[en] The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Wasmuth, Elizabeth V; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA, Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA. Electronic address: wasmuthe@mskcc.org.
Vanden Broeck, Arnaud ; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
LaClair, Justin R; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Hoover, Elizabeth A; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Lawrence, Kayla E; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Paknejad, Navid; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Pappas, Kyrie; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Matthies, Doreen; Cryo-Electron Microscopy Facility, Janelia Research Campus, Ashburn, VA 20147, USA.
Wang, Biran; Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Feng, Weiran; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Watson, Philip A; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Zinder, John C; Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
Karthaus, Wouter R; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
de la Cruz, M Jason; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Hite, Richard K; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Manova-Todorova, Katia; Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Yu, Zhiheng; Cryo-Electron Microscopy Facility, Janelia Research Campus, Ashburn, VA 20147, USA.
Weintraub, Susan T; Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Klinge, Sebastian; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
Sawyers, Charles L; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address: sawyersc@mskcc.org.
Adler, A.J., Scheller, A., Robins, D.M., The stringency and magnitude of androgen-specific gene activation are combinatorial functions of receptor and nonreceptor binding site sequences. Mol. Cell. Biol. 13 (1993), 6326–6335.
Arora, V.K., Schenkein, E., Murali, R., Subudhi, S.K., Wongvipat, J., Balbas, M.D., Shah, N., Cai, L., Efstathiou, E., Logothetis, C., et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155 (2013), 1309–1322.
Arruabarrena-Aristorena, A., Maag, J.L.V., Kittane, S., Cai, Y., Karthaus, W.R., Ladewig, E., Park, J., Kannan, S., Ferrando, L., Cocco, E., et al. FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer. Cancer Cell 38 (2020), 534–550.e9.
Bledsoe, R.K., Montana, V.G., Stanley, T.B., Delves, C.J., Apolito, C.J., McKee, D.D., Consler, T.G., Parks, D.J., Stewart, E.L., Willson, T.M., et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110 (2002), 93–105.
Boehmer, A.L., Brinkmann, O., Brüggenwirth, H., van Assendelft, C., Otten, B.J., Verleun-Mooijman, M.C., Niermeijer, M.F., Brunner, H.G., Rouwé, C.W., Waelkens, J.J., et al. Genotype versus phenotype in families with androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 86 (2001), 4151–4160.
Brooke, G.N., Parker, M.G., Bevan, C.L., Mechanisms of androgen receptor activation in advanced prostate cancer: differential co-activator recruitment and gene expression. Oncogene 27 (2008), 2941–2950.
Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate. Cancer Cell 163 (2015), 1011–1025.
Chandra, V., Huang, P., Hamuro, Y., Raghuram, S., Wang, Y., Burris, T.P., Rastinejad, F., Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456 (2008), 350–356.
Chandra, V., Huang, P., Potluri, N., Wu, D., Kim, Y., Rastinejad, F., Multidomain integration in the structure of the HNF-4alpha nuclear receptor complex. Nature 495 (2013), 394–398.
Chandra, V., Wu, D., Li, S., Potluri, N., Kim, Y., Rastinejad, F., The quaternary architecture of RARbeta-RXRalpha heterodimer facilitates domain-domain signal transmission. Nat. Commun., 8, 2017, 868.
Chen, F., Chen, X., Jiang, F., Leng, F., Liu, W., Gui, Y., Yu, J., Computational analysis of androgen receptor (AR) variants to decipher the relationship between protein stability and related-diseases. Sci. Rep., 10, 2020, 12101.
Chen, Y., Chi, P., Rockowitz, S., Iaquinta, P.J., Shamu, T., Shukla, S., Gao, D., Sirota, I., Carver, B.S., Wongvipat, J., et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat. Med. 19 (2013), 1023–1029.
Clinckemalie, L., Vanderschueren, D., Boonen, S., Claessens, F., The hinge region in androgen receptor control. Mol. Cell. Endocrinol. 358 (2012), 1–8.
Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 (2004), 1792–1797.
Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66 (2010), 486–501.
Feng, W., Cao, Z., Lim, P.X., Zhao, H., Luo, H., Mao, N., Lee, Y.S., Rivera, A.A., Choi, D., Wu, C., et al. Rapid interrogation of cancer cell of origin through CRISPR editing. Proc. Natl. Acad. Sci. USA, 118, 2021 e2110344118.
Grant, T., Rohou, A., Grigorieff, N., cisTEM, user-friendly software for single-particle image processing. eLife, 7, 2018, e35383.
Greschik, H., Wurtz, J.M., Sanglier, S., Bourguet, W., van Dorsselaer, A., Moras, D., Renaud, J.P., Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol. Cell 9 (2002), 303–313.
Haelens, A., Tanner, T., Denayer, S., Callewaert, L., Claessens, F., The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res. 67 (2007), 4514–4523.
He, B., Bowen, N.T., Minges, J.T., Wilson, E.M., Androgen-induced NH2- and COOH-terminal interaction inhibits p160 coactivator recruitment by activation function 2. J. Biol. Chem. 276 (2001), 42293–42301.
He, B., Gampe, R.T. Jr., Kole, A.J., Hnat, A.T., Stanley, T.B., An, G., Stewart, E.L., Kalman, R.I., Minges, J.T., Wilson, E.M., Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol. Cell 16 (2004), 425–438.
Huang, W., Peng, Y., Kiselar, J., Zhao, X., Albaqami, A., Mendez, D., Chen, Y., Chakravarthy, S., Gupta, S., Ralston, C., et al. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat. Commun., 9, 2018, 3520.
Huang, W., Shostak, Y., Tarr, P., Sawyers, C., Carey, M., Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer. J. Biol. Chem. 274 (1999), 25756–25768.
Jeske, Y.W., McGown, I.N., Cowley, D.M., Oley, C., Thomsett, M.J., Choong, C.S., Cotterill, A.M., Androgen receptor genotyping in a large Australasian cohort with androgen insensitivity syndrome; identification of four novel mutations. J. Pediatr. Endocrinol. Metab. 20 (2007), 893–908.
Jin, H.J., Zhao, J.C., Wu, L., Kim, J., Yu, J., Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat. Commun., 5, 2014, 3972.
Karthaus, W.R., Iaquinta, P.J., Drost, J., Gracanin, A., van Boxtel, R., Wongvipat, J., Dowling, C.M., Gao, D., Begthel, H., Sachs, N., et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159 (2014), 163–175.
La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E., Fischbeck, K.H., Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352 (1991), 77–79.
Lee, E., Wongvipat, J., Choi, D., Wang, P., Lee, Y.S., Zheng, D., Watson, P.A., Gopalan, A., Sawyers, C.L., GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. eLife, 8, 2019, e41913.
Li, F., Yuan, Q., Di, W., Xia, X., Liu, Z., Mao, N., Li, L., Li, C., He, J., Li, Y., et al. ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming. J. Clin. Invest. 130 (2020), 5924–5941.
Liu, S., Kumari, S., Hu, Q., Senapati, D., Venkadakrishnan, V.B., Wang, D., DePriest, A.D., Schlanger, S.E., Ben-Salem, S., Valenzuela, M.M., et al. A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. eLife, 6, 2017, e28482.
Mackereth, C.D., Schärpf, M., Gentile, L.N., MacIntosh, S.E., Slupsky, C.M., McIntosh, L.P., Diversity in structure and function of the Ets family PNT domains. J. Mol. Biol. 342 (2004), 1249–1264.
Mao, N., Gao, D., Hu, W., Hieronymus, H., Wang, S., Lee, Y.S., Lee, C., Choi, D., Gopalan, A., Chen, Y., Carver, B.S., Aberrant expression of ERG promotes resistance to combined PI3K and AR pathway inhibition through maintenance of AR target genes. Mol. Cancer Ther. 18 (2019), 1577–1586.
Massie, C.E., Adryan, B., Barbosa-Morais, N.L., Lynch, A.G., Tran, M.G., Neal, D.E., Mills, I.G., New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep. 8 (2007), 871–878.
McKeown, A.N., Bridgham, J.T., Anderson, D.W., Murphy, M.N., Ortlund, E.A., Thornton, J.W., Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159 (2014), 58–68.
McPhaul, M.J., Marcelli, M., Zoppi, S., Wilson, C.M., Griffin, J.E., Wilson, J.D., Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene. J. Clin. Invest. 90 (1992), 2097–2101.
Meijsing, S.H., Pufall, M.A., So, A.Y., Bates, D.L., Chen, L., Yamamoto, K.R., DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324 (2009), 407–410.
Nadal, M., Prekovic, S., Gallastegui, N., Helsen, C., Abella, M., Zielinska, K., Gay, M., Vilaseca, M., Taulès, M., Houtsmuller, A.B., et al. Structure of the homodimeric androgen receptor ligand-binding domain. Nat. Commun., 8, 2017, 14388.
Norris, J.D., Chang, C.Y., Wittmann, B.M., Kunder, R.S., Cui, H., Fan, D., Joseph, J.D., McDonnell, D.P., The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol. Cell 36 (2009), 405–416.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (2004), 1605–1612.
Pintilie, G.D., Zhang, J., Goddard, T.D., Chiu, W., Gossard, D.C., Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct. Biol. 170 (2010), 427–438.
Regan, M.C., Horanyi, P.S., Pryor, E.E. Jr., Sarver, J.L., Cafiso, D.S., Bushweller, J.H., Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited. Proc. Natl. Acad. Sci. USA 110 (2013), 13374–13379.
Robinson, D., Van Allen, E.M., Wu, Y.M., Schultz, N., Lonigro, R.J., Mosquera, J.M., Montgomery, B., Taplin, M.E., Pritchard, C.C., Attard, G., et al. Integrative clinical genomics of advanced prostate cancer. Cell, 162, 2015, 454.
Rohou, A., Grigorieff, N., CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192 (2015), 216–221.
Sahu, B., Pihlajamaa, P., Dubois, V., Kerkhofs, S., Claessens, F., Jänne, O.A., Androgen receptor uses relaxed response element stringency for selective chromatin binding and transcriptional regulation in vivo. Nucleic Acids Res. 42 (2014), 4230–4240.
Schaufele, F., Carbonell, X., Guerbadot, M., Borngraeber, S., Chapman, M.S., Ma, A.A., Miner, J.N., Diamond, M.I., The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc. Natl. Acad. Sci. USA 102 (2005), 9802–9807.
Shaffer, P.L., Jivan, A., Dollins, D.E., Claessens, F., Gewirth, D.T., Structural basis of androgen receptor binding to selective androgen response elements. Proc. Natl. Acad. Sci. USA 101 (2004), 4758–4763.
Stark, H., GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol. 481 (2010), 109–126.
Tran, C., Ouk, S., Clegg, N.J., Chen, Y., Watson, P.A., Arora, V., Wongvipat, J., Smith-Jones, P.M., Yoo, D., Kwon, A., et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324 (2009), 787–790.
van Royen, M.E., van Cappellen, W.A., de Vos, C., Houtsmuller, A.B., Trapman, J., Stepwise androgen receptor dimerization. J. Cell Sci. 125 (2012), 1970–1979.
Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., Hagel, P., Sitsel, O., Raisch, T., Prumbaum, D., et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol., 2, 2019, 218.
Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Jänne, O.A., Keeton, E.K., Chinnaiyan, A.M., Pienta, K.J., Brown, M., A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27 (2007), 380–392.
Wasmuth, E.V., Hoover, E.A., Antar, A., Klinge, S., Chen, Y., Sawyers, C.L., Modulation of androgen receptor DNA binding activity through direct interaction with the ETS transcription factor ERG. Proc. Natl. Acad. Sci. USA 117 (2020), 8584–8592.
Watson, P.A., Arora, V.K., Sawyers, C.L., Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15 (2015), 701–711.
Watson, P.A., Chen, Y.F., Balbas, M.D., Wongvipat, J., Socci, N.D., Viale, A., Kim, K., Sawyers, C.L., Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc. Natl. Acad. Sci. USA 107 (2010), 16759–16765.
Weikum, E.R., Liu, X., Ortlund, E.A., The nuclear receptor superfamily: a structural perspective. Protein Sci. 27 (2018), 1876–1892.
Williams, S.P., Sigler, P.B., Atomic structure of progesterone complexed with its receptor. Nature 393 (1998), 392–396.
Wilson, S., Qi, J., Filipp, F.V., Refinement of the androgen response element based on ChIP-seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci. Rep., 6, 2016, 32611.
Yu, J., Yu, J., Mani, R.S., Cao, Q., Brenner, C.J., Cao, X., Wang, X., Wu, L., Li, J., Hu, M., et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17 (2010), 443–454.
Zhang, J., Thomas, T.Z., Kasper, S., Matusik, R.J., A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology 141 (2000), 4698–4710.
Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., Agard, D.A., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14 (2017), 331–332.
Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., Scheres, S.H., New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife, 7, 2018, e42166.