[en] Despite a high response rate in chimeric antigen receptor (CAR) T cell therapy for acute lymphocytic leukaemia (ALL)1-3, approximately 50% of patients relapse within the first year4-6, representing an urgent question to address in the next stage of cellular immunotherapy. Here, to investigate the molecular determinants of ultralong CAR T cell persistence, we obtained a single-cell multi-omics atlas from 695,819 pre-infusion CAR T cells at the basal level or after CAR-specific stimulation from 82 paediatric patients with ALL enrolled in the first two CAR T ALL clinical trials and 6 healthy donors. We identified that elevated type 2 functionality in CAR T infusion products is significantly associated with patients maintaining a median B cell aplasia duration of 8.4 years. Analysis of ligand-receptor interactions revealed that type 2 cells regulate a dysfunctional subset to maintain whole-population homeostasis, and the addition of IL-4 during antigen-specific activation alleviates CAR T cell dysfunction while enhancing fitness at both transcriptomic and epigenomic levels. Serial proteomic profiling of sera after treatment revealed a higher level of circulating type 2 cytokines in 5-year or 8-year relapse-free responders. In a leukaemic mouse model, type 2high CAR T cell products demonstrated superior expansion and antitumour activity, particularly after leukaemia rechallenge. Restoring antitumour efficacy in type 2low CAR T cells was attainable by enhancing their type 2 functionality, either through incorporating IL-4 into the manufacturing process or by priming manufactured CAR T products with IL-4 before infusion. Our findings provide insights into the mediators of durable CAR T therapy response and suggest potential therapeutic strategies to sustain long-term remission by boosting type 2 functionality in CAR T cells.
Disciplines :
Hematology Immunology & infectious disease
Author, co-author :
Bai, Zhiliang ✱; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Feng, Bing ✱; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ; Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
McClory, Susan E; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA ; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
de Oliveira, Beatriz Coutinho; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Diorio, Caroline; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA ; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
GREGOIRE, Céline ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Tao, Bo ; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
Yang, Luojia; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Zhao, Ziran; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Peng, Lei; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Sferruzza, Giacomo; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Zhou, Liqun; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Zhou, Xiaolei; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ; Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
Kerr, Jessica; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
Baysoy, Alev; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Su, Graham; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Yang, Mingyu; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
Camara, Pablo G; Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
Chen, Sidi ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Tang, Li ; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. li.tang@epfl.ch ; Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland. li.tang@epfl.ch
June, Carl H ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. cjune@upenn.edu ; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. cjune@upenn.edu ; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA. cjune@upenn.edu
Melenhorst, J Joseph ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. melenhj@ccf.org
Grupp, Stephan A ; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. grupp@chop.edu ; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. grupp@chop.edu
Fan, Rong ; Department of Biomedical Engineering, Yale University, New Haven, CT, USA. rong.fan@yale.edu ; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu ; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu ; Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu ; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA. rong.fan@yale.edu
S.L. Maude et al. Chimeric antigen receptor T cells for sustained remissions in leukemia N. Engl. J. Med. 2014 371 1507 1517
D.W. Lee et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial Lancet 2015 385 517 528 1:CAS:528:DC%2BC2cXhslGjtLbM
J.H. Park et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia N. Engl. J. Med. 2018 378 449 459 1:CAS:528:DC%2BC1cXitlylsbY%3D
R.M. Young N.W. Engel U. Uslu N. Wellhausen C.H. June Next-generation CAR T-cell therapies Cancer Discovery 2022 12 1625 1633 1:CAS:528:DC%2BB38Xit1KlsrrO
M. Ruella F. Korell P. Porazzi M.V. Maus Mechanisms of resistance to chimeric antigen receptor-T cells in haematological malignancies Nat. Rev. Drug Discov. 2023 22 976 995 1:CAS:528:DC%2BB3sXit1KgtLnO
A.E. Doan et al. FOXO1 is a master regulator of memory programming in CAR T cells Nature 2024 629 211 218 2024Natur.629.211D 1:CAS:528:DC%2BB2cXnvF2ltbk%3D
R.C. Larson M.V. Maus Recent advances and discoveries in the mechanisms and functions of CAR T cells Nat. Rev. Cancer 2021 21 145 161 1:CAS:528:DC%2BB3MXhvF2nt7o%3D
D.L. Porter et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia Sci. Transl. Med. 2015 7 303ra139
J.J. Melenhorst et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells Nature 2022 602 503 509 2022Natur.602.503M 1:CAS:528:DC%2BB38Xislemurg%3D
J. Yang Y. Chen Y. Jing M.R. Green L. Han Advancing CAR T cell therapy through the use of multidimensional omics data Nat. Rev. Clin. Oncol. 2023 20 211 228 1:CAS:528:DC%2BB3sXitlyhsLY%3D
Z. Bai et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL Sci. Adv. 2022 8 1:CAS:528:DC%2BB38XhvVegsLzL
M. Stoeckius et al. Simultaneous epitope and transcriptome measurement in single cells Nat. Methods 2017 14 865 868 1:CAS:528:DC%2BC2sXht1CkurzK
A.H. Long et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors Nat. Med. 2015 21 581 590 1:CAS:528:DC%2BC2MXhtFemsbfE
Z. Bai et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells J. Immunother. Cancer 2021 9 e002328
J.P. Böttcher et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control Cell 2018 172 1022 1037
U. Greenbaum K.M. Mahadeo P. Kebriaei E.J. Shpall N.Y. Saini Chimeric antigen receptor T-cells in B-acute lymphoblastic leukemia: state of the art and future directions Front. Oncol. 2020 10 1594
M. Paulsen O. Janssen Pro- and anti-apoptotic CD95 signaling in T cells Cell Commun. Signal. 2011 9 1:CAS:528:DC%2BC3MXlsVagtb8%3D
K. Man et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection Immunity 2017 47 1129 1141 1:CAS:528:DC%2BC2sXhvFKgsr3K
E. Armingol A. Officer O. Harismendy N.E. Lewis Deciphering cell–cell interactions and communication from gene expression Nat. Rev. Genet. 2021 22 71 88 1:CAS:528:DC%2BB3cXit1yht7vJ
Y. Rochman R. Spolski W.J. Leonard New insights into the regulation of T cells by γc family cytokines Nat. Rev. Immunol. 2009 9 480 490 1:CAS:528:DC%2BD1MXnsVylu78%3D
V.E. Dunlock et al. Tetraspanin CD53 controls T cell immunity through regulation of CD45RO stability, mobility, and function Cell Rep. 2022 39 1:CAS:528:DC%2BB38XhslGrtb7J
T.R. Hercus et al. Signalling by the βc family of cytokines Cytokine Growth Factor Rev. 2013 24 189 201 1:CAS:528:DC%2BC3sXksFOlsLY%3D
C. Goda et al. Involvement of IL-32 in activation-induced cell death in T cells Int. Immunol. 2006 18 233 240 1:CAS:528:DC%2BD28XovVGjsA%3D%3D
C. Li et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients J. Exp. Med. 2021 219 e20202084
H. Chi Regulation and function of mTOR signalling in T cell fate decisions Nat. Rev. Immunol. 2012 12 325 338 1:CAS:528:DC%2BC38XlvVKntLw%3D
A. Xia Y. Zhang J. Xu T. Yin X.J. Lu T cell dysfunction in cancer immunity and immunotherapy Front. Immunol. 2019 10 1719 1:CAS:528:DC%2BB3cXhsV2nsLw%3D
K.M. Luda et al. Ketolysis drives CD8+ T cell effector function through effects on histone acetylation Immunity 2023 56 2021 2035 1:CAS:528:DC%2BB3sXhsFOhtLrF
J. Borst J. Hendriks Y. Xiao CD27 and CD70 in T cell and B cell activation Curr. Opin. Immunol. 2005 17 275 281 1:CAS:528:DC%2BD2MXjvFeksLo%3D
Y. Shi et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know Cell Res. 2006 16 126 133 1:CAS:528:DC%2BD28Xhtlegt7Y%3D
K.T. Mueller et al. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia Blood 2017 130 2317 2325 1:CAS:528:DC%2BC1cXhs1erurjE
S.L. Maude et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia N. Engl. J. Med. 2018 378 439 448 1:CAS:528:DC%2BC1cXitlylsLw%3D
F. Sallusto Heterogeneity of human CD4+ T cells against microbes Annu. Rev. Immunol. 2016 34 317 334 1:CAS:528:DC%2BC28Xnslenu7k%3D
H. Spits et al. Recombinant interleukin 4 promotes the growth of human T cells J. Immunol. 1987 139 1142 1147 1:CAS:528:DyaL2sXlslequr8%3D
A. Vella T.K. Teague J. Ihle J. Kappler P. Marrack Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4 J. Exp. Med. 1997 186 325 330 1:CAS:528:DyaK2sXkvVaksbg%3D
K.J. Rautajoki E.M. Marttila T.A. Nyman R. Lahesmaa Interleukin-4 inhibits caspase-3 by regulating several proteins in the Fas pathway during initial stages of human T helper 2 cell differentiation Mol. Cell Proteom. 2007 6 238 251 1:CAS:528:DC%2BD2sXitVOitro%3D
M.C. Milone et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo Mol. Ther. 2009 17 1453 1464 1:CAS:528:DC%2BD1MXkvVWqsLk%3D
B.L. Levine et al. Gene transfer in humans using a conditionally replicating lentiviral vector Proc. Natl Acad. Sci. USA 2006 103 17372 2006PNAS.10317372L 1:CAS:528:DC%2BD28Xht1KqsbjM
Y. Hao et al. Integrated analysis of multimodal single-cell data Cell 2021 184 3573 3587 1:CAS:528:DC%2BB3MXhtlSrtrvE
T. Stuart et al. Comprehensive integration of single-cell data Cell 2019 177 1888 1902 1:CAS:528:DC%2BC1MXhtFens77L
C. Hafemeister R. Satija Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression Genome Biol. 2019 20 1:CAS:528:DC%2BC1MXisVyht7fF
T. Stuart A. Srivastava S. Madad C.A. Lareau R. Satija Single-cell chromatin state analysis with Signac Nat. Methods 2021 18 1333 1341 1:CAS:528:DC%2BB3MXitlyksL3L
Y. Zhang et al. Model-based Analysis of ChIP-Seq (MACS) Genome Biol. 2008 9
A.N. Schep B. Wu J.D. Buenrostro W. Greenleaf J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data Nat. Methods 2017 14 975 978 1:CAS:528:DC%2BC2sXhtlKjtbbE
M.S.B. Raredon et al. Single-cell connectomic analysis of adult mammalian lungs Sci. Adv. 2019 5 eaaw3851 2019SciA..5.3851R 1:CAS:528:DC%2BB3cXhtlalur3I
A. Krämer J. Green J. Pollard Jr S. Tugendreich Causal analysis approaches in Ingenuity pathway analysis Bioinformatics 2014 30 523 530