[en] RNA polymerase (RNAP) frequently pauses during the transcription of DNA to RNA to regulate gene expression. Transcription factors NusA and NusG modulate pausing, have opposing roles, but can bind RNAP simultaneously. Here we report cryo-EM reconstructions of Escherichia coli RNAP bound to NusG, or NusA, or both. RNAP conformational changes, referred to as swivelling, correlate with transcriptional pausing. NusA facilitates RNAP swivelling to further increase pausing, while NusG counteracts this role. Their structural effects are consistent with biochemical results on two categories of transcriptional pauses. In addition, the structures suggest a cooperative mechanism of NusA and NusG during Rho-mediated transcription termination. Our results provide a structural rationale for the stochastic nature of pausing and termination and how NusA and NusG can modulate it.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Zhu, Chengjin; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Guo, Xieyang; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. ; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK.
Dumas, Philippe; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Takacs, Maria ; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Abdelkareem, Mo'men; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Vanden Broeck, Arnaud ; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Saint-André, Charlotte; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Papai, Gabor; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Crucifix, Corinne; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
Ortiz, Julio ; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. ; Université de Strasbourg, 67404, Illkirch, France. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. ; Forschungszentrum Jülich, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich, Germany.
Weixlbaumer, Albert ; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. albert.weixlbaumer@igbmc.fr. ; Université de Strasbourg, 67404, Illkirch, France. albert.weixlbaumer@igbmc.fr. ; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. albert.weixlbaumer@igbmc.fr. ; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. albert.weixlbaumer@igbmc.fr.
Landick, R. The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34, 1062–1066 (2006).
Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508 (2013).
Larson, M. H. et al. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344, 1042–1047 (2014).
Vvedenskaya, I. O. et al. Interactions between RNA polymerase and the ‘core recognition element’ counteract pausing. Science 344, 1285–1289 (2014).
Roberts, J. W., Shankar, S. & Filter, J. J. RNA polymerase elongation factors. Annu. Rev. Microbiol. 62, 211–233 (2008).
Artsimovitch, I. & Landick, R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl Acad. Sci. USA 97, 7090–7095 (2000).
Guo, X. et al. Structural basis for NusA stabilized transcriptional pausing. Mol. Cell 69, 816–827.e4 (2018).
Mooney, R. A., Schweimer, K., Rösch, P., Gottesman, M. & Landick, R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 391, 341–358 (2009).
Turtola, M. & Belogurov, G. A. NusG inhibits RNA polymerase backtracking by stabilizing the minimal transcription bubble. Elife 5, e18096 (2016).
Kang, J. Y. et al. Structural basis for transcript elongation control by NusG family universal regulators. Cell 173, 1650–1662 (2018).
Said, N. et al. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase p. Science 371, eabd1673 (2021).
Hao, Z. et al. Pre-termination transcription complex: structure and function. Mol. Cell 81, 281–292.e8 (2021).
Cardinale, C. J. et al. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320, 935–938 (2008).
Burns, C. M., Richardson, L. V. & Richardson, J. P. Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J. Mol. Biol. 278, 307–316 (1998).
Burns, C. M. & Richardson, J. P. NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. Proc. Natl Acad. Sci. USA 92, 4738–4742 (1995).
Lawson, M. R. et al. Mechanism for the regulated control of bacterial transcription termination by a universal adaptor protein. Mol. Cell 71, 911–922.e4 (2018).
Peters, J. M. et al. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26, 2621–2633 (2012).
Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).
Mooney, R. A. et al. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33, 97–108 (2009).
Krupp, F. et al. Structural basis for the action of an all-purpose transcription anti-termination factor. Mol. Cell 74, 143–157.e5 (2019).
Kang, J. Y. et al. RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing. Mol. Cell 69, 802–815.e1 (2018).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Abdelkareem, M. et al. Structural basis of transcription: rna polymerase backtracking and its reactivation. Mol. Cell 75, 298–309.e4 (2019).
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
Sevostyanova, A., Belogurov, G. A., Mooney, R. A., Landick, R. & Artsimovitch, I. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol. Cell 43, 253–262 (2011).
Beuth, B., Pennell, S., Arnvig, K. B., Martin, S. R. & Taylor, I. A. Structure of a mycobacterium tuberculosis NusA-RNA complex. EMBO J. 24, 3576–3587 (2005).
Said, N. et al. Structural basis for λN-dependent processive transcription antitermination. Nat. Microbiol. 2, 17062 (2017).
Chan, C. L. & Landick, R. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. J. Mol. Biol. 233, 25–42 (1993).
Toulokhonov, I., Artsimovitch, I. & Landick, R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292, 730–733 (2001).
Kyzer, S., Kook, S. H., Landick, R. & Palangat, M. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. J. Biol. Chem. 282, 19020–19028 (2007).
Lau, L. F., Roberts, J. W. & Wu, R. Transcription terminates at λt(R1) in three clusters. Proc. Natl Acad. Sci. USA 79, 6171–6175 (1982).
Yin, Z., Kaelber, J. T. & Ebright, R. H. Structural basis of Q-dependent antitermination. Proc. Natl Acad. Sci. USA 116, 18384–18390 (2019).
Wang, C. et al. Structural basis of transcription-translation coupling. Science 369, 1359–1365 (2020).
Andersen, K. R., Leksa, N. C. & Schwartz, T. U. Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification. Proteins Struct. Funct. Bioinform. 81, 1857–1861 (2013).
Subbarayan, P. R. & Deutscher, M. P. Escherichia coli RNase M, is a multiply altered form of RNase I. RNA 7, 1702–1707 (2001).
Vassylyeva, M. N. et al. Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus. Acta Crystallogr. Sect. D Biol. Crystallogr. 58, 1497–1500 (2002).
Chen, C. Y. & Richardson, J. P. Sequence elements essential for rho-dependent transcription termination at lambda tR1. J. Biol. Chem. 262, 11292–11299 (1987).
Graham, J. E. & Richardson, J. P. rut Sites in the nascent transcript mediate rho-dependent transcription termination in vivo. J. Biol. Chem. 273, 20764–20769 (1998).
Vieu, E. & Rahmouni, A. R. Dual role of boxB RNA motif in the mechanisms of termination/ antitermination at the lambda tR1 terminator revealed in vivo. J. Mol. Biol. 339, 1077–1087 (2004).
Graham, J. E. Sequence-specific Rho-RNA interactions in transcription termination. Nucleic Acids Res. 32, 3093–3100 (2004).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
Carragher, B. et al. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. W. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7, 1485 (2018).
Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).
Kang, J. Y. et al. Structural basis of transcription arrest by coliphage HK022 nun in an escherichia coli rna polymerase elongation complex. Elife 6, e25478 (2017).
Pettersen Ef Fau-Goddard, T. D. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 75, 861–877 (2019).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501 (2010).
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).