[en] Despite a high response rate in chimeric antigen receptor (CAR) T cell therapy for acute lymphocytic leukaemia (ALL)1-3, approximately 50% of patients relapse within the first year4-6, representing an urgent question to address in the next stage of cellular immunotherapy. Here, to investigate the molecular determinants of ultralong CAR T cell persistence, we obtained a single-cell multi-omics atlas from 695,819 pre-infusion CAR T cells at the basal level or after CAR-specific stimulation from 82 paediatric patients with ALL enrolled in the first two CAR T ALL clinical trials and 6 healthy donors. We identified that elevated type 2 functionality in CAR T infusion products is significantly associated with patients maintaining a median B cell aplasia duration of 8.4 years. Analysis of ligand-receptor interactions revealed that type 2 cells regulate a dysfunctional subset to maintain whole-population homeostasis, and the addition of IL-4 during antigen-specific activation alleviates CAR T cell dysfunction while enhancing fitness at both transcriptomic and epigenomic levels. Serial proteomic profiling of sera after treatment revealed a higher level of circulating type 2 cytokines in 5-year or 8-year relapse-free responders. In a leukaemic mouse model, type 2high CAR T cell products demonstrated superior expansion and antitumour activity, particularly after leukaemia rechallenge. Restoring antitumour efficacy in type 2low CAR T cells was attainable by enhancing their type 2 functionality, either through incorporating IL-4 into the manufacturing process or by priming manufactured CAR T products with IL-4 before infusion. Our findings provide insights into the mediators of durable CAR T therapy response and suggest potential therapeutic strategies to sustain long-term remission by boosting type 2 functionality in CAR T cells.
Disciplines :
Hematology Immunology & infectious disease
Author, co-author :
Bai, Zhiliang ✱; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Feng, Bing ✱; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ; Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
McClory, Susan E; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA ; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
de Oliveira, Beatriz Coutinho; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Diorio, Caroline; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA ; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
GREGOIRE, Céline ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Tao, Bo ; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
Yang, Luojia; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Zhao, Ziran; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Peng, Lei; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Sferruzza, Giacomo; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Zhou, Liqun; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Zhou, Xiaolei; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ; Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
Kerr, Jessica; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Baysoy, Alev; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Su, Graham; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Yang, Mingyu; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Camara, Pablo G; Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
Chen, Sidi ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Tang, Li ; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. li.tang@epfl.ch ; Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland. li.tang@epfl.ch
June, Carl H ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. cjune@upenn.edu ; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. cjune@upenn.edu ; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA. cjune@upenn.edu
Melenhorst, J Joseph ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. melenhj@ccf.org
Grupp, Stephan A ; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. grupp@chop.edu ; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. grupp@chop.edu
Fan, Rong ; Department of Biomedical Engineering, Yale University, New Haven, CT, USA. rong.fan@yale.edu ; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu ; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu ; Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu ; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu
S.L. Maude et al. Chimeric antigen receptor T cells for sustained remissions in leukemia N. Engl. J. Med. 2014 371 1507 1517 25317870 4267531 10.1056/NEJMoa1407222
D.W. Lee et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial Lancet 2015 385 517 528 1:CAS:528:DC%2BC2cXhslGjtLbM 25319501 10.1016/S0140-6736(14)61403-3
J.H. Park et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia N. Engl. J. Med. 2018 378 449 459 1:CAS:528:DC%2BC1cXitlylsbY%3D 29385376 6637939 10.1056/NEJMoa1709919
R.M. Young N.W. Engel U. Uslu N. Wellhausen C.H. June Next-generation CAR T-cell therapies Cancer Discovery 2022 12 1625 1633 1:CAS:528:DC%2BB38Xit1KlsrrO 35417527 9262817 10.1158/2159-8290.CD-21-1683
M. Ruella F. Korell P. Porazzi M.V. Maus Mechanisms of resistance to chimeric antigen receptor-T cells in haematological malignancies Nat. Rev. Drug Discov. 2023 22 976 995 1:CAS:528:DC%2BB3sXit1KgtLnO 37907724 10965011 10.1038/s41573-023-00807-1
A.E. Doan et al. FOXO1 is a master regulator of memory programming in CAR T cells Nature 2024 629 211 218 2024Natur.629.211D 1:CAS:528:DC%2BB2cXnvF2ltbk%3D 38600391 11062920 10.1038/s41586-024-07300-8
R.C. Larson M.V. Maus Recent advances and discoveries in the mechanisms and functions of CAR T cells Nat. Rev. Cancer 2021 21 145 161 1:CAS:528:DC%2BB3MXhvF2nt7o%3D 33483715 8353572 10.1038/s41568-020-00323-z
D.L. Porter et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia Sci. Transl. Med. 2015 7 303ra139 26333935 5909068 10.1126/scitranslmed.aac5415
J.J. Melenhorst et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells Nature 2022 602 503 509 2022Natur.602.503M 1:CAS:528:DC%2BB38Xislemurg%3D 35110735 9166916 10.1038/s41586-021-04390-6
J. Yang Y. Chen Y. Jing M.R. Green L. Han Advancing CAR T cell therapy through the use of multidimensional omics data Nat. Rev. Clin. Oncol. 2023 20 211 228 1:CAS:528:DC%2BB3sXitlyhsLY%3D 36721024 10.1038/s41571-023-00729-2
Z. Bai et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL Sci. Adv. 2022 8 1:CAS:528:DC%2BB38XhvVegsLzL 35675405 9177075 10.1126/sciadv.abj2820
M. Stoeckius et al. Simultaneous epitope and transcriptome measurement in single cells Nat. Methods 2017 14 865 868 1:CAS:528:DC%2BC2sXht1CkurzK 28759029 5669064 10.1038/nmeth.4380
A.H. Long et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors Nat. Med. 2015 21 581 590 1:CAS:528:DC%2BC2MXhtFemsbfE 25939063 4458184 10.1038/nm.3838
Z. Bai et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells J. Immunother. Cancer 2021 9 e002328 34006631 8137188 10.1136/jitc-2020-002328
J.P. Böttcher et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control Cell 2018 172 1022 1037 29429633 5847168 10.1016/j.cell.2018.01.004
U. Greenbaum K.M. Mahadeo P. Kebriaei E.J. Shpall N.Y. Saini Chimeric antigen receptor T-cells in B-acute lymphoblastic leukemia: state of the art and future directions Front. Oncol. 2020 10 1594 32984022 7480185 10.3389/fonc.2020.01594
M. Paulsen O. Janssen Pro- and anti-apoptotic CD95 signaling in T cells Cell Commun. Signal. 2011 9 1:CAS:528:DC%2BC3MXlsVagtb8%3D 21477291 3090738 10.1186/1478-811X-9-7
K. Man et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection Immunity 2017 47 1129 1141 1:CAS:528:DC%2BC2sXhvFKgsr3K 29246443 10.1016/j.immuni.2017.11.021
E. Armingol A. Officer O. Harismendy N.E. Lewis Deciphering cell–cell interactions and communication from gene expression Nat. Rev. Genet. 2021 22 71 88 1:CAS:528:DC%2BB3cXit1yht7vJ 33168968 10.1038/s41576-020-00292-x
Y. Rochman R. Spolski W.J. Leonard New insights into the regulation of T cells by γc family cytokines Nat. Rev. Immunol. 2009 9 480 490 1:CAS:528:DC%2BD1MXnsVylu78%3D 19543225 2814538 10.1038/nri2580
V.E. Dunlock et al. Tetraspanin CD53 controls T cell immunity through regulation of CD45RO stability, mobility, and function Cell Rep. 2022 39 1:CAS:528:DC%2BB38XhslGrtb7J 35767951 10.1016/j.celrep.2022.111006
T.R. Hercus et al. Signalling by the βc family of cytokines Cytokine Growth Factor Rev. 2013 24 189 201 1:CAS:528:DC%2BC3sXksFOlsLY%3D 23535386 10.1016/j.cytogfr.2013.03.002
C. Goda et al. Involvement of IL-32 in activation-induced cell death in T cells Int. Immunol. 2006 18 233 240 1:CAS:528:DC%2BD28XovVGjsA%3D%3D 16410314 10.1093/intimm/dxh339
C. Li et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients J. Exp. Med. 2021 219 e20202084 34807232 8611729 10.1084/jem.20202084
H. Chi Regulation and function of mTOR signalling in T cell fate decisions Nat. Rev. Immunol. 2012 12 325 338 1:CAS:528:DC%2BC38XlvVKntLw%3D 22517423 3417069 10.1038/nri3198
A. Xia Y. Zhang J. Xu T. Yin X.J. Lu T cell dysfunction in cancer immunity and immunotherapy Front. Immunol. 2019 10 1719 1:CAS:528:DC%2BB3cXhsV2nsLw%3D 31379886 6659036 10.3389/fimmu.2019.01719
K.M. Luda et al. Ketolysis drives CD8+ T cell effector function through effects on histone acetylation Immunity 2023 56 2021 2035 1:CAS:528:DC%2BB3sXhsFOhtLrF 37516105 10528215 10.1016/j.immuni.2023.07.002
J. Borst J. Hendriks Y. Xiao CD27 and CD70 in T cell and B cell activation Curr. Opin. Immunol. 2005 17 275 281 1:CAS:528:DC%2BD2MXjvFeksLo%3D 15886117 10.1016/j.coi.2005.04.004
Y. Shi et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know Cell Res. 2006 16 126 133 1:CAS:528:DC%2BD28Xhtlegt7Y%3D 16474424 10.1038/sj.cr.7310017
K.T. Mueller et al. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia Blood 2017 130 2317 2325 1:CAS:528:DC%2BC1cXhs1erurjE 28935694 5731220 10.1182/blood-2017-06-786129
S.L. Maude et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia N. Engl. J. Med. 2018 378 439 448 1:CAS:528:DC%2BC1cXitlylsLw%3D 29385370 5996391 10.1056/NEJMoa1709866
F. Sallusto Heterogeneity of human CD4+ T cells against microbes Annu. Rev. Immunol. 2016 34 317 334 1:CAS:528:DC%2BC28Xnslenu7k%3D 27168241 10.1146/annurev-immunol-032414-112056
H. Spits et al. Recombinant interleukin 4 promotes the growth of human T cells J. Immunol. 1987 139 1142 1147 1:CAS:528:DyaL2sXlslequr8%3D 3497196 10.4049/jimmunol.139.4.1142
A. Vella T.K. Teague J. Ihle J. Kappler P. Marrack Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4 J. Exp. Med. 1997 186 325 330 1:CAS:528:DyaK2sXkvVaksbg%3D 9221762 2198981 10.1084/jem.186.2.325
K.J. Rautajoki E.M. Marttila T.A. Nyman R. Lahesmaa Interleukin-4 inhibits caspase-3 by regulating several proteins in the Fas pathway during initial stages of human T helper 2 cell differentiation Mol. Cell Proteom. 2007 6 238 251 1:CAS:528:DC%2BD2sXitVOitro%3D 10.1074/mcp.M600290-MCP200
M.C. Milone et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo Mol. Ther. 2009 17 1453 1464 1:CAS:528:DC%2BD1MXkvVWqsLk%3D 19384291 2805264 10.1038/mt.2009.83
B.L. Levine et al. Gene transfer in humans using a conditionally replicating lentiviral vector Proc. Natl Acad. Sci. USA 2006 103 17372 2006PNAS.10317372L 1:CAS:528:DC%2BD28Xht1KqsbjM 17090675 1635018 10.1073/pnas.0608138103
Y. Hao et al. Integrated analysis of multimodal single-cell data Cell 2021 184 3573 3587 1:CAS:528:DC%2BB3MXhtlSrtrvE 34062119 8238499 10.1016/j.cell.2021.04.048
T. Stuart et al. Comprehensive integration of single-cell data Cell 2019 177 1888 1902 1:CAS:528:DC%2BC1MXhtFens77L 31178118 6687398 10.1016/j.cell.2019.05.031
C. Hafemeister R. Satija Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression Genome Biol. 2019 20 1:CAS:528:DC%2BC1MXisVyht7fF 31870423 6927181 10.1186/s13059-019-1874-1
T. Stuart A. Srivastava S. Madad C.A. Lareau R. Satija Single-cell chromatin state analysis with Signac Nat. Methods 2021 18 1333 1341 1:CAS:528:DC%2BB3MXitlyksL3L 34725479 9255697 10.1038/s41592-021-01282-5
Y. Zhang et al. Model-based Analysis of ChIP-Seq (MACS) Genome Biol. 2008 9 18798982 2592715 10.1186/gb-2008-9-9-r137
A.N. Schep B. Wu J.D. Buenrostro W. Greenleaf J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data Nat. Methods 2017 14 975 978 1:CAS:528:DC%2BC2sXhtlKjtbbE 28825706 5623146 10.1038/nmeth.4401
A. Krämer J. Green J. Pollard Jr S. Tugendreich Causal analysis approaches in Ingenuity pathway analysis Bioinformatics 2014 30 523 530 24336805 10.1093/bioinformatics/btt703