[en] High solubility in water and physiological fluids is an indispensable requirement for the pharmacological efficacy of an active pharmaceutical ingredient. Indeed, it is well established that pharmaceutical substances exhibiting limited solubility in water are inclined towards diminished and inconsistent absorption following oral administration, consequently resulting in variability in therapeutic outcomes. The current advancements in combinatorial chemistry and pharmaceutical design have facilitated the creation of drug candidates characterized by increased lipophilicity, elevated molecular size, and reduced aqueous solubility. Undoubtedly, the issue of poorly water-soluble medications has been progressively escalating over recent years. Indeed, 40% of the top 200 oral medications marketed in the United States, 33% of drugs listed in the US pharmacopoeia, 75% of compounds under development and 90% of new chemical entities are insufficiently water-soluble compounds. In order to address this obstacle, formulation scientists employ a variety of approaches, encompassing both physical and chemical methods such as prodrug synthesis, salt formation, solid dispersions formation, hydrotropic substances utilization, solubilizing agents incorporation, cosolvent addition, polymorphism exploration, cocrystal creation, cyclodextrins complexation, lipid formulations, particle size reduction and nanoformulation techniques. Despite the utilization of these diverse approaches, the primary reason for the failure in new drug development persists as the poor aqueous solubility of pharmaceutical compounds. This paper, therefore, delves into the foundational principles that underpin the implementation of various formulation strategies, along with a discussion on the respective advantages and drawbacks associated with each approach. Additionally, a discourse is provided regarding methodological frameworks for making informed decisions on selecting an appropriate formulation strategy to effectively tackle the key challenges posed during the development of a poorly water-soluble drug candidate.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Nyamba, Isaïe ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Sombie, Charles B; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
Yabre, Moussa; Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
Zime-Diawara, Hermine; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
Yameogo, Josias; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
Ouedraogo, Salfo; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
Lechanteur, Anna ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Semde, Rasmané; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
Evrard, Brigitte ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Language :
English
Title :
Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs.
Publication date :
21 September 2024
Journal title :
European Journal of Pharmaceutics and Biopharmaceutics
Jadach, B., Froelich, A., Tatarek, A., Osmałek, T., An overview of the methods used to increase the dissolution rate of meloxicam for oral administration. J. Drug Deliv. Sci. Technol., 97(December), 2023, 2024, 10.1016/j.jddst.2024.105836.
Zhao, J., Yang, J., Xie, Y., Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int. J. Pharm., 570, 2019, 118642, 10.1016/j.ijpharm.2019.118642.
O. Zupan, J. Mati, “SEDEX — Self-Emulsifying Delivery Via Hot Melt Extrusion: A Continuous Pilot-Scale Feasibility Study,” 2022.
Ghadi, R., Dand, N., BCS class IV drugs: highly notorious candidates for formulation development. J. Control. Release 248 (2017), 71–95, 10.1016/j.jconrel.2017.01.014.
Kumar Vadlamudi, M., Dhanaraj, S., Disparate practical way of doing solubility enhancement study to improve the bioavailability of poorly soluble drugs. J. Chem. Pharm. Res. 8:1 (2016), 208–235.
Cun, D., Zhang, C., Bera, H., Yang, M., Particle engineering principles and technologies for pharmaceutical biologics. Adv. Drug Deliv. Rev. 174:103 (2021), 140–167, 10.1016/j.addr.2021.04.006.
Khan, A.D., Singh, L., Various techniques of bioavailibility enhancement: a review. J. Drug Deliv. Ther. 6:3 (2016), 34–41, 10.22270/jddt.v6i3.1228.
H. Jain, Chella, Solubility enhancement techniques for natural product delivery, 2020. doi: 10.1007/978-3-030-41838-0.
Khadka, P., et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9:6 (2014), 304–316, 10.1016/j.ajps.2014.05.005.
Wang, C.Y., Yen, C.C., Hsu, M.C., Wu, Y.T., SElf-nanoemulsifying drug delivery systems for enhancing solubility, permeability, and bioavailability of sesamin. Molecules, 25(14), 2020, pp, 10.3390/molecules25143119.
Sharma, M., Sharma, R., Jain, D.K., Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica (Cairo), 2016, 2016, 10.1155/2016/8525679.
Dohrn, S., et al. Predicting process design spaces for spray drying amorphous solid dispersions. Int. J. Pharm., 3, 2021, 100072, 10.1016/j.ijpx.2021.100072.
I. Nyamba, A. Lechanteur, R. Semdé, B. Evrard, Physical formulation approaches for improving aqueous solubility and bioavailability of ellagic acid: a review, Eur. J. Pharm. Biopharm. 159(2020) 198–210, 2021, doi: 10.1016/j.ejpb.2020.11.004.
Directions, F., Controlled drug delivery systems: current status and. Molecules, 26, 2021, 5905.
Kumari, L., et al. Advancement in solubilization approaches: a step towards bioavailability enhancement of poorly soluble drugs. Life, 13(5), 2023, pp, 10.3390/life13051099.
Bhalani, D.V., Nutan, B., Kumar, A., Singh Chandel, A.K., Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2022, pp, 10.3390/biomedicines10092055.
K. Pathak, Effective formulation strategies for poorly water soluble drugs. Elsevier Inc., 2021. doi: 10.1016/B978-0-12-820043-8.00004-9.
Rocha, B., de Morais, L.A., Viana, M.C., Carneiro, G., Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin. Drug Discov. 18:6 (2023), 615–627, 10.1080/17460441.2023.2211801.
R. Verma, D. Kaushik, R. Kaushik, V. Singh, Different methodologies for improving solubility and bioavailability, A Compr. Text B. Self-emulsifying Drug Deliv. Syst., pp. 1–29, 2021, doi: 10.2174/9789814998000121010004.
Huang, L., Yang, J., Wang, T., Gao, J., Xu, D., Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J. Nanobiotechnology 20:1 (2022), 1–15, 10.1186/s12951-022-01257-4.
Sanches, B.M.A., Ferreira, E.I., Is prodrug design an approach to increase water solubility?. Int. J. Pharm., vol. 568, no. May, 2019, 118498, 10.1016/j.ijpharm.2019.118498.
Cacciatore, I., Ciulla, M., Marinelli, L., Eusepi, P., Di Stefano, A., Advances in prodrug design for Parkinson's disease. Expert Opin. Drug Discov. 13:4 (2018), 295–305, 10.1080/17460441.2018.1429400.
Markovic, M., Ben-Shabat, S., Dahan, A., Prodrugs for improved drug delivery: lessons learned from recently developed and marketed products. Pharmaceutics 12:11 (2020), 1–12, 10.3390/pharmaceutics12111031.
Jornada, D.H., Dos Santos Fernandes, G.F., Chiba, D.E., De Melo, T.R.F., Dos Santos, J.L., Chung, M.C., The prodrug approach: a successful tool for improving drug solubility. Molecules, 21(1), 2016, pp, 10.3390/molecules21010042.
Kalepu, S., Nekkanti, V., Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B 5:5 (2015), 442–453, 10.1016/j.apsb.2015.07.003.
Najjar, A., Karaman, R., The prodrug approach in the era of drug design. Expert Opin. Drug Deliv. 16:1 (2019), 1–5, 10.1080/17425247.2019.1553954.
Rodriguez-Aller, M., Guillarme, D., Veuthey, J.L., Gurny, R., Strategies for formulating and delivering poorly water-soluble drugs. J. Drug Deliv. Sci. Technol. 30 (2015), 342–351, 10.1016/j.jddst.2015.05.009.
Hajnal, K., Gabriel, H., Aura, R., Erzsébet, V., Blanka, S.S., Prodrug strategy in drug development. Acta Medica Marisiensis 62:3 (2016), 356–362, 10.1515/amma-2016-0032.
Stella, V.J., Prodrugs: my initial exploration and where it led. J. Pharm. Sci. 109:12 (2020), 3514–3523, 10.1016/j.xphs.2020.09.037.
Sanches, B.M.A., Ferreira, E.I., Is prodrug design an approach to increase water solubility?. Int. J. Pharm., 568(May), 2019, 10.1016/j.ijpharm.2019.118498.
Liu, T., et al. Polymeric prodrug of bufalin for increasing solubility and stability: Synthesis and anticancer study in vitro and in vivo. Int. J. Pharm. 506:1–2 (2016), 382–393, 10.1016/j.ijpharm.2016.04.041.
Zheng, H., et al. Research progress of prodrugs for the treatment of cerebral ischemia. Eur. J. Med. Chem., 272, 2024, 116457, 10.1016/j.ejmech.2024.116457.
Li, W., Xing, R., Zhu, Y., Zhao, H., Lv, R., Solubility determination and preferential solvation of diphenoxylate in aqueous cosolvent solutions of ethanol, acetonitrile, methanol, and isopropanol. J. Chem. Eng. Data 65:7 (2020), 3658–3666, 10.1021/acs.jced.0c00267.
K.U. Khan, M.U. Minhas, S.F. Badshah, M. Suhail, A. Ahmad, S. Ijaz, Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs, Life Sci., vol. 291, no. August 2021, p. 120301, 2022, doi: 10.1016/j.lfs.2022.120301.
Nayak, A.K., Panigrahi, P.P., Solubility enhancement of etoricoxib by cosolvency approach. ISRN Phys. Chem. 2012 (2012), 1–5, 10.5402/2012/820653.
Li, X., He, Y., Xu, Y., Zhang, X., Zheng, M., Zhao, H., 5-Nitrosalicylaldehyde in aqueous co-solvent mixtures of methanol, ethanol, isopropanol and acetonitrile: Solubility determination, solvent effect and preferential solvation analysis. J. Chem. Thermodyn., 142, 2020, 106014, 10.1016/j.jct.2019.106014.
Rathi, P.B., Kale, M., Soleymani, J., Jouyban, A., Solubility of etoricoxib in aqueous solutions of glycerin, methanol, polyethylene glycols 200, 400, 600, and propylene glycol at 298.2 K. J. Chem. Eng. Data 63:2 (2018), 321–330, 10.1021/acs.jced.7b00709.
M.S. Attia et al., Soluplus® as a solubilizing excipient for poorly water-soluble drugs: recent advances in formulation strategies and pharmaceutical product features, J. Drug Deliv. Sci. Technol. 84(2022) 104519, 2023, doi: 10.1016/j.jddst.2023.104519.
Zakharova, L.Y., et al. Hydrotropes: Solubilization of nonpolar compounds and modification of surfactant solutions. J. Mol. Liq., 370, 2023, 120923, 10.1016/j.molliq.2022.120923.
Rub, M.A., Azum, N., Association behavior of the amphiphilic drug and sodium p-toluenesulfonate mixtures: effect of additives. J. Mol. Liq., 325, 2021, 114654, 10.1016/j.molliq.2020.114654.
Rub, M.A., Effect of additives on the aggregation phenomena of amphiphilic drug and hydrotrope mixtures. J. Mol. Liq., 298, 2020, 112049, 10.1016/j.molliq.2019.112049.
Chazapi, I., Diat, O., Bauduin, P., Aqueous solubilization of hydrophobic compounds by inorganic nano-ions: an unconventional mechanism. J. Colloid Interface Sci. 638 (2023), 561–568, 10.1016/j.jcis.2023.01.115.
Booth, J.J., Abbott, S., Shimizu, S., Mechanism of hydrophobic drug solubilization by small molecule hydrotropes. J. Phys. Chem. B 116:51 (2012), 14915–14921, 10.1021/jp309819r.
Kim, J.Y., Kim, S., Papp, M., Park, K., Pinal, R., Hydrotropic solubilization of poorly water-soluble drugs. J. Pharm. Sci. 99:9 (2010), 3953–3965, 10.1002/jps.22241.
Padiyar, A., Agrawal, O.P., Rajpoot, K., Tekade, R.K., Hydrotropy, mixed hydrotropy, and mixed solvency as trending concept for solubilization of lipophilic drugs. Inc, 2020, 10.1016/b978-0-12-814455-8.00005-0.
E. Sintra, D. O. Abranches, J. Benfica, B.P. Soares, P.M. Ventura, J. A.P. Coutinho, European Journal of Pharmaceutics and Biopharmaceutics Cholinium-based ionic liquids as bioinspired hydrotropes to tackle solubility challenges in drug formulation,” vol. 164, no. April, pp. 86–92, 2021, doi: 10.1016/j.ejpb.2021.04.013.
Isabela, E. Abranches, Sintra, S. Mattedi, M. G. Freire, D. O. Sales, P. Pinho, Fluid phase equilibria selection of hydrotropes for enhancing the solubility of artemisinin in aqueous solutions 562(2022), doi: 10.1016/j.fluid.2022.113556.
Dhapte, V., Mehta, P., Advances in hydrotropic solutions: an updated review. St. Petersbg. Polytech. Univ. J. Phys. Math. 1:4 (2016), 424–435, 10.1016/j.spjpm.2015.12.006.
Kunz, W., Holmberg, K., Zemb, T., Hydrotropes. Curr. Opin. Colloid Interface Sci. 22 (2016), 99–107, 10.1016/j.cocis.2016.03.005.
Williams, H.D., et al. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 65:1 (2013), 315–499, 10.1124/pr.112.005660.
Gonçalves, R.A., Holmberg, K., Lindman, B., Cationic surfactants: a review. J. Mol. Liq., 375, 2023, 10.1016/j.molliq.2023.121335.
K. Sigfridsson, T. Andreasson, B.M. Fihn, M. Kearns, S. Lindblom, Supersaturated formulations of poorly soluble weak acid drugs evaluated in rodents; a case study, Int. J. Pharm. 606, 120883, 2021, doi: 10.1016/j.ijpharm.2021.120883.
Rodrigues, M., Baptista, B., Lopes, J.A., Sarraguça, M.C., Pharmaceutical cocrystallization techniques. Advances and challenges. Int. J. Pharm. 547:1–2 (2018), 404–420, 10.1016/j.ijpharm.2018.06.024.
Gupta, D., Bhatia, D., Dave, V., Sutariya, V., Gupta, S.V., Salts of therapeutic agents: Chemical, physicochemical, and biological considerations. Molecules 23:7 (2018), 1–15, 10.3390/molecules23071719.
Bharate, S.S., Recent developments in pharmaceutical salts: FDA approvals from 2015 to 2019. Drug Discov. Today 26:2 (2021), 384–398, 10.1016/j.drudis.2020.11.016.
Rajpoot, K., Tekade, M., Sreeharsha, N., Sharma, M.C., Tekade, R.K., Recent advancements in solubilization of hydrophobic drugs. INC, 2020, 10.1016/B978-0-12-814455-8.00004-9.
Surov, A.O., et al. Pharmaceutical salts of ciprofloxacin with dicarboxylic acids. Eur. J. Pharm. Sci. 77 (2015), 112–121, 10.1016/j.ejps.2015.06.004.
Hibbard, T., Nyambura, B., Scholes, P., Totolici, M., Shankland, K., Al-Obaidi, H., Preparation and physiochemical analysis of novel ciprofloxacin / dicarboxylic acid salts. J. Pharm. Sci. 112:1 (2022), 195–203, 10.1016/j.xphs.2022.08.008.
G.A. Stephenson, A. Aburub, T.A.Woods, Physical stability of salts ofweak bases in the solid-state, J. Pharm. Sci. 101(7) (2012) 2271–2280, doi: 10.1002/jps.
L.F. Diniz, J.C. Tenorio, C. Ribeiro, P. de S. Carvalho, Structural aspects, solid-state properties, and solubility performance of pharmaceutical sertraline-based organic salts, J. Mol. Struct. 1273 (2023), doi: 10.1016/j.molstruc.2022.134293.
U.K. Neelam, B. Daveedu, V.N. Ambabhai, M.R. Siripragada, S.R. kumar, S. Balasubramanian, Physicochemical aspects and comparative analysis of Voxelotor and its salt and cocrystal, J. Mol. Struct. 1271 (2023) 134024, doi: 10.1016/j.molstruc.2022.134024.
Hisada, N., et al. Characterizing the dissolution profiles of supersaturable salts, cocrystals, and solvates to enhance in vivo oral absorption. Eur. J. Pharm. Biopharm. 103 (2016), 192–199, 10.1016/j.ejpb.2016.04.004.
J.H. Cho, H.G. Choi, Development of novel tenofovir disoproxil phosphate salt with stability enhancement and bioequivalence to the commercial tenofovir disoproxil fumarate salt in rats and beagle dogs, Int. J. Pharm. 576(August 2019) 118957, 2020, doi: 10.1016/j.ijpharm.2019.118957.
Thakral, N.K., Kelly, R.C., Salt disproportionation: a material science perspective. Int. J. Pharm. 520:1–2 (2017), 228–240, 10.1016/j.ijpharm.2017.02.001.
M. Darwich, V. Mohylyuk, K. Kolter, R. Bodmeier, A. Dashevskiy, An approach for pH-independent release of poorly soluble ionizable drugs using hot-melt extrusion, J. Drug Deliv. Sci. Technol., vol. 100, no. July, p. 106027, 2024, doi: 10.1016/j.jddst.2024.106027.
C. T. Muleva, S.S. Bharate, Halide counterions in FDA-approved pharmaceutical salts, J. Drug Deliv. Sci. Technol., vol. 89, no. March, 2023, doi: 10.1016/j.jddst.2023.104999.
P.K. Deb et al., Aerosols in pharmaceutical product development. 2019. doi: 10.1016/B978-0-12-814487-9.00011-9.
Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., Onoue, S., Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm. 420:1 (2011), 1–10, 10.1016/j.ijpharm.2011.08.032.
Serajuddin, A.T.M., Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 59:7 (2007), 603–616, 10.1016/j.addr.2007.05.010.
Salehi, N., et al. Improving dissolution behavior and oral absorption of drugs with pH-dependent solubility using pH modifiers: a physiologically realistic mass transport analysis. Mol. Pharm. 18:9 (2021), 3326–3341, 10.1021/acs.molpharmaceut.1c00262.
Wang, X., Du, S., Zhang, R., Jia, X., Yang, T., Zhang, X., Drug-drug cocrystals: Opportunities and challenges. Asian J. Pharm. Sci. 16:3 (2021), 307–317, 10.1016/j.ajps.2020.06.004.
A. Kochel, B. Łyd, Very strong hydrogen bond in nitrophthalic cocrystals, 2024.
Guo, M., Sun, X., Chen, J., Cai, T., Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B 11:8 (2021), 2537–2564, 10.1016/j.apsb.2021.03.030.
Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., Trappitt, G., Pharmaceutical cocrystals: An overview. Int. J. Pharm. 419:1–2 (2011), 1–11, 10.1016/j.ijpharm.2011.07.037.
Banerjee, M., Nimkar, K., Naik, S., Patravale, V., Unlocking the potential of drug-drug cocrystals – a comprehensive review. J. Control. Release 348:March (2022), 456–469, 10.1016/j.jconrel.2022.06.003.
D.D. Bavishi, C.H. Borkhataria, Spring and parachute: How cocrystals enhance solubility 62 (2016) 1–8, doi: 10.1016/j.pcrysgrow.2016.07.001.
W. Jones, Benefits of cocrystallisation in pharmaceutical materials science: an update, 2010, pp. 1547–1559, doi: 10.1111/j.2042-7158.2010.01133.x.
Roberts, A., Haighton, L.A., A hard look at FDA’ s review of GRAS notices. Regul. Toxicol. Pharm. 79 (2016), S124–S128, 10.1016/j.yrtph.2016.06.011.
Cuadra, I.A., Cabañas, A., Cheda, J.A.R., Martínez-casado, F.J., Pando, C., Pharmaceutical co-crystals of the anti-in fl ammatory drug di fl unisal and nicotinamide obtained using supercritical CO2 as an antisolvent. Biochem. Pharmacol. 13 (2016), 29–37, 10.1016/j.jcou.2015.11.006.
A. Salem, S. Nagy, S. Pál, A. Széchenyi, Reliability of the Hansen solubility parameters as co-crystal formation prediction tool, Int. J. Pharm., vol. 558, no. December 2018, pp. 319–327, 2019, doi: 10.1016/j.ijpharm.2019.01.007.
H.D. Williams, N.L. Trevaskis, S.A. Charman, R.M. Shanker, W.N. Charman, Strategies to address low drug solubility in discovery and development (2013). 315–499.
J.B. Ngilirabanga, P.P. Rosa, M. Aucamp, Y. Kippie, H. Samsodien, Dual-drug co-crystal synthesis for synergistic in vitro effect of three key first-line antiretroviral drugs, J. Drug Deliv. Sci. Technol. 60(2020) 101958, doi: 10.1016/j.jddst.2020.101958.
M.Y. Gokhale, R.V. Mantri, API solid-form screening and selection, Dev. Solid Oral Dos. Forms Pharm. Theory Pract. Second Ed., pp. 85–112, 2017, doi: 10.1016/B978-0-12-802447-8.00004-2.
K. Wang, Y. Hao, C. Wang, X. Zhao, X. He, C. C. Sun, Simultaneous improvement of physical stability, dissolution, bioavailability, and antithrombus efficacy of Aspirin and Ligustrazine through cocrystallization, Int. J. Pharm., vol. 616, no. December 2021, p. 121541, 2022, doi: 10.1016/j.ijpharm.2022.121541.
Thakuria, R., Delori, A., Jones, W., Lipert, M.P., Roy, L., Rodríguez-Hornedo, N., Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 453:1 (2013), 101–125, 10.1016/j.ijpharm.2012.10.043.
V.J. Nikam, S.B. Patil, Pharmaceutical cocrystals of nebivolol hydrochloride with enhanced solubility, J. Cryst. Growth, vol. 534, no. January, p. 125488, 2020, doi: 10.1016/j.jcrysgro.2020.125488.
Kavanagh, O.N., Croker, D.M., Walker, G.M., Zaworotko, M.J., Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today 24:3 (2019), 796–804, 10.1016/j.drudis.2018.11.023.
Q. Shi, H. Chen, Y. Wang, J. Xu, Z. Liu, C. Zhang, Recent advances in drug polymorphs: aspects of pharmaceutical properties and selective crystallization, Int. J. Pharm. 611(2021) (2022) 121320, doi: 10.1016/j.ijpharm.2021.121320.
Lee, E.H., A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 9:4 (2014), 163–175, 10.1016/j.ajps.2014.05.002.
Healy, A.M., Worku, Z.A., Kumar, D., Madi, A.M., Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv. Drug Deliv. Rev. 117 (2017), 25–46, 10.1016/j.addr.2017.03.002.
Zhou, L., et al. Characterization, solubility and stability of amentoflavone polymorphs. J. Mol. Struct., 1262, 2022, 133101, 10.1016/j.molstruc.2022.133101.
Saini, A., et al. New conformational polymorph of hydrochlorothiazide with improved solubility. Pharm. Dev. Technol. 21:5 (2016), 611–618, 10.3109/10837450.2015.1041040.
Gong, N., Yang, D., Jin, G., Liu, S., Du, G., Lu, Y., Structure, characterization, solubility and stability of podophyllotoxin polymorphs. J. Mol. Struct. 1195 (2019), 323–330, 10.1016/j.molstruc.2019.05.048.
Yan, Y., Li, A., Si, Z., Zhang, X., Solubility measurement, correlation and molecular simulation of dabigatran etexilate mesylate polymorphs in five mono-solvents. J. Mol. Liq., 314, 2020, 113676, 10.1016/j.molliq.2020.113676.
Zeng, L., Rasmuson, Å.C., Svärd, M., Solubility of two polymorphs of tolbutamide in n-propanol: comparison of methods. J. Pharm. Sci. 109:10 (2020), 3021–3026, 10.1016/j.xphs.2020.06.022.
Cruz-Cabeza, A.J., Feeder, N., Davey, R.J., Open questions in organic crystal polymorphism. Commun. Chem. 3:1 (2020), 10–13, 10.1038/s42004-020-00388-9.
Repka, M.A., et al. Melt extrusion with poorly soluble drugs – an integrated review. Int. J. Pharm. 535:1–2 (2018), 68–85, 10.1016/j.ijpharm.2017.10.056.
Nyamba, I., et al. Preformulation study for the selection of a suitable polymer for the development of ellagic acid-based solid dispersion using hot-melt extrusion. Int. J. Pharm., 641(October), 2022, 2023, 10.1016/j.ijpharm.2023.123088.
Correa-soto, C.E., et al. Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Int. J. Pharm., 625, 2022, 122120, 10.1016/j.ijpharm.2022.122120.
Bhujbal, S.V., et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm. Sin. B 11:8 (2021), 2505–2536, 10.1016/j.apsb.2021.05.014.
A.B. Anane-Adjei et al., Amorphous solid dispersions: utilization and challenges in preclinical drug development within AstraZeneca, Int. J. Pharm. 614(2021) (2022) 121387, doi: 10.1016/j.ijpharm.2021.121387.
Tambosi, G., et al. Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Rev. Mater., 23(4), 2018, pp, 10.1590/s1517-707620180004.0558.
Li, X., et al. A review of hot melt extrusion technology: advantages, applications, key factors and future prospects. J. Drug Deliv Sci. Technol., 98, 2024, 105884, 10.1016/j.jddst.2024.105884.
Alzahrani, A., et al. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: theoretical prediction to practical implementation. Int. J. Pharm., 624, 2022, 121951, 10.1016/j.ijpharm.2022.121951.
N. Mendonsa et al., Manufacturing strategies to develop amorphous solid dispersions: an overview, J. Drug Deliv. Sci. Technol. 55(December 2019) (2020) 101459, doi: 10.1016/j.jddst.2019.101459.
Tran, P.H.L., Lee, B.J., Tran, T.T.D., Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion. Eur. J. Pharm. Biopharm. 164:March (2021), 13–19, 10.1016/j.ejpb.2021.04.009.
Vasconcelos, T., Marques, S., das Neves, J., Sarmento, B., Amorphous solid dispersions: Rational selection of a manufacturing process, Adv. Drug Deliv. Rev. 100 (2016) 85–101, doi: 10.1016/j.addr.2016.01.012.
Liu, X., Feng, X., Williams, R.O., Zhang, F., Characterization of amorphous solid dispersions. J. Pharm. Investig. 48:1 (2018), 19–41, 10.1007/s40005-017-0361-5.
X. Ma, R.O. Williams, Characterization of amorphous solid dispersions: an update, J. Drug Deliv. Sci. Technol. 50(November 2018) (2019) 113–124, 2019, doi: 10.1016/j.jddst.2019.01.017.
Iyer, R., et al. Amorphous solid dispersions (ASDs): the influence of material properties, manufacturing processes and analytical technologies in drug product development. Pharmaceutics, 13(10), 2021, 10.3390/pharmaceutics13101682.
Palekar, S., Mamidi, H.K., Guo, Y., Vartak, R., Patel, K., Corroborating various material-sparing techniques with hot melt extrusion for the preparation of triclabendazole amorphous solid dispersions. Int. J. Pharm., 640, 2023, 122989, 10.1016/j.ijpharm.2023.122989.
Pandi, P., Bulusu, R., Kommineni, N., Khan, W., Singh, M., Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm., 586, 2020, 119560, 10.1016/j.ijpharm.2020.119560.
Ziaee, A., Albadarin, A.B., Padrela, L., Faucher, A., O'Reilly, E., Walker, G., Spray drying ternary amorphous solid dispersions of ibuprofen – an investigation into critical formulation and processing parameters. Eur. J. Pharm. Biopharm. 120:August (2017), 43–51, 10.1016/j.ejpb.2017.08.005.
Smeets, A., Koekoekx, R., Clasen, C., Van den Mooter, G., Amorphous solid dispersions of darunavir: comparison between spray drying and electrospraying. Eur. J. Pharm. Biopharm. 130:June (2018), 96–107, 10.1016/j.ejpb.2018.06.021.
Lu, W., Rades, T., Rantanen, J., Yang, M., Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying. Int. J. Pharm. 565:January (2019), 1–8, 10.1016/j.ijpharm.2019.04.036.
Kanikkannan, N., Technologies to improve the solubility, dissolution and bioavailability of poorly soluble drugs. J. Anal Pharm. Res., 7(1), 2018, pp, 10.15406/japlr.2018.07.00198.
B. Démuth et al., Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations, International Journal of Pharmaceutics, vol. 486, no. 1–2. Elsevier, pp. 268–286, May 30, 2015. doi: 10.1016/j.ijpharm.2015.03.053.
De Mohac, L.M., Raimi-Abraham, B., Caruana, R., Gaetano, G., Licciardi, M., Multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying. J. Drug Deliv Sci. Technol., 57, 2020, 101750, 10.1016/j.jddst.2020.101750.
Baysan, U., Elmas, F., Koç, M., The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. J. Food Process Eng 42:4 (2019), 1–11, 10.1111/jfpe.13024.
Modica, L., Mohac, D., Raimi-abraham, B., Caruana, R., Gaetano, G., Journal of drug delivery science and technology multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying. J. Drug Deliv Sci. Technol., 57, 2020, 101750, 10.1016/j.jddst.2020.101750.
Kanaujia, P., Poovizhi, P., Ng, W.K., Tan, R.B.H., Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technol. 285 (2015), 2–15, 10.1016/j.powtec.2015.05.012.
Singh, A., Van den Mooter, G., Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 100 (2016), 27–50, 10.1016/j.addr.2015.12.010.
Ziaee, A., Albadarin, A.B., Padrela, L., Faucher, A., O'Reilly, E., Walker, G., Spray drying ternary amorphous solid dispersions of ibuprofen – an investigation into critical formulation and processing parameters. Eur. J. Pharm. Biopharm. 120:May (2017), 43–51, 10.1016/j.ejpb.2017.08.005.
Salunke, S., et al. Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv. Drug Deliv. Rev., 190, 2022, 114507, 10.1016/j.addr.2022.114507.
Patil, P.S., Suryawanshi, S.J., Patil, S.S., Pawar, A.P., HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J. Taibah Univ. Med. Sci. 19:2 (2024), 252–262, 10.1016/j.jtumed.2023.12.004.
Mitra, A., Li, L., Marsac, P., Marks, B., Liu, Z., Brown, C., Impact of polymer type on bioperformance and physical stability of hot melt extruded formulations of a poorly water soluble drug. Int. J. Pharm. 505:1–2 (2016), 107–114, 10.1016/j.ijpharm.2016.03.036.
S. Tambe, D. Jain, Y. Agarwal, P. Amin, Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications, J. Drug Deliv. Sci. Technol., vol. 63, no. September 2020, p. 102452, 2021, doi: 10.1016/j.jddst.2021.102452.
Zhang, X., Xing, H., Zhao, Y., Ma, Z., Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 10(3), 2018, pp, 10.3390/pharmaceutics10030074.
B. E. Isaïe Nyamba1, 2, 3*, Alexis M W Nembot3, Charles B Sombié2, Hermine Zimé Diawara2, Josias B.G. Yaméogo2, Anna Lechanteur1, Christian Damblon3, Rasmané Semdé2, “Evaluation of the application of polyethylene glycol 8000 as a plasticizer for the development of solid dispersions based on ellagic acid and Eudragit® EPO using hot melt extrusion Evaluation,” vol. 3, no. Peg 8000, 2024, doi: 10.57220/jatpb.v3i1.179.
Ajjarapu, S., Banda, S., Basim, P., Dudhipala, N., Melt fusion techniques for solubility enhancement: a comparison of hot melt extrusion and KinetiSol® technologies. Sci. Pharm., 90(3), 2022, pp, 10.3390/scipharm90030051.
Lu, Y., et al. Enhancement of the oral bioavailability of isopropoxy benzene guanidine though complexation with hydroxypropyl-β-cyclodextrin. Drug Deliv. 29:1 (2022), 2824–2830, 10.1080/10717544.2022.2118400.
Jansook, P., Ogawa, N., Loftsson, T., Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 535:1–2 (2018), 272–284, 10.1016/j.ijpharm.2017.11.018.
Cid-Samamed, A., Rakmai, J., Mejuto, J.C., Simal-Gandara, J., Astray, G., Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications. Food Chem., 384, 2022, 132467, 10.1016/j.foodchem.2022.132467.
Dhiman, P., Bhatia, M., Pharmaceutical applications of cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. Chem. 98:3–4 (2020), 171–186, 10.1007/s10847-020-01029-3.
Aiassa, V., Garnero, C., Zoppi, A., Longhi, M.R., Cyclodextrins and their derivatives as drug stability modifiers. Pharmaceuticals 16:8 (2023), 1–20, 10.3390/ph16081074.
Li, H., et al. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: physicochemical properties, water solubility, and antioxidant activity. J. Mol. Liq., 334, 2021, 116070, 10.1016/j.molliq.2021.116070.
Nyamba, I., Sombie, C.B., Lechanteur, A., Semde, R., Evrard, B., Potential of native cyclodextrins and L-lysine for enhancing ellagic acid aqueous solubility. Int. J. O?drug Deliv. Technol., 2024, 10.25258/ijddt.14.2.48.
Jambhekar, S.S., Breen, P., Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today 21:2 (2016), 363–368, 10.1016/j.drudis.2015.11.016.
Duchêne, D., Bochot, A., Thirty years with cyclodextrins. Int. J. Pharm. 514:1 (2016), 58–72, 10.1016/j.ijpharm.2016.07.030.
Řezanka, M., Synthesis of substituted cyclodextrins. Environ. Chem. Lett. 17:1 (2019), 49–63, 10.1007/s10311-018-0779-7.
Saokham, P., Muankaew, C., Jansook, P., Loftsson, T., Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 23:5 (2018), 1–15, 10.3390/molecules23051161.
Ravi, S., et al. In fl uence of the preparation method on the physicochemical properties of indomethacin and methyl- b -cyclodextrin complexes. Int. J. Pharm. 479:2 (2015), 381–390, 10.1016/j.ijpharm.2015.01.010.
Bulani, V.D., et al. Inclusion complex of ellagic acid with β-cyclodextrin: Characterization and in vitro anti-inflammatory evaluation. J. Mol. Struct. 1105 (2016), 308–315, 10.1016/j.molstruc.2015.08.054.
Crini, G., Review: a history of cyclodextrins. Chem. Rev. 114:21 (2014), 10940–10975, 10.1021/cr500081p.
Qiu, N., et al. Inclusion complex of emodin with hydroxypropyl-β-cyclodextrin: preparation, physicochemical and biological properties. J. Mol. Liq., 289, 2019, 111151, 10.1016/j.molliq.2019.111151.
Göke, K., et al. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 126 (2018), 40–56, 10.1016/j.ejpb.2017.05.008.
Huang, Y., Yu, Q., Chen, Z., Wu, W., Zhu, Q., Lu, Y., In vitro and in vivo correlation for lipid-based formulations: current status and future perspectives. Acta Pharm. Sin. B 11:8 (2021), 2469–2487, 10.1016/j.apsb.2021.03.025.
Bernkop-Schnürch, A., Müllertz, A., Rades, T., Self-emulsifying drug delivery systems (SEDDS) – the splendid comeback of an old technology. Adv. Drug Deliv. Rev. 142 (2019), 1–2, 10.1016/j.addr.2019.08.002.
Berthelsen, R., Klitgaard, M., Rades, T., Müllertz, A., In vitro digestion models to evaluate lipid based drug delivery systems; present status and current trends. Adv. Drug Deliv. Rev. 142 (2019), 35–49, 10.1016/j.addr.2019.06.010.
Savla, R., Browne, J., Plassat, V., Wasan, K.M., Wasan, E.K., Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev. Ind. Pharm. 43:11 (2017), 1743–1758, 10.1080/03639045.2017.1342654.
Ilie, A.R., et al. Exploring precipitation inhibitors to improve in vivo absorption of cinnarizine from supersaturated lipid-based drug delivery systems. Eur. J. Pharm. Sci., 159(November), 2020, 2021, 10.1016/j.ejps.2020.105691.
R. Holm, M. Kuentz, A. R. Ilie-Spiridon, B.T. Griffin, Lipid based formulations as supersaturating oral delivery systems: from current to future industrial applications, Eur. J. Pharm. Sci. 189(June) (2023), doi: 10.1016/j.ejps.2023.106556.
O'Shea, J.P., Holm, R., O'Driscoll, C.M., Griffin, B.T., Food for thought: formulating away the food effect – a PEARRL review. J. Pharm. Pharmacol. 71:4 (2019), 510–535, 10.1111/jphp.12957.
S. Yan, Y. Cheng, L. Li, C. Zhong, C. Chen, and X. Gao, “Lipid-based formulations: a promising approach for poorly soluble drug delivery via the intestinal lymphatic system, J. Drug Deliv. Sci. Technol. 87(April) (2023) 104770, doi: 10.1016/j.jddst.2023.104770.
F. Paulus, A. Bauer-brandl, J. Stappaerts, R. Holm, Digestion is a critical element for absorption of cinnarizine from supersaturated lipid-based type I formulations, Eur. J. Pharm. Sci. (2023) 106634, 2023, doi: 10.1016/j.ejps.2023.106634.
Silberstein, S., Spierings, E.L.H., Kunkel, T., Celecoxib oral solution and the benefits of self-microemulsifying drug delivery systems (SMEDDS) technology: a narrative review. Pain Ther. 12:5 (2023), 1109–1119, 10.1007/s40122-023-00529-7.
D. Zheng, C. Lv, X. Sun, J. Wang, Z. Zhao, Preparation of a supersaturatable self-microemulsion as drug delivery system for ellagic acid and evaluation of its antioxidant activities, J. Drug Deliv. Sci. Technol. 53(August) (2019) 101209, doi: 10.1016/j.jddst.2019.101209.
Chen, X.Q., Gudmundsson, O.S., Hageman, M.J., Application of lipid-based formulations in drug discovery. J. Med. Chem. 55:18 (2012), 7945–7956, 10.1021/jm3006433.
E. Salah, M.M. Abouelfetouh, Y. Pan, D. Chen, S. Xie, Solid lipid nanoparticles for enhanced oral absorption: a review, Colloids Surfaces B Biointerfaces 196(June, 2020), doi: 10.1016/j.colsurfb.2020.111305.
Ditzinger, F., et al. Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches – a PEARRL review. J. Pharm. Pharmacol. 71:4 (2019), 464–482, 10.1111/jphp.12984.
O.J. Tan, H.L. Loo, G. Thiagarajah, U.D. Palanisamy, U. Sundralingam, Improving oral bioavailability of medicinal herbal compounds through lipid-based formulations – a scoping review, Phytomedicine, vol. 90, no. March, p. 153651, 2021, doi: 10.1016/j.phymed.2021.153651.
M. M. J. O. Wijekoon, K. Mahmood, F. Ariffin, A. Mohammadi Nafchi, M. Zulkurnain, Recent advances in encapsulation of fat-soluble vitamins using polysaccharides, proteins, and lipids: a review on delivery systems, formulation, and industrial applications, Int. J. Biol. Macromol., vol. 241, no. April, p. 124539, 2023, doi: 10.1016/j.ijbiomac.2023.124539.
J. Liu, L. Tu, M. Cheng, J. Feng, Y. Jin, Mechanisms for oral absorption enhancement of drugs by nanocrystals, J. Drug Deliv. Sci. Technol., vol. 56, no. November 2019, p. 101607, 2020, doi: 10.1016/j.jddst.2020.101607.
D.H. Alshora, M.A. Ibrahim, F.K. Alanazi, Nanotechnology from particle size reduction to enhancing aqueous solubility. Elsevier Inc., 2016. doi: 10.1016/B978-0-323-42861-3.00006-6.
D. Senthil Rajan, R. Subashini, G. Murugananthan, Pharmaceutical nanocrystals, Handb. Nanobiomaterials Ther. Diagnostic Appl., pp. 409–420, 2021, doi: 10.1016/B978-0-12-821013-0.00019-2.
R. Shegokar, R.H. Müller, Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives 399 (2010) 129–139, doi: 10.1016/j.ijpharm.2010.07.044.
Gulsun, T., Borna, S.E., Vural, I., Sahin, S., Preparation and characterization of furosemide nanosuspensions. J. Drug Deliv. Sci. Technol. 45:March (2018), 93–100, 10.1016/j.jddst.2018.03.005.
Malamatari, M., Taylor, K.M.G., Malamataris, S., Douroumis, D., Kachrimanis, K., Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov. Today 23:3 (2018), 534–547, 10.1016/j.drudis.2018.01.016.
H. Nabika, K. Unoura, Interaction between nanoparticles and cell membrane. Elsevier Inc., 2016. doi: 10.1016/B978-0-323-42861-3.00008-X.
Du, J., et al. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int. J. Pharm. 495:2 (2015), 738–749, 10.1016/j.ijpharm.2015.09.021.
K.B. Seljak, P. Kocbek, M. Ga, Journal of drug delivery science and technology mesoporous silica nanoparticles as delivery carriers: an overview of drug loading techniques 59(July, 2020), doi: 10.1016/j.jddst.2020.101906.
K. Raines, P. Agarwal, P. Augustijns, A. Alayoubi, L. Attia, A. Bauer, Drug dissolution in oral drug absorption: workshop report international conference on harmonization, AAPS J 25(6) (2023) 1–20, doi: 10.1208/s12248-023-00865-8.
M. Kuentz, R. Holm, D.P. Elder, European journal of pharmaceutical sciences methodology of oral formulation selection in the pharmaceutical industry 87 (2016) 136–163, doi: 10.1016/j.ejps.2015.12.008.
Ayad, M.H., Rational formulation strategy from drug discovery profiling to human proof of concept. Drug Deliv. 22:6 (2015), 877–884, 10.3109/10717544.2014.898714.
Oh, H.S., Park, J.B., Development of 3D-printed dual-release fixed-dose combination through double-melt extrusion. Int. J. Pharm., 661, 2024, 124407, 10.1016/j.ijpharm.2024.124407.
Butler, J.M., Dressman, J.B., The developability classification system: Application of biopharmaceutics concepts to formulation development. J. Pharm. Sci. 99:12 (2010), 4940–4954, 10.1002/jps.22217.
R. Kumar, Journal of Drug Delivery Science and Technology Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: a literature survey, J. Drug Deliv. Sci. Technol. 53(May) (2019) 101221, doi: 10.1016/j.jddst.2019.101221.
Hsieh, C.M., Yang, T.L., Putri, A.D., Chen, C.T., Application of design of experiments in the development of self-microemulsifying drug delivery systems. Pharmaceuticals 16:2 (2023), 1–27, 10.3390/ph16020283.
Rabinow, B.E., Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 3:9 (2004), 785–796, 10.1038/nrd1494.
Kuentz, M., Drug supersaturation during formulation digestion, including real-time analytical approaches. Adv. Drug Deliv. Rev. 142 (2019), 50–61, 10.1016/j.addr.2018.11.003.
R. Holm, M. Kuentz, A.R. Ilie-Spiridon, B.T. Griffin, Lipid based formulations as supersaturating oral delivery systems: from current to future industrial applications, Eur. J. Pharm. Sci. 189(2023), doi: 10.1016/j.ejps.2023.106556.
Kuentz, M., Holm, R., Elder, D.P., Methodology of oral formulation selection in the pharmaceutical industry. Eur. J. Pharm. Sci. 87 (2016), 136–163, 10.1016/j.ejps.2015.12.008.
Syed, M.I., Kandagatla, H.P., Avdeef, A., Serajuddin, A.T.M., Kandagatla, H.P., Avdeef, A., Supersolubilization and amorphization of a weakly acidic drug, Flurbiprofen, by applying Acid-Base supersolubilization (ABS) principle. Int. J. Pharm., 2024, 10.1016/j.ijpharm.2024.124548.