Climate adaptation; Drought; Grain filling period; Impact analysis; Irrigation; Water stress; Global and Planetary Change
Abstract :
[en] This study aimed to analyze the impact of variations of drought-related agro-climatic indices including cumulative precipitation, cumulative potential evapotranspiration, cumulative actual evapotranspiration, cumulative crop evapotranspiration, cumulative water stress, and cumulative water deficit during nine consecutive phenological stages (emergence to physiological maturity) on wheat yield in arid, semi-arid, and sub-humid regions of Iran during 1999–2018. Principal component analysis was used to recognize the main components that largely explained the variations of agro-climatic indices during different stages of the crop growing period. Then, the relationships between the major components, retrieved from principal component analysis, and the crop yield were assessed. Wheat irrigation requirements were also calculated to investigate the regional water supply–demand patterns during the crop growing period. The findings highlighted increasing impacts of cumulative precipitation, cumulative potential evapotranspiration, cumulative crop evapotranspiration, and cumulative actual evapotranspiration and decreasing impacts of cumulative water stress and deficit on wheat yield, particularly in arid and semi-arid regions. The crop yield was more affected by variations of the agro-climatic indices during the reproductive phase than the vegetative phase. Accordingly, booting to flowering in the arid region, flowering in the sub-humid region, and stem elongation to booting in the semi-arid region were the most sensitive periods of wheat to agro-climatic indices variations. Wheat irrigation requirements in arid and semi-arid regions started earlier than in the sub-humid region. From the findings, it was concluded that adjusting the irrigation schedule based on wheat irrigation requirements during the wheat growing period could help farmers to achieve a favorable wheat yield.
Disciplines :
Agriculture & agronomy
Author, co-author :
Kheiri, Mohammad; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Kambouzia, Jafar; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Rahimi-Moghaddam, Sajjad; Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
Moghaddam, Saghi Movahhed; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Vasa, László; Faculty of Economics, Széchenyi Istvàn University, Győr, Hungary
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement ; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic ; Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania
Language :
English
Title :
Effects of agro-climatic indices on wheat yield in arid, semi-arid, and sub-humid regions of Iran
Publication date :
March 2024
Journal title :
Regional Environmental Change
ISSN :
1436-3798
eISSN :
1436-378X
Publisher :
Springer Science and Business Media Deutschland GmbH
Abi Saab MT, Houssemeddine Sellami M, Giorio P, Basile A, Bonfante A et al (2019) Assessing the potential of cereal production systems to adapt to contrasting weather conditions in the Mediterranean region. Agronomy 9(7):393. 10.3390/agronomy9070393 DOI: 10.3390/agronomy9070393
Abid M, Ali S, Qi LK, Zahoor R, Tian Z et al (2018) Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Reports 8(1):4615. 10.1038/s41598-018-21441-7 DOI: 10.1038/s41598-018-21441-7
Ahmed K, Shabbir G, Ahmed M, Shah KN (2020) Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ 729:139082. 10.1016/j.scitotenv.2020.139082 DOI: 10.1016/j.scitotenv.2020.139082
Alghabari F, Ihsan MZ, Hussain S, Aishia Gh, Daur I (2015) Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environ Sci Pollut Res Int 22(20):15506–15515. 10.1007/s11356-015-4724-z DOI: 10.1007/s11356-015-4724-z
Alghabari F, Ihsan MZ, Khaliq A, Hussain S, Daur I et al (2016) Gibberellin-sensitive Rht alleles confer tolerance to heat and drought stresses in wheat at booting stage. J Cereal Sci 70:72–78. 10.1016/j.jcs.2016.05.016 DOI: 10.1016/j.jcs.2016.05.016
Alonso C, Gouveia CM, Russo A, Páscoa P (2019) Crops’ exposure, sensitivity and adaptive capacity to drought occurrence. NHESS 19(12):2727–2743. 10.5194/nhess-19-2727-2019 DOI: 10.5194/nhess-19-2727-2019
Allen RG, Pereira LS, Raes D, Smith M (1998) Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO-Food and Agriculture Organisation of the United Nations, Rome (http://www.fao.org/docrep) ARPAV (2000), La caratterizzazione climatica della Regione Veneto, Quaderni per. Geophysics 156: 178
Archer CL, Caldeira K (2009) Global assessment of high-altitude wind power. Energies 2(2):307–319. 10.3390/en20200307 DOI: 10.3390/en20200307
Arshad I, Umar R (2022) Urban groundwater pollution: causes, impacts and mitigation. Current Directions in Water Scarcity Research l 5:379–397. 10.1016/B978-0-323-85378-1.00019-2 DOI: 10.1016/B978-0-323-85378-1.00019-2
Ashraf B, Yazdani R, Mousavi-Baygi M, Bannayan M (2014) Investigation of temporal and spatial climate variability and aridity of Iran. Theor Appl Climatol 118:35–46. 10.1007/s00704-013-1040-8 DOI: 10.1007/s00704-013-1040-8
Bannayan M, Sanjani S (2011) Weather conditions associated with irrigated crops in an arid and semi arid environment. Agric for Meteorol 151(12):1589–1598. 10.1016/j.agrformet.2011.06.015 DOI: 10.1016/j.agrformet.2011.06.015
Bannayan M, Sanjani S, Alizadeh A, Lotfabadi SS, Mohamadian A (2010) Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Res 118(2):105–114. 10.1016/j.fcr.2010.04.011 DOI: 10.1016/j.fcr.2010.04.011
Bornn L, Zidek JV (2012) Efficient stabilization of crop yield prediction in the Canadian Prairies. Agric for Meteorol 152:223–232. 10.1016/j.agrformet.2011.09.013 DOI: 10.1016/j.agrformet.2011.09.013
Bouaziz M, Medhioub E, Csaplovisc E (2021) A machine learning model for drought tracking and forecasting using remote precipitation data and a standardized precipitation index from arid regions. J Arid Environ 189:104478. 10.1016/j.jaridenv.2021.104478 DOI: 10.1016/j.jaridenv.2021.104478
Caubel J, de Cortázar-Atauri IG, Launay M, de Noblet-Ducoudré N, Huard F et al (2015) Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria. Agric for Meteorol 207:94–106. 10.1016/j.agrformet.2015.02.005 DOI: 10.1016/j.agrformet.2015.02.005
Chen Y, Zhang Z, Wang P, Song X, Wei X et al (2016) Identifying the impact of multi-hazards on crop yield—a case for heat stress and dry stress on winter wheat yield in northern China. Eur J Agron 73:55–63. 10.1016/j.eja.2015.10.009 DOI: 10.1016/j.eja.2015.10.009
Choubin B, Khalighi-Sigaroodi S, Malekian A, Ahmad S, Attarod P (2014) Drought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approach. J Mt Sci 11:1593–1605. 10.1007/s11629-014-3020-6 DOI: 10.1007/s11629-014-3020-6
Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11(5):0156362. 10.1371/journal.pone.0156362 DOI: 10.1371/journal.pone.0156362
Dietz KJ, Zörb C, Geilfus CM (2021) Drought and crop yield. Plant Biol. 10.1111/plb.13304 DOI: 10.1111/plb.13304
Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh VP, Kahya E (2011) Trends in reference crop evapotranspiration over Iran. J Hydrol 399(3–4):422–433. 10.1016/j.jhydrol.2011.01.021 DOI: 10.1016/j.jhydrol.2011.01.021
Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO Irrigation and Drainage Paper 24, Rome, Italy
Eagleman JR (1971) An experimentally derived model for actual evapotranspiration. Agric Meteorol 8:385–394. 10.1016/0002-1571(71)90124-5 DOI: 10.1016/0002-1571(71)90124-5
Fahad S, Hussain S, Saud S, Khan F, Hassan Amanullah S et al (2017) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202(2):139–150. 10.1111/jac.12148 DOI: 10.1111/jac.12148
Farg E, Arafat SM, Abd El-Wahed MS, El-Gindy AM (2012) Estimation of evapotranspiration ETc and crop coefficient Kc of wheat, in south Nile Delta of Egypt using integrated FAO-56 approach and remote sensing data. EJRS 15(1):83–89. 10.1016/j.ejrs.2012.02.001 DOI: 10.1016/j.ejrs.2012.02.001
Farooq M, Hussain M, Siddique KH (2014) Drought stress in wheat during flowering and grain-filling periods. Critical Rev Plant Sci 33(4):331–349. 10.1080/07352689.2014.875291 DOI: 10.1080/07352689.2014.875291
Farooq M, Hussain M, Ul-Allah S, Siddique KH (2019) Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agric Water Manag 219:95–108. 10.1016/j.agwat.2019.04.010 DOI: 10.1016/j.agwat.2019.04.010
García-Vila M, Fereres E (2012) Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. Eur J Agron 36:21–31. 10.1016/j.eja.2011.08.003 DOI: 10.1016/j.eja.2011.08.003
Hasanuzzaman M, Hossain MA, Teixeira da Silva J, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M. (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht 261–315. https://doi.org/10.1007/978-94-007-2220-0_8
Hlaváčová M, Klem K, Rapantová B, Novotna K, Urban O et al (2018) Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field Crops Res 22:1182–1195. 10.1016/j.fcr.2018.02.022 DOI: 10.1016/j.fcr.2018.02.022
Hussain HA, Men S, Hussain S, Chen Y, Ali S et al (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9(1):3890. 10.1038/s41598-019-40362-7 DOI: 10.1038/s41598-019-40362-7
Ihsan MZ, El-Nakhlawy FS, Ismail SM, Fahad S, Daur I (2016) Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Front Plant Sci 7:795. 10.3389/fpls.2016.00795 DOI: 10.3389/fpls.2016.00795
IPCC (2018) IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, p 32
Jahangir MH, Haghighi P, Danehkar S (2022) Downscaling climate parameters in Fars province, using models of the fifth report and RCP scenarios. Ecol Inform 68:101558. 10.1016/j.ecoinf.2022.101558 DOI: 10.1016/j.ecoinf.2022.101558
Jensen ME, Allen RG (1990) Evapotranspiration and irrigation water requirements. Am Soc Civil Eng. 10.1061/9780784414057 DOI: 10.1061/9780784414057
Karimi V, Karami E, Keshavarz M (2018) Climate change and agriculture: impacts and adaptive responses in Iran. J Integr Agric 17(1):1–15. 10.1016/S2095-3119(17)61794-5 DOI: 10.1016/S2095-3119(17)61794-5
Kheiri M, Soufizadeh S, Ghaffari A, AghaAlikhani M, Ali E (2017) Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Clim Change 141(4):703–717. 10.1007/s10584-017-1904-5 DOI: 10.1007/s10584-017-1904-5
Kheiri M, Kambouzia J, Deihimfard R, Moghaddam SM et al (2021a) Assessing the response of dryland barley yield to climate variability in semi-arid regions. Iran J Arid Land 13:905–917. 10.1007/s40333-021-0017-1 DOI: 10.1007/s40333-021-0017-1
Kheiri M, Kambouzia J, Deihimfard R, Yaghoubian I, Movahhed Moghaddam S (2021b) Response of rainfed chickpea yield to spatio-temporal variability in climate in the Northwest of Iran. Int J Plant Prod 15:499–510. 10.1007/s42106-021-00153-5 DOI: 10.1007/s42106-021-00153-5
Kheiri M, Soufizadeh S, Moghaddam SM, Ghaffari A (2021c) Exploring the impact of weather variability on phenology, length of growing period, and yield of contrast dryland wheat cultivars. Agri Res 10:556–568. 10.1007/s40003-020-00523-x DOI: 10.1007/s40003-020-00523-x
Kheiri M, Kambouzia J, Sayahnia R, Soufizadeh S, Damghani AM et al (2023) Environmental and socioeconomic assessment of agroforestry implementation in Iran. J Nat Conserv 72:126358. 10.1016/j.jnc.2023.126358 DOI: 10.1016/j.jnc.2023.126358
Langridge P, Reynolds M (2021) Breeding for drought and heat tolerance in wheat. Theor Appl Genet 134:1753–1769. 10.1007/s00122-021-03795-1 DOI: 10.1007/s00122-021-03795-1
Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. 10.1038/nature16467 DOI: 10.1038/nature16467
Madani K (2014) Water management in Iran: what is causing the looming crisis? J Environ Stud Sci 4(4):315–328. 10.1007/s13412-014-0182-z DOI: 10.1007/s13412-014-0182-z
MAJ (2020) Distribution of cropping area and crop productivity in Iran. Ministry of Agriculture-Jahad. Available at: https://amar.maj.ir/
Mansouri Daneshvar MR, Ebrahimi M, Nejadsoleymani H (2019) An overview of climate change in Iran: facts and statistics. Environ Syst Res 8:1–10. 10.1186/s40068-019-0135-3 DOI: 10.1186/s40068-019-0135-3
Marek GW, Gowda PH, Evett SR, Louis Buamhardt R, Brauer DK, et al. (2016) Estimating evapotranspiration for dryland cropping systems in the semiarid Texas High Plains using SWAT. JAWRA 52:298–314. 10.1111/1752-1688.12383 DOI: 10.1111/1752-1688.12383
Mathieu JA, Aires F (2018) Assessment of the agro-climatic indices to improve crop yield forecasting. Agric for Meteorol 253:15–30. 10.1016/j.agrformet.2018.01.031 DOI: 10.1016/j.agrformet.2018.01.031
McGowan NE, Roche N, Aughney T, Flanagan J, Nolan P et al (2021) Testing consistency of modelled predictions of the impact of climate change on bats. Clim Change Ecol 100011. https://doi.org/10.1016/j.ecochg.2021.100011
Merabti A, Darouich H, Paredes P, Meddi M, Pereira LS (2023) Assessing Spatial Variability and Trends of Droughts in Eastern Algeria Using SPI, RDI, PDSI, and MedPDSI—A Novel Drought Index Using the FAO56 Evapotranspiration Method. Water 15:626. 10.3390/w15040626 DOI: 10.3390/w15040626
Mesgaran MB, Madani K, Hashemi H, Azadi P (2017) Iran’s land suitability for agriculture. Sci Rep 7:7670. 10.1038/s41598-017-08066-y DOI: 10.1038/s41598-017-08066-y
Modarres R, Sarhadi A, Burn DH (2016) Changes of extreme drought and flood events in Iran. Glob Planet Change 144:67–81. 10.1016/j.gloplacha.2016.07.008 DOI: 10.1016/j.gloplacha.2016.07.008
Mousavi-Baygi M, Bannayan M, Ashraf B, AsadiOskuei E (2016) Assessment of climatic indices limiting rainfed wheat yield. Ecol Indic 62:298–305. 10.1016/j.ecolind.2015.11.007 DOI: 10.1016/j.ecolind.2015.11.007
Nadeem M, Li J, Yahya M, Sher A, Ma C et al (2019) Research progress and perspective on drought stress in legumes: A review. Int J Mol Sci 20(10):2541. 10.3390/ijms20102541 DOI: 10.3390/ijms20102541
Nio S, Cawthray G, Wade L, Colmer T (2011) Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem 49:1126–1137. 10.1016/j.plaphy.2011.05.011 DOI: 10.1016/j.plaphy.2011.05.011
Nistor MM, Gualtieri AF, Cheval S, Dezsi Ş, Boţan VE (2016) Climate change effects on crop evapotranspiration in the Carpathian Region from 1961 to 2010. Meteorol Appl 23(3):462–469. 10.1002/met.1570 DOI: 10.1002/met.1570
Oweis T, Hachum A (2006) Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agri Water Manag 80:57–73. 10.1016/j.agwat.2005.07.004 DOI: 10.1016/j.agwat.2005.07.004
Pereira LS, Paredes P, Jovanovic N (2020) Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric Water Manag 241:106357. 10.1016/j.agwat.2020.106357 DOI: 10.1016/j.agwat.2020.106357
Prajapati VK, Khanna M, Singh M, Kaur R, Sahoo RN et al (2022) PCA–based composite drought index for drought assessment in Marathwada region of Maharashtra state, India. Theor Appl Climatol 149:207–220. 10.1007/s00704-022-04044-1 DOI: 10.1007/s00704-022-04044-1
Qian B, De Jong R, Gameda S (2009) Multivariate analysis of water-related agroclimatic factors limiting spring wheat yields on the Canadian prairies. Eur J Agron 30(2):140–150. 10.1016/j.eja.2008.09.003 DOI: 10.1016/j.eja.2008.09.003
Rahimi-Moghaddam S, Deihimfard R, Azizi K, Roostaei M (2021) Characterizing spatial and temporal trends in drought patterns of rainfed wheat (Triticum aestivum L.) across various climatic conditions: a modelling approach. Eur J Agron 129:126333. 10.1016/j.eja.2021.126333 DOI: 10.1016/j.eja.2021.126333
Reynolds MP, Calderini D, Condon A (2007) Association of source/sink traits with yield, biomass and radiation use efficiency among random sister lines from three wheat crosses in a high-yield environment. J Agric Sci 145:3–16. 10.1017/S0021859607006831 DOI: 10.1017/S0021859607006831
Rezaei EE, Webber H, Gaiser T, Naab J, Ewert F (2015) Heat stress in cereals: mechanisms and modelling. Eur J Agron 64:98–113. 10.1016/j.eja.2014.10.003 DOI: 10.1016/j.eja.2014.10.003
Rinaldi M, He Z (2014) Decision support systems to manage irrigation in agriculture. Adv Agron 123:229–279. 10.1016/B978-0-12-420225-2.00006-6 DOI: 10.1016/B978-0-12-420225-2.00006-6
Rivington M, Matthews KB, Buchan K, Miller DG, Bellocchi G et al (2013) Climate change impacts and adaptation scope for agriculture indicated by agro-meteorological metrics. Agric Syst 114:15–31. 10.1016/j.agsy.2012.08.003 DOI: 10.1016/j.agsy.2012.08.003
Rodrigo-Comino J, Salvia R, Quaranta G, Cudlín P, Salvati L et al (2021) Climate aridity and the geographical shift of olive trees in a Mediterranean Northern Region. Climate 9(4):64. 10.3390/cli9040064 DOI: 10.3390/cli9040064
Sarvestani ZT, Pirdashti H, Sanavy SAM, Balouchi H (2008) Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pak J Biol Sci 11(10):1303–1309. 10.3923/pjbs.2008.1303.1309 DOI: 10.3923/pjbs.2008.1303.1309
Segnon AC, Totin E, Zougmoré RB, Lokossou JC, Thompson-Hall M et al (2021) Differential household vulnerability to climatic and non-climatic stressors in semi-arid areas of Mali. West Africa Clim Dev 13(8):697–712. 10.1080/17565529.2020.1855097 DOI: 10.1080/17565529.2020.1855097
Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S et al (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705. 10.3389/fpls.2018.01705 DOI: 10.3389/fpls.2018.01705
Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ (2014) Adapting wheat in Europe for climate change. J Cereal Sci 59(3):245–256. 10.1016/j.jcs.2014.01.006 DOI: 10.1016/j.jcs.2014.01.006
Shah N, Paulsen G (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226. 10.1023/A:1026237816578 DOI: 10.1023/A:1026237816578
Shao GC, Deng S, Liu N, Yu S, Wang M et al (2014) Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Eur J Agron 53:1–9. 10.1016/j.eja.2013.10.005 DOI: 10.1016/j.eja.2013.10.005
Singh SD (1981) Moisture-sensitive growth stages of dwarf wheat and optimal sequencing of evapotranspiration deficits. Agron J 73(3):387–391. 10.2134/agronj1981.00021962007300030001x DOI: 10.2134/agronj1981.00021962007300030001x
Sultan B, Bella-Medjo M, Berg A, Quirion P, Janicot S (2010) Multi-scales and multi-sites analyses of the role of rainfall in cotton yields in West Africa. Int J Climatol 30(1):58–71. 10.1002/joc.1872 DOI: 10.1002/joc.1872
Sun F, Chen Q, Chen Q, Jiang M, Gao W et al (2021) Screening of key drought tolerance indices for cotton at the flowering and boll setting stage using the dimension reduction method. Front Plant Sci 12:1341. 10.3389/fpls.2021.619926 DOI: 10.3389/fpls.2021.619926
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32–43. 10.1111/nph.12797 DOI: 10.1111/nph.12797
Tabari H, Talaee PH, Nadoushani SM, Willems P, Marchetto A (2014) A survey of temperature and precipitation based aridity indices in Iran. Quatern Int 345:158–166. 10.1016/j.quaint.2014.03.061 DOI: 10.1016/j.quaint.2014.03.061
Tahmasebi M, Feike T, Soltani A, Ramroudi M, Ha N (2018) Trade-off between productivity and environmental sustainability in irrigated vs. rainfed wheat production in Iran. J Clean Prod 174:367–379. 10.1016/j.jclepro.2017.10.305 DOI: 10.1016/j.jclepro.2017.10.305
Thakur JK, Srivastava PK, Singh SK, Vekerdy Z (2012) Ecological monitoring of wetlands in semi-arid region of Konya closed Basin, Turkey. Reg Environ Change 12:133–144. 10.1007/s10113-011-0241-x DOI: 10.1007/s10113-011-0241-x
Vogel C, Olivier D (2019) Re-imagining the potential of effective drought responses in South Africa. Reg Environ Change 19:1561–1570. 10.1007/s10113-018-1389-4 DOI: 10.1007/s10113-018-1389-4
Whitechurch EM, Slafer GA, Miralles DJ (2007) Variability in the duration of stem elongation in wheat and barley genotypes. J Agron Crop Sci 193(2):138–145. 10.1111/j.1439-037X.2007.00260.x DOI: 10.1111/j.1439-037X.2007.00260.x
Yang X, Wang B, Chen L, Li P, Cao C (2019) The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep 9:3742. 10.1038/s41598-019-40161-0 DOI: 10.1038/s41598-019-40161-0
Zarei AR, Shabani A, Mahmoudi MR (2020) Evaluation of the influence of occurrence time of drought on the annual yield of rain-fed winter wheat using backward multiple generalized estimation equation. Water Resour Manag 34:2911–2931. 10.1007/s11269-020-02590-9 DOI: 10.1007/s11269-020-02590-9
Zhao Y, Zhang J, Bai Y, Zhang S, Yang S et al (2022) Drought monitoring and performance evaluation based on machine learning fusion of multi-source remote sensing drought factors. Remote Sensing 14:6398. 10.3390/rs14246398 DOI: 10.3390/rs14246398
Zheng M, Tao Y, Hussain S, Jiang Q, Peng S et al (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78(2):167–178. 10.1007/s10725-015-0083-5 DOI: 10.1007/s10725-015-0083-5