOI: 10.1038/s41467-018-05005-x
Jang, Y. et al. Selection of DNA cleavage sites by Topoisomerase II results from enzyme-induced flexibility of DNA. Cell Chem. Biol. 10.1016/j.chembiol.2018.12.003 (2019). DOI: 10.1016/j.chembiol.2018.12.003
Bedez, C. et al. Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain. Sci. Rep. 10.1038/s41598-018-27606-8 (2018). DOI: 10.1038/s41598-018-27606-8
Ishida, R. et al. Mitotic specific phosphorylation of serine-1212 in human DNA topoisomerase IIα. Cell Struct. Funct. 10.1247/csf.26.215 (2001). DOI: 10.1247/csf.26.215
Antoniou-Kourounioti, M., Mimmack, M. L., Porter, A. C. G. & Farr, C. J. The impact of the C-terminal region on the interaction of topoisomerase ii alpha with mitotic chromatin. Int. J. Mol. Sci. 10.3390/ijms20051238 (2019). DOI: 10.3390/ijms20051238
Lee, S. K. Wang, W. Roles of Topoisomerases in heterochromatin, aging, and diseases. Genes 10, https://doi.org/10.3390/genes10110884 (2019).
Pradeau-Aubreton, K., Ruff, M., Garnier, J.-M., Schultz, P. & Drillien, R. Vectors for recombinational cloning and gene expression in mammalian cells using modified vaccinia virus Ankara. Anal. Biochem. 404, 103–105 (2010). DOI: 10.1016/j.ab.2010.04.039
Chen, J., Noble, A. J., Kang, J. Y. & Darst, S. A. Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: bacterial RNA polymerase and CHAPSO. J. Struct. Biol. X 1, 100005 (2019).
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 10.1016/j.jsb.2005.07.007 (2005). DOI: 10.1016/j.jsb.2005.07.007
Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019). DOI: 10.1107/S205225251801463X
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 10.1016/j.jsb.2015.11.003 (2016). DOI: 10.1016/j.jsb.2015.11.003
Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 10.1016/j.jsb.2012.09.006 (2012). DOI: 10.1016/j.jsb.2012.09.006
Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUS in RELION-2. Elife 10.7554/eLife.18722 (2016). DOI: 10.7554/eLife.18722
Bell, J. M., Chen, M., Baldwin, P. R. & Ludtke, S. J. High resolution single particle refinement in EMAN2.1. Methods 10.1016/j.ymeth.2016.02.018 (2016). DOI: 10.1016/j.ymeth.2016.02.018
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 10.1038/nmeth.4169 (2017). DOI: 10.1038/nmeth.4169
Heymann, J. B. & Belnap, D. M. Bsoft: Image processing and molecular modeling for electron microscopy. J. Struct. Biol. 10.1016/j.jsb.2006.06.006 (2007). DOI: 10.1016/j.jsb.2006.06.006
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020). DOI: 10.1038/s41592-020-00990-8
Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 10.1038/nmeth.2115 (2012). DOI: 10.1038/nmeth.2115
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 10.1016/j.ultramic.2013.06.004 (2013). DOI: 10.1016/j.ultramic.2013.06.004
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 10.1016/j.jmb.2003.07.013 (2003). DOI: 10.1016/j.jmb.2003.07.013
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 10.1002/jcc.20084 (2004). DOI: 10.1002/jcc.20084
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 10.1107/S0907444909052925 (2010). DOI: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D 10.1107/S0907444910007493 (2010). DOI: 10.1107/S0907444910007493
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 10.1093/bioinformatics/btm404 (2007). DOI: 10.1093/bioinformatics/btm404
Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 10.1093/nar/gkw408 (2016). DOI: 10.1093/nar/gkw408
Buchan, D. W. A. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 10.1093/nar/gkz297 (2019). DOI: 10.1093/nar/gkz297
Patel, A. B. et al. Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. Elife 10.7554/eLife.54449 (2019). DOI: 10.7554/eLife.54449
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 10.1107/S0021889803012779 (2003). DOI: 10.1107/S0021889803012779