CAR T-cells; Hematological malignancies; Long-term remissions; Preclinical studies; Predictors of response; Translational immunology; Hematology; Oncology
Abstract :
[en] Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Disciplines :
Hematology Immunology & infectious disease
Author, co-author :
Arunachalam, Arun K; Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
GREGOIRE, Céline ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique ; Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
Coutinho de Oliveira, Beatriz; Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
Melenhorst, Jan Joseph; Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America. Electronic address: melenhj@ccf.org
Language :
English
Title :
Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies.
Porter, D.L., Hwang, W.T., Frey, N.V., Lacey, S.F., Shaw, P.A., Loren, A.W., et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med, 7(303), 2015 303ra139.
Kalos, M., Levine, B.L., Porter, D.L., Katz, S., Grupp, S.A., Bagg, A., et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med, 3(95), 2011 95ra73.
Kochenderfer, J.N., Feldman, S.A., Zhao, Y., Xu, H., Black, M.A., Morgan, R.A., et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 32:7 (2009), 689–702.
Sadelain, M., Brentjens, R., Rivière, I., The basic principles of chimeric antigen receptor design. Cancer Discov 3:4 (2013), 388–398.
Kowolik, C.M., Topp, M.S., Gonzalez, S., Pfeiffer, T., Olivares, S., Gonzalez, N., et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66:22 (2006), 10995–11004.
Milone, M.C., Fish, J.D., Carpenito, C., Carroll, R.G., Binder, G.K., Teachey, D., et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17:8 (2009), 1453–1464.
Zhang, N., Wu, J., Wang, Q., Liang, Y., Li, X., Chen, G., et al. Global burden of hematologic malignancies and evolution patterns over the past 30 years. Blood Cancer J, 13(1), 2023, 82.
Fitzmaurice, C., Allen, C., Barber, R.M., Barregard, L., Bhutta, Z.A., Brenner, H., et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3:4 (2017), 524–548.
Cappell, K.M., Kochenderfer, J.N., Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol 20:6 (2023), 359–371.
Singh, N., Lee, Y.G., Shestova, O., Ravikumar, P., Hayer, K.E., Hong, S.J., et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov 10:4 (2020), 552–567.
Orlando, E.J., Han, X., Tribouley, C., Wood, P.A., Leary, R.J., Riester, M., et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med 24:10 (2018), 1504–1506.
Sotillo, E., Barrett, D.M., Black, K.L., Bagashev, A., Oldridge, D., Wu, G., et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5:12 (2015), 1282–1295.
Wijewarnasuriya, D., Bebernitz, C., Lopez, A.V., Rafiq, S., Brentjens, R.J., Excessive costimulation leads to dysfunction of adoptively transferred T cells. Cancer Immunol Res 8:6 (2020), 732–742.
Fraietta, J.A., Lacey, S.F., Orlando, E.J., Pruteanu-Malinici, I., Gohil, M., Lundh, S., et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:5 (2018), 563–571.
Haradhvala, N.J., Leick, M.B., Maurer, K., Gohil, S.H., Larson, R.C., Yao, N., et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat Med 28:9 (2022), 1848–1859.
Sarén, T., Ramachandran, M., Gammelgård, G., Lövgren, T., Mirabello, C., Björklund, Å., et al. Single-cell RNA analysis reveals cell-intrinsic functions of CAR T cells correlating with response in a phase II study of lymphoma patients. Clin Cancer Res 29:20 (2023), 4139–4152.
Neelapu, S.S., Locke, F.L., Bartlett, N.L., Lekakis, L.J., Miklos, D.B., Jacobson, C.A., et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377:26 (2017), 2531–2544.
Locke, F.L., Miklos, D.B., Jacobson, C.A., Perales, M.A., Kersten, M.J., Oluwole, O.O., et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med 386:7 (2022), 640–654.
Houot, R., Bachy, E., Cartron, G., Gros, F.X., Morschhauser, F., Oberic, L., et al. Axicabtagene ciloleucel as second-line therapy in large B cell lymphoma ineligible for autologous stem cell transplantation: a phase 2 trial. Nat Med 29:10 (2023), 2593–2601.
Jacobson, C.A., Chavez, J.C., Sehgal, A.R., William, B.M., Munoz, J., Salles, G., et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol 23:1 (2022), 91–103.
Shah, B.D., Ghobadi, A., Oluwole, O.O., Logan, A.C., Boissel, N., Cassaday, R.D., et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398:10299 (2021), 491–502.
Wayne, A.S., Huynh, V., Hijiya, N., Rouce, R.H., Brown, P.A., Krueger, J., et al. Three-year results from phase I of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia. Haematologica 108:3 (2023), 747–760.
Wang, M., Munoz, J., Goy, A., Locke, F.L., Jacobson, C.A., Hill, B.T., et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 382:14 (2020), 1331–1342.
Maude, S.L., Laetsch, T.W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378:5 (2018), 439–448.
Schuster, S.J., Bishop, M.R., Tam, C.S., Waller, E.K., Borchmann, P., McGuirk, J.P., et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 380:1 (2019), 45–56.
Fowler, N.H., Dickinson, M., Dreyling, M., Martinez-Lopez, J., Kolstad, A., Butler, J., et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat Med 28:2 (2022), 325–332.
Abramson, J.S., Palomba, M.L., Gordon, L.I., Lunning, M.A., Wang, M., Arnason, J., et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396:10254 (2020), 839–852.
Abramson, J.S., Solomon, S.R., Arnason, J., Johnston, P.B., Glass, B., Bachanova, V., et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: primary analysis of the phase 3 TRANSFORM study. Blood 141:14 (2023), 1675–1684.
Sehgal, A., Hoda, D., Riedell, P.A., Ghosh, N., Hamadani, M., Hildebrandt, G.C., et al. Lisocabtagene maraleucel as second-line therapy in adults with relapsed or refractory large B-cell lymphoma who were not intended for haematopoietic stem cell transplantation (PILOT): an open-label, phase 2 study. Lancet Oncol 23:8 (2022), 1066–1077.
Siddiqi, T., Maloney, D.G., Kenderian, S.S., Brander, D.M., Dorritie, K., Soumerai, J., et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): a multicentre, open-label, single-arm, phase 1-2 study. Lancet 402:10402 (2023), 641–654.
Wang, M., Siddiqi, T., Gordon, L.I., Kamdar, M., Lunning, M., Hirayama, A.V., et al. Lisocabtagene maraleucel in relapsed/refractory mantle cell lymphoma: primary analysis of the mantle cell lymphoma cohort from TRANSCEND NHL 001, a phase I multicenter seamless design study. J Clin Oncol 42:10 (2024), 1146–1157.
Munshi, N.C., Anderson, L.D. Jr., Shah, N., Madduri, D., Berdeja, J., Lonial, S., et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 384:8 (2021), 705–716.
Berdeja, J.G., Madduri, D., Usmani, S.Z., Jakubowiak, A., Agha, M., Cohen, A.D., et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398:10297 (2021), 314–324.
Laetsch, T.W., Maude, S.L., Rives, S., Hiramatsu, H., Bittencourt, H., Bader, P., et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J Clin Oncol 41:9 (2023), 1664–1669.
Neelapu, S.S., Jacobson, C.A., Ghobadi, A., Miklos, D.B., Lekakis, L.J., Oluwole, O.O., et al. 5-year follow-up supports curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1). Blood 141:19 (2023), 2307–2315.
Westin, J.R., Oluwole, O.O., Kersten, M.J., Miklos, D.B., Perales, M.A., Ghobadi, A., et al. Survival with axicabtagene ciloleucel in large B-cell lymphoma. N Engl J Med 389:2 (2023), 148–157.
Martin, T., Usmani, S.Z., Berdeja, J.G., Agha, M., Cohen, A.D., Hari, P., et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol 41:6 (2023), 1265–1274.
Gauthier, J., Bezerra, E.D., Hirayama, A.V., Fiorenza, S., Sheih, A., Chou, C.K., et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137:3 (2021), 323–335.
Locke, F.L., Rossi, J.M., Neelapu, S.S., Jacobson, C.A., Miklos, D.B., Ghobadi, A., et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv 4:19 (2020), 4898–4911.
Turtle, C.J., Hay, K.A., Hanafi, L.A., Li, D., Cherian, S., Chen, X., et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of Ibrutinib. J Clin Oncol 35:26 (2017), 3010–3020.
Melenhorst, J.J., Chen, G.M., Wang, M., Porter, D.L., Chen, C., Collins, M.A., et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature 602:7897 (2022), 503–509.
Deng, Q., Han, G., Puebla-Osorio, N., Ma, M.C.J., Strati, P., Chasen, B., et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med 26:12 (2020), 1878–1887.
Good, Z., Spiegel, J.Y., Sahaf, B., Malipatlolla, M.B., Ehlinger, Z.J., Kurra, S., et al. Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat Med 28:9 (2022), 1860–1871.
Capelli, C., Cuofano, C., Pavoni, C., Frigerio, S., Lisini, D., Nava, S., et al. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol, 14, 2023, 1186224.
Bravery, C.A., Carmen, J., Fong, T., Oprea, W., Hoogendoorn, K.H., Woda, J., et al. Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 15:1 (2013), 9–19.
Brentjens, R.J., Riviere, I., Park, J.H., Davila, M.L., Wang, X., Stefanski, J., et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:18 (2011), 4817–4828.
Magnani, C.F., Gaipa, G., Lussana, F., Belotti, D., Gritti, G., Napolitano, S., et al. Sleeping beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest 130:11 (2020), 6021–6033.
Lamble, A.J., Myers, R.M., Taraseviciute, A., John, S., Yates, B., Steinberg, S.M., et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv 7:4 (2023), 575–585.
Bai, Z., Woodhouse, S., Zhao, Z., Arya, R., Govek, K., Kim, D., et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci Adv, 8(23), 2022 eabj2820.
Ambrose, C., Su, L., Wu, L., Dufort, F.J., Sanford, T., Birt, A., et al. Anti-CD19 CAR T cells potently redirected to kill solid tumor cells. PloS One, 16(3), 2021, e0247701.
An, N., Tao, Z., Li, S., Xing, H., Tang, K., Tian, Z., et al. Construction of a new anti-CD19 chimeric antigen receptor and the anti-leukemia function study of the transduced T cells. Oncotarget 7:9 (2016), 10638–10649.
Fraietta, J.A., Nobles, C.L., Sammons, M.A., Lundh, S., Carty, S.A., Reich, T.J., et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:7709 (2018), 307–312.
Collins, M.A., Jung, I.Y., Zhao, Z., Apodaca, K., Kong, W., Lundh, S., et al. Enhanced costimulatory signaling improves CAR T-cell effector responses in CLL. Cancer Res Commun 2:9 (2022), 1089–1103.
Zhang, Y., Patel, R.P., Kim, K.H., Cho, H., Jo, J.C., Jeong, S.H., et al. Safety and efficacy of a novel anti-CD19 chimeric antigen receptor T cell product targeting a membrane-proximal domain of CD19 with fast on- and off-rates against non-Hodgkin lymphoma: a first-in-human study. Mol Cancer, 22(1), 2023, 200.
Atanackovic, D., Iraguha, T., Omili, D., Avila, S.V., Fan, X., Kocoglu, M., et al. A novel multicolor fluorescent spot assay for the functional assessment of chimeric antigen receptor (CAR) T-cell products. Cytotherapy 26:4 (2024), 318–324.
Eugene-Norbert, M., Cuffel, A., Riou, G., Jean, L., Blondel, C., Dehayes, J., et al. Development of optimized cytotoxicity assays for assessing the antitumor potential of CAR-T cells. J Immunol Methods, 525, 2024, 113603.
Si, X., Xiao, L., Brown, C.E., Wang, D., Preclinical evaluation of CAR T cell function: in vitro and in vivo models. Int J Mol Sci, 23(6), 2022.
Jin, C.H., Xia, J., Rafiq, S., Huang, X., Hu, Z., Zhou, X., et al. Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine 39 (2019), 173–181.
Zhen, A., Carrillo, M.A., Mu, W., Rezek, V., Martin, H., Hamid, P., et al. Robust CAR-T memory formation and function via hematopoietic stem cell delivery. PLoS Pathog, 17(4), 2021, e1009404.
Diaconu, I., Ballard, B., Zhang, M., Chen, Y., West, J., Dotti, G., et al. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther 25:3 (2017), 580–592.
Giavridis, T., van der Stegen, S.J.C., Eyquem, J., Hamieh, M., Piersigilli, A., Sadelain, M., CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 24:6 (2018), 731–738.
Norelli, M., Camisa, B., Barbiera, G., Falcone, L., Purevdorj, A., Genua, M., et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24:6 (2018), 739–748.
Imai, C., Mihara, K., Andreansky, M., Nicholson, I.C., Pui, C.H., Geiger, T.L., et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18:4 (2004), 676–684.
Carpenito, C., Milone, M.C., Hassan, R., Simonet, J.C., Lakhal, M., Suhoski, M.M., et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 106:9 (2009), 3360–3365.
Kawalekar, O.U., O'Connor, R.S., Fraietta, J.A., Guo, L., McGettigan, S.E., Posey, A.D. Jr., et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:2 (2016), 380–390.
Maloney, D.G., Kuruvilla, J., Liu, F.F., Kostic, A., Kim, Y., Bonner, A., et al. Matching-adjusted indirect treatment comparison of liso-cel versus axi-cel in relapsed or refractory large B cell lymphoma. J Hematol Oncol, 14(1), 2021, 140.
Sommermeyer, D., Hudecek, M., Kosasih, P.L., Gogishvili, T., Maloney, D.G., Turtle, C.J., et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30:2 (2016), 492–500.
Lee, S.Y., Lee, D.H., Sun, W., Cervantes-Contreras, F., Basom, R.S., Wu, F., et al. CD8+ chimeric antigen receptor T cells manufactured in absence of CD4+ cells exhibit hypofunctional phenotype. J Immunother Cancer, 11(11), 2023, e007803.
Friedman, K.M., Garrett, T.E., Evans, J.W., Horton, H.M., Latimer, H.J., Seidel, S.L., et al. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum Gene Ther 29:5 (2018), 585–601.
Cornell, R.F., Bishop, M.R., Kumar, S., Giralt, S.A., Nooka, A.K., Larson, S.M., et al. A phase 1, multicenter study evaluating the safety and efficacy of KITE-585, an autologous anti-BCMA CAR T-cell therapy, in patients with relapsed/refractory multiple myeloma. Am J Cancer Res 11:6 (2021), 3285–3293.
Fry, T.J., Shah, N.N., Orentas, R.J., Stetler-Stevenson, M., Yuan, C.M., Ramakrishna, S., et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24:1 (2018), 20–28.
Singh, N., Frey, N.V., Engels, B., Barrett, D.M., Shestova, O., Ravikumar, P., et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat Med 27:5 (2021), 842–850.
Frank, M.J., Baird, J.H., Kramer, A.M., Srinagesh, H.K., Patel, S., Brown, A.K., et al. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet 404:10450 (2024), 353–363.
Cordoba, S., Onuoha, S., Thomas, S., Pignataro, D.S., Hough, R., Ghorashian, S., et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med 27:10 (2021), 1797–1805.
Qin, H., Ramakrishna, S., Nguyen, S., Fountaine, T.J., Ponduri, A., Stetler-Stevenson, M., et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther Oncol 11 (2018), 127–137.
Spiegel, J.Y., Patel, S., Muffly, L., Hossain, N.M., Oak, J., Baird, J.H., et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med 27:8 (2021), 1419–1431.
Zhang, Y., Wang, Y., Liu, Y., Tong, C., Wang, C., Guo, Y., et al. Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1-2 trial. Leukemia 36:1 (2022), 189–196.
Schneider, D., Xiong, Y., Wu, D., Hu, P., Alabanza, L., Steimle, B., et al. Trispecific CD19-CD20-CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci Transl Med, 13(586), 2021.
Shi, M., Wang, J., Huang, H., Liu, D., Cheng, H., Wang, X., et al. Bispecific CAR T cell therapy targeting BCMA and CD19 in relapsed/refractory multiple myeloma: a phase I/II trial. Nat Commun, 15(1), 2024, 3371.
Barber, A., Zhang, T., Sentman, C.L., Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. J Immunol 180:1 (2008), 72–78.
Baumeister, S.H., Murad, J., Werner, L., Daley, H., Trebeden-Negre, H., Gicobi, J.K., et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res 7:1 (2019), 100–112.
Sallman, D.A., Kerre, T., Havelange, V., Poire, X., Lewalle, P., Wang, E.S., et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial. Lancet Haematol 10:3 (2023), e191–e202.
Xu, Y., Zhang, M., Ramos, C.A., Durett, A., Liu, E., Dakhova, O., et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123:24 (2014), 3750–3759.
Chen, G.M., Chen, C., Das, R.K., Gao, P., Chen, C.H., Bandyopadhyay, S., et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov 11:9 (2021), 2186–2199.
Biasco, L., Izotova, N., Rivat, C., Ghorashian, S., Richardson, R., Guvenel, A., et al. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nat Cancer 2:6 (2021), 629–642.
Turtle, C.J., Hanafi, L.A., Berger, C., Gooley, T.A., Cherian, S., Hudecek, M., et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 126:6 (2016), 2123–2138.
Wang, X., Popplewell, L.L., Wagner, J.R., Naranjo, A., Blanchard, M.S., Mott, M.R., et al. Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127:24 (2016), 2980–2990.
Aldoss, I., Khaled, S.K., Wang, X., Palmer, J., Wang, Y., Wagner, J.R., et al. Favorable activity and safety profile of memory-enriched CD19-targeted chimeric antigen receptor T cell therapy in adults with high-risk relapsed/refractory ALL. Clin Cancer Res 29:4 (2023), 742–753.
Larson, S.M., Walthers, C.M., Ji, B., Ghafouri, S.N., Naparstek, J., Trent, J., et al. CD19/CD20 bispecific chimeric antigen receptor (CAR) in naive/memory T cells for the treatment of relapsed or refractory non-Hodgkin lymphoma. Cancer Discov 13:3 (2023), 580–597.
Zah, E., Lin, M.Y., Silva-Benedict, A., Jensen, M.C., Chen, Y.Y., T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 4:6 (2016), 498–508.
Meyran, D., Zhu, J.J., Butler, J., Tantalo, D., MacDonald, S., Nguyen, T.N., et al. T(STEM)-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models. Sci Transl Med, 15(690), 2023 eabk1900.
Ghassemi, S., Nunez-Cruz, S., O'Connor, R.S., Fraietta, J.A., Patel, P.R., Scholler, J., et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol Res 6:9 (2018), 1100–1109.
Dickinson, M.J., Barba, P., Jager, U., Shah, N.N., Blaise, D., Briones, J., et al. A novel autologous CAR-T therapy, YTB323, with preserved T-cell Stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development. Cancer Discov 13:9 (2023), 1982–1997.
Barba, P., Kwon, M., Briones, J., Jaeger, U., Bachy, E., Blaise, D., et al. YTB323 (rapcabtagene autoleucel) demonstrates durable efficacy and a manageable safety profile in patients with relapsed/refractory diffuse large B-cell lymphoma: phase I study update. Blood 140:Supplement 1 (2022), 1056–1059.
Sabatino, M., Hu, J., Sommariva, M., Gautam, S., Fellowes, V., Hocker, J.D., et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128:4 (2016), 519–528.
Mehra, V., Agliardi, G., Dias Alves Pinto, J., Shafat, M.S., Garai, A.C., Green, L., et al. AKT inhibition generates potent polyfunctional clinical grade AUTO1 CAR T-cells, enhancing function and survival. J Immunother Cancer, 11(9), 2023.
Funk, C.R., Wang, S., Chen, K.Z., Waller, A., Sharma, A., Edgar, C.L., et al. PI3Kdelta/gamma inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity. Blood 139:4 (2022), 523–537.
Chan, J.D., Scheffler, C.M., Munoz, I., Sek, K., Lee, J.N., Huang, Y.K., et al. FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. Nature 629:8010 (2024), 201–210.
Doan, A.E., Mueller, K.P., Chen, A.Y., Rouin, G.T., Chen, Y., Daniel, B., et al. FOXO1 is a master regulator of memory programming in CAR T cells. Nature 629:8010 (2024), 211–218.
Chen, J., Qiu, S., Li, W., Wang, K., Zhang, Y., Yang, H., et al. Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res 33:5 (2023), 341–354.
Li, W., Qiu, S., Chen, J., Jiang, S., Chen, W., Jiang, J., et al. Chimeric antigen receptor designed to prevent ubiquitination and downregulation showed durable antitumor efficacy. Immunity 53:2 (2020), 456–470 e6.
Wei, J., Long, L., Zheng, W., Dhungana, Y., Lim, S.A., Guy, C., et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576:7787 (2019), 471–476.
Roddie, C., Lekakis, L.J., Marzolini, M.A.V., Ramakrishnan, A., Zhang, Y., Hu, Y., et al. Dual targeting of CD19 and CD22 with bicistronic CAR-T cells in patients with relapsed/refractory large B-cell lymphoma. Blood 141:20 (2023), 2470–2482.
Brog, R.A., Ferry, S.L., Schiebout, C.T., Messier, C.M., Cook, W.J., Abdullah, L., et al. Superkine IL-2 and IL-33 armored CAR T cells reshape the tumor microenvironment and reduce growth of multiple solid tumors. Cancer Immunol Res 10:8 (2022), 962–977.
Hu, B., Ren, J., Luo, Y., Keith, B., Young, R.M., Scholler, J., et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep 20:13 (2017), 3025–3033.
Pegram, H.J., Lee, J.C., Hayman, E.G., Imperato, G.H., Tedder, T.F., Sadelain, M., et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119:18 (2012), 4133–4141.
Avanzi, M.P., Yeku, O., Li, X., Wijewarnasuriya, D.P., van Leeuwen, D.G., Cheung, K., et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep 23:7 (2018), 2130–2141.
Brentjens, R.J., Latouche, J.B., Santos, E., Marti, F., Gong, M.C., Lyddane, C., et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9:3 (2003), 279–286.
Svoboda, J., Gerson, J.N., Landsburg, D.J., Chong, E.A., Barta, S.K., Dwivedy Nasta, S., et al. Interleukin-18 secreting autologous anti-CD19 CAR T-cells (huCART19-IL18) in patients with non-Hodgkin lymphomas relapsed or refractory to prior CAR T-cell therapy. Blood 140:Supplement 1 (2022), 4612–4614.
Stach, M., Ptackova, P., Mucha, M., Musil, J., Klener, P., Otahal, P., Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells. Cytotherapy 22:12 (2020), 744–754.
Hurton, L.V., Singh, H., Najjar, A.M., Switzer, K.C., Mi, T., Maiti, S., et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A, 113(48), 2016 E7788-E97.
Li, L., Li, Q., Yan, Z.X., Sheng, L.S., Fu, D., Xu, P., et al. Transgenic expression of IL-7 regulates CAR-T cell metabolism and enhances in vivo persistence against tumor cells. Sci Rep, 12(1), 2022, 12506.
Zhang, Y., Zhuang, Q., Wang, F., Zhang, C., Xu, C., Gu, A., et al. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy. J Transl Med, 20(1), 2022, 432.
Yoshikawa, T., Ito, Y., Wu, Z., Kasuya, H., Nakashima, T., Okamoto, S., et al. Development of a chimeric cytokine receptor that captures IL-6 and enhances the antitumor response of CAR-T cells. Cell Rep Med, 2024, 101526.
Zhou, W., Miao, J., Cheng, Z., Wang, Z., Wang, J., Guo, H., et al. Hypoxia-regulated secretion of IL-12 enhances antitumor activity and safety of CD19 CAR-T cells in the treatment of DLBCL. Mol Ther Oncol 30 (2023), 216–226.
Li, H., Harrison, E.B., Li, H., Hirabayashi, K., Chen, J., Li, Q.X., et al. Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration. Nat Commun, 13(1), 2022, 2154.
Schomer, N.T., Jiang, Z.K., Lloyd, M.I., Klingemann, H., Boissel, L., CCR7 expression in CD19 chimeric antigen receptor-engineered natural killer cells improves migration toward CCL19-expressing lymphoma cells and increases tumor control in mice with human lymphoma. Cytotherapy 24:8 (2022), 827–834.
Di Stasi, A., De Angelis, B., Rooney, C.M., Zhang, L., Mahendravada, A., Foster, A.E., et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113:25 (2009), 6392–6402.
Lei, W., Zhao, A., Liu, H., Yang, C., Wei, C., Guo, S., et al. Safety and feasibility of anti-CD19 CAR T cells expressing inducible IL-7 and CCL19 in patients with relapsed or refractory large B-cell lymphoma. Cell Discov, 10(1), 2024, 5.
Pegram, H.J., Purdon, T.J., van Leeuwen, D.G., Curran, K.J., Giralt, S.A., Barker, J.N., et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia 29:2 (2015), 415–422.
Ng, B.D., Rajagopalan, A., Kousa, A.I., Fischman, J.S., Chen, S., Massa, A.R., et al. IL-18-secreting multi-antigen targeting CAR T-cells eliminate antigen-low myeloma in an immunocompetent mouse model. Blood, 2024, 171–186.
Wu, L., Wei, Q., Brzostek, J., Gascoigne, N.R.J., Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 17:6 (2020), 600–612.
Wang, X., Chang, W.C., Wong, C.W., Colcher, D., Sherman, M., Ostberg, J.R., et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118:5 (2011), 1255–1263.
Fedorov, V.D., Themeli, M., Sadelain, M., PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med, 5(215), 2013 215ra172.
Mestermann, K., Giavridis, T., Weber, J., Rydzek, J., Frenz, S., Nerreter, T., et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med, 11(499), 2019.
Weber, E.W., Lynn, R.C., Sotillo, E., Lattin, J., Xu, P., Mackall, C.L., Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv 3:5 (2019), 711–717.
Rodgers, D.T., Mazagova, M., Hampton, E.N., Cao, Y., Ramadoss, N.S., Hardy, I.R., et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci U S A 113:4 (2016), E459–E468.
Chen, L.Y., Gong, W.J., Li, M.H., Zhou, H.X., Xu, M.Z., Qian, C.S., et al. Anti-CD19 CAR T-cell consolidation therapy combined with CD19+ feeding T cells and TKI for Ph+ acute lymphoblastic leukemia. Blood Adv 7:17 (2023), 4913–4925.
Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S.J., Hamieh, M., Cunanan, K.M., et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:7643 (2017), 113–117.
Webster, B., Xiong, Y., Hu, P., Wu, D., Alabanza, L., Orentas, R.J., et al. Self-driving armored CAR-T cells overcome a suppressive milieu and eradicate CD19(+) Raji lymphoma in preclinical models. Mol Ther 29:9 (2021), 2691–2706.
Li, S., Siriwon, N., Zhang, X., Yang, S., Jin, T., He, F., et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res 23:22 (2017), 6982–6992.
Rafiq, S., Yeku, O.O., Jackson, H.J., Purdon, T.J., van Leeuwen, D.G., Drakes, D.J., et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 36:9 (2018), 847–856.
Rupp, L.J., Schumann, K., Roybal, K.T., Gate, R.E., Ye, C.J., Lim, W.A., et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep, 7(1), 2017, 737.
Jiang, V.C., Hao, D., Jain, P., Li, Y., Cai, Q., Yao, Y., et al. TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma. Mol Cancer, 21(1), 2022, 185.
Blaeschke, F., Stenger, D., Apfelbeck, A., Cadilha, B.L., Benmebarek, M.R., Mahdawi, J., et al. Augmenting anti-CD19 and anti-CD22 CAR T-cell function using PD-1-CD28 checkpoint fusion proteins. Blood Cancer J, 11(6), 2021, 108.
Liang, Y., Liu, H., Lu, Z., Lei, W., Zhang, C., Li, P., et al. CD19 CAR-T expressing PD-1/CD28 chimeric switch receptor as a salvage therapy for DLBCL patients treated with different CD19-directed CAR T-cell therapies. J Hematol Oncol, 14(1), 2021, 26.
Tao, L., Farooq, M.A., Gao, Y., Zhang, L., Niu, C., Ajmal, I., et al. CD19-CAR-T cells bearing a KIR/PD-1-based inhibitory CAR eradicate CD19(+)HLA-C1(−) malignant B cells while sparing CD19(+)HLA-C1(+) healthy B cells. Cancers (Basel), 12(9), 2020.
Cheng, K., Feng, X., Chai, Z., Wang, Z., Liu, Z., Yan, Z., et al. 4-1BB-based CAR T cells effectively reverse exhaustion and enhance the anti-tumor immune response through autocrine PD-L1 scFv antibody. Int J Mol Sci, 24(4), 2023.
Liu, H., Lei, W., Zhang, C., Yang, C., Wei, J., Guo, Q., et al. CD19-specific CAR T cells that express a PD-1/CD28 chimeric switch-receptor are effective in patients with PD-L1-positive B-cell lymphoma. Clin Cancer Res 27:2 (2021), 473–484.
Shi, Y., Kotchetkov, I.S., Dobrin, A., Hanina, S.A., Rajasekhar, V.K., Healey, J.H., et al. GLUT1 overexpression enhances CAR T cell metabolic fitness and anti-tumor efficacy. Mol Ther 23 (2024), 2393–2405.
Wu, H., Zhao, X., Hochrein, S.M., Eckstein, M., Gubert, G.F., Knopper, K., et al. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1alpha-mediated glycolytic reprogramming. Nat Commun, 14(1), 2023, 6858.
Simula, L., Fumagalli, M., Vimeux, L., Rajnpreht, I., Icard, P., Birsen, G., et al. Mitochondrial metabolism sustains CD8(+) T cell migration for an efficient infiltration into solid tumors. Nat Commun, 15(1), 2024, 2203.
Gross, G., Alkadieri, S., Meir, A., Itzhaki, O., Aharoni-Tevet, Y., Ben Yosef, S., et al. Improved CAR-T cell activity associated with increased mitochondrial function primed by galactose. Leukemia 38 (2024), 1534–1540.
Kastenschmidt, J.M., Schroers-Martin, J.G., Sworder, B.J., Sureshchandra, S., Khodadoust, M.S., Liu, C.L., et al. A human lymphoma organoid model for evaluating and targeting the follicular lymphoma tumor immune microenvironment. Cell Stem Cell 31:3 (2024), 410–20 e4.
Scholler, N., Perbost, R., Locke, F.L., Jain, M.D., Turcan, S., Danan, C., et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat Med 28:9 (2022), 1872–1882.
Jain, M.D., Zhao, H., Wang, X., Atkins, R., Menges, M., Reid, K., et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood 137:19 (2021), 2621–2633.
Azzaoui, I., Uhel, F., Rossille, D., Pangault, C., Dulong, J., Le Priol, J., et al. T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells. Blood 128:8 (2016), 1081–1092.
Locke, F.L., Filosto, S., Chou, J., Vardhanabhuti, S., Perbost, R., Dreger, P., et al. Impact of tumor microenvironment on efficacy of anti-CD19 CAR T cell therapy or chemotherapy and transplant in large B cell lymphoma. Nat Med 30:2 (2024), 507–518.
Hao, Y., Chen, P., Guo, S., Li, M., Jin, X., Zhang, M., et al. Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-beta signaling. Front Med 18:1 (2024), 128–146.
Cheng, J., Yan, J., Liu, Y., Shi, J., Wang, H., Zhou, H., et al. Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8(+) T cells in the tumor microenvironment. Cell Metab 35:6 (2023), 961–978 e10.
Zhao, K., Ren, C., Tang, D., Zhao, L., Chen, X., Wang, Y., et al. The altering cellular components and function in tumor microenvironment during remissive and relapsed stages of anti-CD19 CAR T-cell treated lymphoma mice. Front Immunol, 14, 2023, 1101769.
Lickefett, B., Chu, L., Ortiz-Maldonado, V., Warmuth, L., Barba, P., Doglio, M., et al. Lymphodepletion - an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front Immunol, 14, 2023, 1303935.
Qiu, Y., Liao, P., Wang, H., Chen, J., Hu, Y., Hu, R., et al. Enhanced tumor immunotherapy by polyfunctional CD19-CAR T cells engineered to secrete anti-CD47 single-chain variable fragment. Int J Biol Sci 19:15 (2023), 4948–4966.
Brudno, J.N., Kochenderfer, J.N., Off-the-shelf CAR T cells for multiple myeloma. Nat Med 29:2 (2023), 303–304.
Sommer, C., Boldajipour, B., Kuo, T.C., Bentley, T., Sutton, J., Chen, A., et al. Preclinical evaluation of allogeneic CAR T cells targeting BCMA for the treatment of multiple myeloma. Mol Ther 27:6 (2019), 1126–1138.
Kagoya, Y., Guo, T., Yeung, B., Saso, K., Anczurowski, M., Wang, C.H., et al. Genetic ablation of HLA class I, class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol Res 8:7 (2020), 926–936.
Lee, J., Sheen, J.H., Lim, O., Lee, Y., Ryu, J., Shin, D., et al. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy. Sci Rep, 10(1), 2020, 17753.
Wang, B., Iriguchi, S., Waseda, M., Ueda, N., Ueda, T., Xu, H., et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat Biomed Eng 5:5 (2021), 429–440.
Degagne, E., Donohoue, P.D., Roy, S., Scherer, J., Fowler, T.W., Davis, R.T., et al. High-specificity CRISPR-mediated genome engineering in anti-BCMA allogeneic CAR T cells suppresses allograft rejection in preclinical models. Cancer Immunol Res 12:4 (2024), 462–477.
Grauwet, K., Berger, T., Kann, M.C., Silva, H., Larson, R., Leick, M.B., et al. Stealth transgenes enable CAR-T cells to evade host immune responses. J Immunother Cancer, 12(5), 2024.
Sugita, M., Galetto, R., Zong, H., Ewing-Crystal, N., Trujillo-Alonso, V., Mencia-Trinchant, N., et al. Allogeneic TCRalphabeta deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nat Commun, 13(1), 2022, 2227.
Hu, X., Manner, K., DeJesus, R., White, K., Gattis, C., Ngo, P., et al. Hypoimmune anti-CD19 chimeric antigen receptor T cells provide lasting tumor control in fully immunocompetent allogeneic humanized mice. Nat Commun, 14(1), 2023, 2020.
Benjamin, R., Graham, C., Yallop, D., Jozwik, A., Mirci-Danicar, O.C., Lucchini, G., et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396:10266 (2020), 1885–1894.
Benjamin, R., Jain, N., Maus, M.V., Boissel, N., Graham, C., Jozwik, A., et al. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial. Lancet Haematol, 9(11), 2022 e833-e43.
Abramson, J.S., Ramakrishnan, A., Pierola, A.A., Braunschweig, I., Cartron, G., Thieblemont, C., et al. Preliminary results of Nathali-01: a first-in-human phase I/IIa study of UCART20x22, a dual allogeneic CAR-T cell product targeting CD20 and CD22, in relapsed or refractory (R/R) non-hodgkin lymphoma (NHL). Blood, 142(Supplement 1), 2023, 2110.
Hu, Y., Zhou, Y., Zhang, M., Zhao, H., Wei, G., Ge, W., et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res 32:11 (2022), 995–1007.
Smith, T.T., Stephan, S.B., Moffett, H.F., McKnight, L.E., Ji, W., Reiman, D., et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 12:8 (2017), 813–820.
Frank, A.M., Braun, A.H., Scheib, L., Agarwal, S., Schneider, I.C., Fusil, F., et al. Combining T-cell-specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv 4:22 (2020), 5702–5715.
Zhou, J.E., Sun, L., Jia, Y., Wang, Z., Luo, T., Tan, J., et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J Control Release 350 (2022), 298–307.
Shah, B.D., Ghobadi, A., Oluwole, O.O., Logan, A.C., Boissel, N., Cassaday, R.D., et al. Two-year follow-up of KTE-X19 in patients with relapsed or refractory adult B-cell acute lymphoblastic leukemia in ZUMA-3 and its contextualization with SCHOLAR-3, an external historical control study. J Hematol Oncol, 15(1), 2022, 170.
Schuster, S.J., Tam, C.S., Borchmann, P., Worel, N., McGuirk, J.P., Holte, H., et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 22:10 (2021), 1403–1415.
Abramson, J.S., Palomba, M.L., Gordon, L.I., Lunning, M., Wang, M., Arnason, J., et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood 143:5 (2024), 404–416.
Dreyling, M., Fowler, N.H., Dickinson, M., Martinez-Lopez, J., Kolstad, A., Butler, J., et al. Durable response after tisagenlecleucel in adults with relapsed/refractory follicular lymphoma: ELARA trial update. Blood 143:17 (2024), 1713–1725.
Neelapu, S.S., Chavez, J.C., Sehgal, A.R., Epperla, N., Ulrickson, M., Bachy, E., et al. Three-year follow-up analysis of axicabtagene ciloleucel in relapsed/refractory indolent non-Hodgkin lymphoma (ZUMA-5). Blood 143:6 (2024), 496–506.
Wang, M., Munoz, J., Goy, A., Locke, F.L., Jacobson, C.A., Hill, B.T., et al. Three-year follow-up of KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 study. J Clin Oncol 41:3 (2023), 555–567.
Moreno-Cortes, E., Franco-Fuquen, P., Garcia-Robledo, J.E., Forero, J., Booth, N., Castro, J.E., ICOS and OX40 tandem co-stimulation enhances CAR T-cell cytotoxicity and promotes T-cell persistence phenotype. Front Oncol, 13, 2023, 1200914.
Pule, M.A., Straathof, K.C., Dotti, G., Heslop, H.E., Rooney, C.M., Brenner, M.K., A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12:5 (2005), 933–941.
Ochi, T., Maruta, M., Tanimoto, K., Kondo, F., Yamamoto, T., Kurata, M., et al. A single-chain antibody generation system yielding CAR-T cells with superior antitumor function. Commun Biol, 4(1), 2021, 273.
Ma, R., You, F., Tian, S., Zhang, T., Tian, X., Xiang, S., et al. Enhanced efficacy of CD19/CD22 bispecific CAR-T cells with EAAAK linker on B-cell malignancies. Eur J Haematol 112:1 (2024), 64–74.
Gargett, T., Brown, M.P., The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol, 5, 2014, 235.
Foeng, J., Comerford, I., McColl, S.R., Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep Med, 3(3), 2022, 100543.
Cherkassky, L., Morello, A., Villena-Vargas, J., Feng, Y., Dimitrov, D.S., Jones, D.R., et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126:8 (2016), 3130–3144.
Zhang, J., Zhu, J., Zheng, G., Wang, Q., Li, X., Feng, Y., et al. Co-expression of miR155 or LSD1 shRNA increases the anti-tumor functions of CD19 CAR-T cells. Front Immunol, 12, 2021, 811364.
Pennell, C.A., Campbell, H., Storlie, M.D., Bolivar-Wagers, S., Osborn, M.J., Refaeli, Y., et al. Human CD19-specific switchable CAR T-cells are efficacious as constitutively active CAR T-cells but cause less morbidity in a mouse model of human CD19(+) malignancy. J Immunother Cancer, 10(12), 2022.
Uchibori, R., Teruya, T., Ido, H., Ohmine, K., Sehara, Y., Urabe, M., et al. Functional analysis of an inducible promoter driven by activation signals from a chimeric antigen receptor. Mol Ther Oncol 12 (2019), 16–25.
Olson, M.L., Mause, E.R.V., Radhakrishnan, S.V., Brody, J.D., Rapoport, A.P., Welm, A.L., et al. Low-affinity CAR T cells exhibit reduced trogocytosis, preventing rapid antigen loss, and increasing CAR T cell expansion. Leukemia 36:7 (2022), 1943–1946.
Michelozzi, I.M., Gomez-Castaneda, E., Pohle, R.V.C., Cardoso Rodriguez, F., Sufi, J., Puigdevall Costa, P., et al. Activation priming and cytokine polyfunctionality modulate the enhanced functionality of low-affinity CD19 CAR T cells. Blood Adv 7:9 (2023), 1725–1738.
Xie, B., Li, Z., Zhou, J., Wang, W., Current status and perspectives of dual-targeting chimeric antigen receptor T-cell therapy for the treatment of hematological malignancies. Cancers (Basel), 14(13), 2022.
Chan, W.K., Williams, J., Sorathia, K., Pray, B., Abusaleh, K., Bian, Z., et al. A novel CAR-T cell product targeting CD74 is an effective therapeutic approach in preclinical mantle cell lymphoma models. Exp Hematol Oncol, 12(1), 2023, 79.
Chu, F., Cao, J., Liu, J., Yang, H., Davis, T.J., Kuang, S.Q., et al. Chimeric antigen receptor T cells to target CD79b in B-cell lymphomas. J Immunother Cancer, 11(11), 2023.
Luo, Y., Qie, Y., Gadd, M.E., Manna, A., Rivera-Valentin, R., To T, et al. Translational development of a novel BAFF-R CAR-T therapy targeting B-cell lymphoid malignancies. Cancer Immunol Immunother 72:12 (2023), 4031–4047.
Lee, Y.H., Lee, H.J., Kim, H.C., Lee, Y., Nam, S.K., Hupperetz, C., et al. PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR T cells. Mol Ther 30:2 (2022), 579–592.
Wang, Z., Li, N., Feng, K., Chen, M., Zhang, Y., Liu, Y., et al. Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell Mol Immunol 18:9 (2021), 2188–2198.
Prochazkova, M., Dreyzin, A., Shao, L., Garces, P., Cai, Y., Shi, R., et al. Deciphering the importance of culture pH on CD22 CAR T-cells characteristics. J Transl Med, 22(1), 2024, 384.
Sanyanusin, M., Tudsamran, S., Thaiwong, R., Tawinwung, S., Nishio, N., Takahashi, Y., et al. Novel xeno-free and serum-free culturing condition to improve piggyBac transposon-based CD19 chimeric antigen receptor T-cell production and characteristics. Cytotherapy 25:4 (2023), 397–406.
Prinzing, B., Zebley, C.C., Petersen, C.T., Fan, Y., Anido, A.A., Yi, Z., et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med, 13(620), 2021 eabh0272.
Nobles, C.L., Sherrill-Mix, S., Everett, J.K., Reddy, S., Fraietta, J.A., Porter, D.L., et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J Clin Invest 130:2 (2020), 673–685.
Hu, Y., Zu, C., Zhang, M., Wei, G., Li, W., Fu, S., et al. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory non-Hodgkin's lymphoma: a first-in-human phase I study. EClinicalMedicine, 60, 2023, 102010.
Zhang, J., Hu, Y., Yang, J., Li, W., Zhang, M., Wang, Q., et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 609:7926 (2022), 369–374.
Gill, S., Vides, V., Frey, N.V., Hexner, E.O., Metzger, S., O'Brien, M., et al. Anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia. Blood Adv 6:21 (2022), 5774–5785.
Xin, X., Zhu, X., Yang, Y., Wang, N., Wang, J., Xu, J., et al. Efficacy of programmed cell death 1 inhibitor maintenance after chimeric antigen receptor T cells in patients with relapsed/refractory B-cell non-Hodgkin-lymphoma. Cell Oncol (Dordr) 47 (2024), 1425–1440.
Agarwal, S., Hanauer, J.D.S., Frank, A.M., Riechert, V., Thalheimer, F.B., Buchholz, C.J., In vivo generation of CAR T cells selectively in human CD4(+) lymphocytes. Mol Ther 28:8 (2020), 1783–1794.
Ma, L., Ramasubramanian, R., Mehta, N., Cossette, B., Morgan, D., Sukaj, I., et al. Directed evolution-based discovery of ligands for in vivo restimulation of CAR-T cells. bioRxiv, 2024.
Tu, S., Zhou, L., Huang, R., Zhou, X., Yang, J., He, Y., et al. Dendritic cell vaccines extend CAR T-cell persistence and improve the efficacy of CD19 CAR T-cell therapy in refractory or relapsed adult B-ALL patients. Am J Hematol 99 (2024), 1437–1440.
Blaeschke, F., Stenger, D., Kaeuferle, T., Willier, S., Lotfi, R., Kaiser, A.D., et al. Induction of a central memory and stem cell memory phenotype in functionally active CD4(+) and CD8(+) CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19(+) acute lymphoblastic leukemia. Cancer Immunol Immunother 67:7 (2018), 1053–1066.
Aldoss, I., Khaled, S.K., Wang, X., Palmer, J., Wang, Y., Wagner, J.R., et al. Favorable activity and safety profile of memory-enriched CD19-targeted chimeric antigen receptor T-cell therapy in adults with high-risk relapsed/refractory ALL. Clin Cancer Res 29:4 (2023), 742–753.