Community gross primary production and respiration in epilithic macroalgae and Posidonia oceanica macrophytodetritus accumulation in the Bay of Revellata (Corsica)
Posidonia oceanica; macrophytodetritus accumulation; macroalgae; net community production; gross primary production; community respiration
Abstract :
[en] We report estimates of community gross primary production (GPP), community respiration (CR), and net community production (NCP) based on the change of dissolved O2 during incubations over epilithic turf-forming macroalgae (Halopteris scoparia, Padina pavonica, and Dictyota dichotoma) on 7 occasions and in accumulations of Posidonia oceanica macrophytodetritus (i.e. litter) on 8 occasions in the Bay of Revellata (Corsica) from March 2009 to May 2011. In the epilithic macroalgae community, GPP ranged between 7.8 and 82.2mmol O2 m-2 d-1, CR ranged between -108.5 and -13.6mmol O2 m-2 d-1, and NCP ranged between -53.2 and -5.7mmol O2 m-2 d-1. In the P. oceanica macrophytodetritus accumulation, GPP ranged between 5.7 and 91.6mmol O2 m-2 d-1, CR ranged between -112.8 and -27.2mmol O2 m-2 d-1, and NCP ranged between -46.8 and -9.9mmol O2 m-2 d-1. GPP in both the epilithic macroalgae community and the P. oceanica macrophytodetritus accumulation peaked in summer and was lowest in fall, following the seasonal variation of incoming light. GPP correlated to macroalgal biomass but was unrelated to the biomass of living macroscopic plant material in the P. oceanica macrophytodetritus accumulation. The annual average of GPP was equivalent in the epilithic macroalgae and P. oceanica macrophytodetritus accumulation communities (17.6 and 19.4mol O2 m-2 yr-1). Both the epilithic macroalgae community and the P. oceanica macrophytodetritus accumulation were net heterotrophic with an annual average NCP of -6.1 and -8.8mol O2 m-2 yr-1, respectively. The NCP of the adjacent P. oceanica meadow at 10 m depth based on simultaneous measurements based on the open water O2 mass balance from moored O2 probes (optodes) was 28.9mol O2 m-2 yr-1. The potential export of dissolved organic carbon from the P. oceanica meadow could quantitatively meet the carbon demand to sustain the net heterotrophy of the adjacent epilithic macroalgae community in the Bay of Revellata. We also show the limitation and possibly over-estimation of extrapolating decay rates based on litter bag experiments with small quantities of material to “real” macrophytodetritus biomass densities.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Champenois, Willy ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Lepoint, Gilles ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Language :
English
Title :
Community gross primary production and respiration in epilithic macroalgae and Posidonia oceanica macrophytodetritus accumulation in the Bay of Revellata (Corsica)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Apostolaki, E.T., Marbà, N., Holmer, M., Karakassis, I., Fish farming impact on decomposition of Posidonia oceanica litter. J. Exp. Mar. Biol. Ecol. 369 (2009), 58–64, 10.1016/j.jembe.2008.10.022.
Barrón, C., Duarte, C.M., Dissolved organic matter release in a Posidonia oceanica meadow. Mar. Ecol. Prog. Ser. 374 (2009), 75–84, 10.3354/meps07715.
Barrón, C., Duarte, C.M., Frankignoulle, M., Borges, A.V., Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuar. Coast 29 (2006), 417–426, 10.1007/BF02784990.
Bay, D., A field study of the growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquat. Bot. 20 (1984), 43–64, 10.1016/0304-3770(84)90026-3.
Beleneva, I.A., Zhukova, N.V., Bacterial communities of some brown and red algae from peter the great bay, the sea of Japan. Microbiology 75 (2006), 348–357, 10.1134/S0026261706030180.
Bengtsson, M., Sjøtun, K., Lanzén, A., Øvreås, L., Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME J. 6 (2012), 2188–2198, 10.1038/ismej.2012.67.
Berg, P., Huettel, M., Glud, R.N., Reimers, C.E., Attard, K.M., The method and its contributions to defining oxygen and carbon fluxes in marine environments. Ann. Rev. Mar. Sci 14 (2022), 431–455, 10.1146/annurev-marine-042121-012329.
Boudouresque, C.F., Pergent, G., Pergent-Martini, C., Ruitton, S., Thibaut, T., Verlaque, M., The necromass of the Posidonia oceanica seagrass meadow: fate, role, ecosystem services and vulnerability. Hydrobiologia 781 (2016), 25–42, 10.1007/s10750-015-2333-y.
Brodersen, K.E., Trevathan-Tackett, S.M., Nielsen, D.A., Connolly, R.M., Lovelock, C.E., Atwood, T.B., Macreadie, P.I., Oxygen consumption and sulfate reduction in vegetated coastal habitats: effects of physical disturbance. Front. Mar. Sci., 6, 2019, 14, 10.3389/fmars.2019.00014.
Bulleri, F., Benedetti-Cecchi, L., Acunto, S., Cinelli, F., Hawkins, S.J., The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. J. Exp. Mar. Biol. Ecol. 267 (2002), 89–106, 10.1016/S0022-0981(01)00361-6.
Cawley, K.M., Ding, Y., Fourqurean, J., Jaffé, R., Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes. Mar. Freshw. Res. 63 (2012), 1098–1107, 10.1071/MF12028.
Cebrián, J., Duarte, C.M., Marbà, N., Enríquez, S., Magnitude and fate of the production of four co-occurring Western Mediterranean seagrass species. Mar. Ecol.: Prog. Ser. 155 (1997), 29–44, 10.3354/meps155029.
Cebrián, J., Patterns in the fate of production in plant communities. Am. Nat. 154:4 (1999), 449–468, 10.1086/303244.
Cebrian, J., Duarte, C.M., Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aquat. Bot. 70 (2001), 295–309, 10.1016/S0304-3770(01)00154-1.
Champenois, W., Borges, A.V., Inter-annual variations over a decade of primary production of the seagrass Posidonia oceanica. Limnol. Oceanogr., 2018, 10.1002/lno.11017.
Champenois, W., Borges, A.V., Net community metabolism of a Posidonia oceanica meadow. Limnol. Oceanogr. 66 (2021), 2126–2140, 10.1002/lno.11724.
Champenois, W., Borges, A.V., Seasonal and inter-annual variations of community metabolism rates of a Posidonia oceanica seagrass meadow. Limnol. Oceanogr. 57:1 (2012), 347–361, 10.4319/lo.2012.57.1.0347.
Costa, V., Mazzola, A., Rossi, F., Vizzini, S., Decomposition rate and invertebrate colonization of seagrass detritus along a hydrodynamic gradient in a Mediterranean coastal basin: the Stagnone di Marsala (Italy) case study. Mar. Ecol., 40, 2019, e12570, 10.1111/maec.12570.
Dauby, P., Bale, A.J., Bloomer, N., Canon, C., Ling, R.D., Norro, A., Robertson, J.E., Simon, A., Théate, J.M., Watson, A.J., Frankignoulle, M., Particle fluxes over a Mediterranean seagrass bed: a one year case study. Mar. Ecol. Prog. Ser. 126 (1995), 233–246, 10.3354/meps126233.
Duarte, C.M., Marbà, N., Gacia, E., Fourqurean, J.W., Beggins, J., Barrón, C., Apostolaki, E.T., Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cycles, 24, 2010, GB4032, 10.1029/2010GB003793.
Duarte, C.M., Gattuso, J.-P., Hancke, K., Gundersen, H., Filbee-Dexter, K., Pedersen, M.F., Middelburg, J.J., Burrows, M.T., Krumhansl, K.A., Wernberg, T., Moore, P., Pessarrodona, A., Ørberg, S.B., Pinto, I.S., Assis, J., Queirós, A.M., Smale, D.A., Bekkby, T., Serrão, E.A., Krause-Jensen, D., Global estimates of the extent and production of macroalgal forests. Global Ecol. Biogeogr. 31 (2022), 1422–1439, 10.1111/geb.13515.
Duarte, C.A., Cebrián, J., The fate of marine autotrophic production. Limnol. Oceanogr. 41 (1996), 1758–1766, 10.4319/lo.1996.41.8.1758.
Egea, L.G., Jiménez-Ramos, R., Hernández, I., Bouma, T.J., Brun, F.G., Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations. PLoS One, 13(2), 2018, e0192402, 10.1371/journal.pone.0192402.
Egea, L.G., Barrón, C., Jiménez–Ramos, R., Hernández, I., Vergara, J.J., Pérez–Lloréns, J.L., Brun, F.G., Coupling carbon metabolism and dissolved organic carbon fluxes in benthic and pelagic coastal communities. Estuar. Coast Shelf Sci., 227, 2019, 106336, 10.1016/j.ecss.2019.106336.
Egea, L.G., Jiménez–Ramos, R., Hernández, I., Brun, F.G., Effect of in Situ short–term temperature increase on carbon metabolism and dissolved organic carbon (DOC) fluxes in a community dominated by the seagrass Cymodocea nodosa. PLoS One, 14(1), 2019, e0210386, 10.1371/journal.pone.0210386.
Egea, L.G., Jiménez-Ramos, R., Hernández, I., Brun, F.G., Differential effects of nutrient enrichment on carbon metabolism and dissolved organic carbon (DOC) fluxes in macrophytic benthic communities. Mar. Environ. Res., 162, 2020, 105179, 10.1016/j.marenvres.2020.105179.
Egea, L.G., Pérez-Estrada, C.J., Jiménez-Ramos, R., Hernández, I., López-López, S., Brun, F.G., Changes in carbon metabolism and dissolved organic carbon fluxes on seagrass patches (Halodule wrightii) with different ages in Southern Gulf of California. Mar. Environ. Res., 191, 2023, 106136, 10.1016/j.marenvres.2023.106136.
Filbee-Dexter, K., Wernberg, T., Norderhaug, K.M., Ramirez-Llodra, E., Pedersen, M.F., Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia 187 (2018), 291–304, 10.1007/s00442-018-4121-7.
Filbee-Dexter, K., Pessarrodona, A., Duarte, C.M., Krause-Jensen, D., Hancke, K., Smale, D., Wernberg, T., Seaweed forests are carbon sinks that may help mitigate CO2 emissions: a comment on Gallagher et al. (2022). ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 80 (2023), 1814–1819, 10.1093/icesjms/fsad107.
Filbee-Dexter, K., Pessarrodona, A., Pedersen, M.F., Wernberg, T., Duarte, C.M., Assis, J., Bekkby, T., Burrows, M.T., Carlson, D.F., Gattuso, J.-P., Gundersen, H., Hancke, K., Krumhansl, K.A., Kuwae, T., Middelburg, J.J., Moore, P.J., Queirós, A.M., Smale, D.A., Sousa-Pinto, I., Suzuki, N., Krause-Jensen, D., Carbon export from seaweed forests to deep ocean sinks. Nat. Geosci., 2024, 10.1038/s41561-024-01449-7.
Frankignoulle, M., Bouquegneau, J.-M., Seasonal variations of the diel carbon budget of a marine macrophytes ecosystem. Mar. Ecol. Prog. Ser. 38 (1987), 197–199, 10.3354/meps038197.
Gallagher, J.B., Shelamoff, V., Reply to Stafford's (2022) comment on “Seaweed ecosystems may not mitigate CO2 emissions” by Gallagher et al. (2022). ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 79 (2022), 1703–1704, 10.1093/icesjms/fsac088 2022.
Gallagher, J.B., Shelamoff, V., Layton, C., Seaweed ecosystems may not mitigate CO2 emissions. ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 79 (2022), 585–592, 10.1093/icesjms/fsac011 2022.
Gallagher, J.B., Reply to the comment by Filbee-Dexter et al. (2023) “Seaweed forests are carbon sinks that may help mitigate CO2 emissions”. ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 80 (2023), 1820–1826, 10.1093/icesjms/fsad119.
Glud, R.N., Gundersen, J.K., Jørgensen, B.B., Revsbech, N.P., Schulz, H.D., Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Res. Part I 41 (1994), 1767–1788, 10.1016/0967-0637(94)90072-8.
Hacker, S.D., Steneck, R.S., Habitat architecture and the abundance and body size-dependent habitat selection of a phytal amphipod. Ecology 71 (1990), 2269–2285, 10.2307/1938638.
Harrison, P.G., Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat. Bot. 23 (1989), 263–288, 10.1016/0304-3770(89)90002-8.
Haywood, M.D.E., Vance, D.J., Loneragan, N.R., Seagrass and algal beds as nursery habitats for tiger prawns (Penaeus semisulcatus and P. esculentus) in a tropical Australian estuary. Mar. Biol. 122 (1995), 213–223, 10.1007/BF00348934.
Hendriks, I.E., Bouma, T.J., Morris, E.P., Duarte, C.M., Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle trapping rates. Mar. Biol. 157 (2010), 473–481, 10.1007/s00227-009-1333-8.
Holmer, M., Duarte, C.M., Marbá, N., Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66 (2003), 223–239, 10.1023/B:BIOG.0000005326.35071.51.
Hyndes, G.A., Nagelkerken, I., McLeod, R.J., Connolly, R.M., Lavery, P.S., Vanderklift, M.A., Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol. Rev. 89 (2014), 232–254, 10.1111/brv.12055.
IOC. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements, JGOFS Report 19, 170pp, 1994, United Nations Educational, Scientific and Cultural Organization-Intergovernmental Oceanographic Commission, Paris, France, 10.25607/OBP-1409.
Jiang, Z., Li, L., Fang, Y., Lin, J., Liu, S., Wu, Y., Huang, X., Eutrophication reduced the release of dissolved organic carbon from tropical seagrass roots through exudation and decomposition. Mar. Environ. Res., 179, 2022, 105703, 10.1016/j.marenvres.2022.105703.
Jiménez-Ramos, R., Tomas, F., Reynés, X., Romera-Castillo, C., Pérez-Lloréns, J.L., Egea, L.G., Carbon metabolism and bioavailability of dissolved organic carbon (DOC) fluxes in seagrass communities are altered under the presence of the tropical invasive alga Halimeda incrassata. Sci. Total Environ., 839, 2022, 156325, 10.1016/j.scitotenv.2022.156325.
Joher, S., Ballesteros, E., Cebrian, E., Sánchez, N., Rodríguez-Prieto, C., Deep-water macroalgaldominated coastal detritic habitats on the continental shelf off mallorca and menorca (balearic islands, western mediterranean). Bot. Mar. 55 (2012), 485–497, 10.1515/bot-2012-0113.
Katz, L., Sirjacobs, D., Gobert, S., Lejeune, P., Danis, B., Distribution of macroalgae in the area of calvi (Corsica). Biodivers. Data J., 9, 2021, e68249, 10.3897/BDJ.9.e68249.
Kirchman, D.L., Growth rates of microbes in the oceans. Ann. Rev. Mar. Sci 8 (2016), 285–309, 10.1146/annurev-marine-122414-033938.
Koopmans, D., Holtappels, M., Chennu, A., Weber, M., de Beer, D., High net primary production of mediterranean seagrass (Posidonia oceanica) meadows determined with aquatic eddy covariance. Front. Mar. Sci. 7:118 (2020), 1–13, 10.3389/fmars.2020.00118.
Krause- Jensen, D., Duarte, C.M., Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9 (2016), 737–742, 10.1038/ngeo2790.
Lavery, P.S., McMahon, K., Weyers, J., Boyce, M.C., Oldham, C.E., Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity. Mar. Ecol. Prog. Ser. 494 (2013), 121–133, 10.3354/meps10554.
Lee, J., Gambi, M.C., Kroeker, K.J., Munari, M., Peay, K., Micheli, F., Resilient consumers accelerate the plant decomposition in a naturally acidified seagrass ecosystem. Global Change Biol. 28 (2022), 4558–4576, 10.1111/gcb.16265.
Lepoint, G., Millet, S., Dauby, P., Gobert, S., Bouquegneau, J.-M., Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar. Ecol. Prog. Ser. 237 (2002), 87–96, 10.3354/meps237087.
Lepoint, G., Cox, A.-S., Dauby, P., Poulicek, M., Gobert, S., Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Mar. Biol. Res. 2:5 (2006), 355–365, 10.1080/17451000600962797.
Lepoint, G., Hyndes, G.A., Tropicalization of seagrass macrophytodetritus accumulations and associated food webs. Front. Mar. Sci., 9, 2022, 10.3389/fmars.2022.943841.
Liu, S., Jiang, Z., Zhou, C., Wu, Y., Arbi, I., Zhang, J., Huang, X., Trevathan-Tackett, S.M., Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications. Acta Oceanol. Sin. 37 (2018), 84–90, 10.1007/s13131-018-1233-1.
Long, M.H., Berg, P., Falter, J.F., Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques. J. Geophys. Res. 120 (2015), 3624–3639, 10.1002/2014JC010352.
Mallon, J., Banaszak, A.T., Donachie, L., Exton, D., Cyronak, T., Balke, T., Bass, A.M., A low-cost benthic incubation chamber for in-situ community metabolism measurements. PeerJ, 10, 2022, e13116, 10.7717/peerj.13116.
Marre, G., Deter, J., Holon, F., Boissery, P., Luque, S., Fine-scale automatic mapping of living Posidonia oceanica seagrass beds with underwater photogrammetry. Mar. Ecol. Prog. Ser. 643 (2020), 63–74, 10.3354/meps13338.
Marx, L., Flecha, S., Wesselmann, M., Morell, C., Hendriks, I.E., Marine macrophytes as carbon sinks: comparison between seagrasses and the non-native alga Halimeda incrassata in the western mediterranean (mallorca). Front. Mar. Sci., 8, 2021, 746379, 10.3389/fmars.2021.746379.
Mascart, T., Lepoint, G., Deschoemaeker, S., Binard, M., Remy, F., De Troch, M., Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. J. Sea Res. 95 (2015), 149–160, 10.1016/j.seares.2014.07.009.
Mateo, M.A., Romero, J., Evaluating seagrass leaf litter decomposition: an experimental comparison between litter-bag and oxygen-uptake methods. J. Exp. Mar. Biol. Ecol. 202 (1996), 97–106, 10.1016/0022-0981(96)00019-6.
Mateo, M.A., Romero, J., Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar. Ecol.: Prog. Ser. 151 (1997), 43–53, 10.3354/meps151043.
Mateo, M.A., Renom, P., Hemminga, M.A., Peene, J., Measurement of seagrass production using the 13C stable isotope compared with classical O2 and 14C methods. Mar. Ecol. Prog. Ser. 223 (2001), 157–165, 10.3354/meps223157.
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R., A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9 (2011), 552–560, 10.1890/110004.
Miller, R.J., Reed, D.C., Brzezinski, M.A., Community structure and productivity of subtidal turf and foliose algal assemblages. Mar. Ecol. Prog. Ser. 388 (2009), 1–11, 10.3354/meps08131.
Odum, H.T., Primary production in flowing waters. Limnol. Oceanogr. 1 (1956), 102–117, 10.4319/lo.1956.1.2.0102.
Ortega, A., Geraldi, N.R., Alam, I., Kamau, A.A., Acinas, S.G., Logares, R., Gasol, J.M., Massana, R., Krause- Jensen, D., Duarte, C.M., Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12 (2019), 748–754, 10.1038/s41561-019-0421-8.
Petersen, R.C., Cummins, K.W., Leaf processing in a woodland stream. Freshw. Biol. 4 (1974), 343–368, 10.1111/j.1365-2427.1974.tb00103.x.
Pergent, G., Rico-Raimondino, V., Pergent-Martini, C., Fate of primary production in Posidonia oceanica meadows of the Mediterranean. Aquat. Bot. 59 (1997), 307–321, 10.1016/S0304-3770(97)00052-1.
Pergent, G., Pergent-Martini, C., Leaf renewal cycle and primary production of Posidonia oceanica in the bay of Lacco Ameno (Ischia, Italy) using lepidochronological analysis. Aquat. Bot. 42 (1991), 49–66, 10.1016/0304-3770(91)90105-E.
Pessarrodona, A., Assis, J., Filbee-Dexter, K., Burrows, M.T., Gattuso, J.-P., Duarte, C.M., Krause-Jensen, D., Moore, P.J., Smale, D.A., Wernberg, T., Global seaweed productivity. Sci. Adv., 8, 2022, eabn2465, 10.1126/sciadv.abn2465.
Piazzi, L., Pardi, G., Balata, D., Cecchi, E., Cinelli, F., Seasonal dynamics of a subtidal North-Western Mediterranean macroalgal community in relation to depth and substrate inclination. Bot. Mar. 45 (2002), 243–252, 10.1515/BOT.2002.023.
Remy, F., Mascart, T., De Troch, M., Michel, L.N., Lepoint, G., Seagrass organic matter transfer in Posidonia oceanica macrophytodetritus accumulations. Estuar. Coast Shelf Sci. 212 (2018), 73–79, 10.1016/j.ecss.2018.07.001.
Romero, J., Pergent, G., Pergent-Martini, C., Mateo, M.-A., Regnier, C., The detritic compartment in a Posidonia oceanica meadow: litter features, decomposition rates, and mineral stocks. Mar. Ecol. 13 (1992), 69–83, 10.1111/j.1439-0485.1992.tb00341.x.
Ruiz-Halpern, S., Vaquer-Sunyer, R., Duarte, C.M., Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera. Front. Mar. Sci., 1, 2014, 67, 10.3389/fmars.2014.00067.
Sommer, S., Türk, M., Kriwanek, S., Pfannkuche, O., Gas exchange system for extended in situ benthic chamber flux measurements under controlled oxygen conditions: first application - sea bed methane emission measurements at Captain Arutyunov mud volcano. Limnol Oceanogr. Methods, 6, 2008, 10.4319/lom.2008.6.23.
Sommer, S., Linke, P., Pfannkuche, O., Niemann, H., Treude, T., Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand). Mar. Geol. 272 (2010), 223–232, 10.1016/j.margeo.2009.06.003.
Smith, S.V., Marine macrophytes as a global carbon sink. Science 211 (1981), 838–840, 10.1126/science.211.4484.838.
Stafford, R., Comment on “Seaweed ecosystems may not mitigate CO2 emissions” by Gallagher et al. (2022. ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 79 (2022), 1701–1702, 10.1093/icesjms/fsac087 2022.
van de Koppel, J., van der Heide, T., Altieri, A.H., Eriksson, B.K., Bouma, T.J., Olff, H., Silliman, B.R., Long-distance interactions regulate the structure and resilience of coastal ecosystems. Ann. Rev. Mar. Sci 7 (2015), 139–158, 10.1146/annurev-marine-010814-015805.
Van Engeland, T., Bouma, T.J., Morris, E.P., Brun, F.G., Peralta, G., Lara, M., Hendriks, I.E., Soetaert, K., Middelburg, J.J., Potential uptake of dissolved organic matter by seagrasses and macroalgae. Mar. Ecol. Prog. Ser. 427 (2011), 71–81, 10.3354/meps09054.
Velimirov, B., Lejeune, P., Kirschner, A., Jousseaume, M., Abadie, A., Pête, D., Dauby, P., Richir, J., Gobert, S., Estimating carbon fluxes in a Posidonia oceanica system: paradox of the bacterial carbon demand. Estuar. Coast Shelf Sci. 171 (2016), 23–34, 10.1016/j.ecss.2016.01.008.
Volkmann, C., Halbedel, S., Voss, M., Schubert, H., The role of dissolved organic and inorganic nitrogen for growth of macrophytes in coastal waters of the Baltic Sea. J. Exp. Mar. Biol. Ecol. 477 (2016), 23–30, 10.1016/j.jembe.2016.01.005.
Wang, X., Chen, R.F., Cable, J.E., Cherrier, J., Leaching and microbial degradation of dissolved organic matter from salt marsh plants and seagrasses. Aquat. Sci. 76 (2014), 595–609, 10.1007/s00027-014-0357-4.
Wiese, J., Thiel, V., Nagel, K., Staufenberger, T., Imhoff, J.F., Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar. Biotechnol. 11 (2009), 287–300, 10.1007/s10126-008-9143-4.
Zieman, J.C., Methods for the study of the growth and production of turtle grass, Thalassia testudinum konig. Aquaculuture 4 (1974), 139–143, 10.1016/0044-8486(74)90029-5.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.