Cuckoo Optimization Algorithm (COA); Groundwater quality; Machine learning; Multiverse Optimizer (MVO); Teaching Learning-Based Optimization (TLBO); Cuckoo optimization algorithm; Evaporation rate; Machine-learning; Multiverse optimizer; Optimization algorithms; Optimizers; Teaching learning-based optimization; Teaching-learning-based optimizations; Total hardness; Global and Planetary Change; Environmental Chemistry; Water Science and Technology; Soil Science; Pollution; Geology; Earth-Surface Processes
Abstract :
[en] A groundwater reservoir is either a solitary aquifer or a network of interconnected aquifers. A particular aquifer’s groundwater purity evaluation could be time-consuming and costly. This study quantified the properties of Na%, SO42−, Cl, Na+, Mg2+, Ca2+, HCO3−, K+, and pH to predict the water quality parameter known as total hardness (as CaCO3). Groundwater quality data for the Shiraz Plain from 2002 to 2018 was utilized to accomplish this objective. The paper contrasts a hybrid methodology that combines Teaching Learning-Based Optimization (TLBO), Multiverse Optimizer (MVO), the Cuckoo Optimization Algorithm (COA), and the Evaporation Rate-based Water Cycle Algorithm (ER-WCA) with Artificial Neural Networks (ANN) this was done to design an optimal network for groundwater quality with conventional ANN. In comparison to all other TLBO-ANN, MVO-ANN, and COA-ANN developed models, the ER-WCA-ANN technique (with a population size of 500 and eight neurons in each hidden layer) provided the most accurate prediction for the TH with R2 values of 0.9983 and 0.98261, and RMSE values of 0.03698 and 0.00611, respectively, in the training and testing datasets. A comparison of the findings for the forecasting of groundwater quality showed that the ER-WCA-ANN hybrid model might increase prediction accuracy. These findings may have significant implications for future groundwater quality assessments.
Disciplines :
Agriculture & agronomy
Author, co-author :
Moayedi, Hossein; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam ; School of Engineering and Technology, Duy Tan University, Da Nang, Viet Nam
Salari, Marjan; Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran
Ali, Sana Abdul-Jabbar; Pharmacy Department, AlSafwa University College, Karbalaa, Iraq
Dehrashid, Atefeh Ahmadi; Department of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement
Language :
English
Title :
Modeling the total hardness (TH) of groundwater in aquifers using novel hybrid soft computing optimizer models
Publication date :
July 2024
Journal title :
Environmental Earth Sciences
ISSN :
1866-6280
eISSN :
1866-6299
Publisher :
Springer Science and Business Media Deutschland GmbH
O.I. Abiodun A. Jantan A.E. Omolara K.V. Dada N.A. Mohamed H. Arshad State-of-the-art in artificial neural network applications: a survey Heliyon 2018 4 11 e00938 10.1016/j.heliyon.2018.e00938
Adnan Ikram RM, Khan I, Moayedi H, Ahmadi Dehrashid A, Elkhrachy I, Nguyen Le B (2023) Novel evolutionary-optimized neural network for predicting landslide susceptibility. Environ Dev Sustain 19:1–33.
Ahmadi Dehrashid A, Dong H, Fatahizadeh M, Gholizadeh Touchaei H, Gör M, Moayedi H, Salari M, Thi QT (2024) A new procedure for optimizing neural network using stochastic algorithms in predicting and assessing landslide risk in East Azerbaijan. Stoch Environ Res Risk Assess 1–30. https://doi.org/10.1007/s00477-024-02690-7
K. Almutairi S. Algarni T. Alqahtani H. Moayedi A. Mosavi A TLBO-tuned neural processor for predicting heating load in residential buildings Sustainability 2022 14 10 5924
M. Alweshah M. Al-Sendah O.M. Dorgham A. Al-Momani S. Tedmori Improved water cycle algorithm with probabilistic neural network to solve classification problems Clust Comput 2020 23 2703 2718
A. Badeenezhad H.R. Tabatabaee H.-A. Nikbakht M. Radfard A. Abbasnia M.A. Baghapour M. Alhamd Estimation of the groundwater quality index and investigation of the affecting factors their changes in Shiraz drinking groundwater, Iran Groundw Sustain Dev 2020 11
D.T. Bui B. Pradhan H. Nampak Q.-T. Bui Q.-A. Tran Q.-P. Nguyen Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS J Hydrol 2016 540 317 330
W. Chen M. Panahi K. Khosravi H.R. Pourghasemi F. Rezaie D. Parvinnezhad Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization J Hydrol 2019 572 435 448
W. Chen H. Shahabi A. Shirzadi H. Hong A. Akgun Y. Tian J. Liu A.-X. Zhu S. Li Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling Bull Eng Geol Env 2019 78 4397 4419
P. Coulibaly F. Anctil B. Bobée Prévision hydrologique par réseaux de neurones artificiels: état de l’art Can J Civ Eng 1999 26 3 293 304
S. David The Water Cycle (John Yates, Illus) 1993 New York Thomson Learning
H. Eskandar A. Sadollah A. Bahreininejad K. Lumpur Weight optimization of truss structures using water cycle algorithm Int J Optim Civ Eng 2013 3 1 115 129
M. Feindt U. Kerzel The NeuroBayes neural network package Nucl Instrum Methods Phys Res Sect A Acceler Spectrom Detect Assoc Equip 2006 559 1 190 194 1:CAS:528:DC%2BD28XisFOntbo%3D 10.1016/j.nima.2005.11.166
L.K. Foong H. Moayedi Z. Lyu Computational modification of neural systems using a novel stochastic search scheme, namely evaporation rate-based water cycle algorithm: an application in geotechnical issues Eng Comput 2021 37 3347 3358
V. Gholami M. Booij Use of machine learning and geographical information system to predict nitrate concentration in an unconfined aquifer in Iran J Clean Prod 2022 360 1:CAS:528:DC%2BB38XhslanurvL
M.S. Hanoon A.M. Ammar A.N. Ahmed A. Razzaq A.H. Birima P. Kumar M. Sherif A. Sefelnasr A. El-Shafie Application of soft computing in predicting groundwater quality parameters Front Environ Sci 2022 10 12
Hudcovic T (2022) TLBO-based algorithms for minimalization of multi-ray path lengths in voxel object representations on the GPU
A.G. Hussien F.A. Hashim R. Qaddoura L. Abualigah A. Pop An enhanced evaporation rate water-cycle algorithm for global optimization Processes 2022 10 11 2254
Ikram RM, Dehrashid AA, Zhang B, Chen Z, Le BN, Moayedi H (2023) A novel swarm intelligence: cuckoo optimization algorithm (COA) and SailFish optimizer (SFO) in landslide susceptibility assessment. Stochastic Environ Res Risk Assessment 37(5):1717–1743
S. Khalid M. Shahid Natasha A.H. Shah F. Saeed M. Ali S.A. Qaisrani C. Dumat Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan Environ Sci Pollut Res 2020 27 39852 39864 1:CAS:528:DC%2BB3cXhsVOjt7zK
A. Khashei-Siuki M. Kouchkzadeh B. Ghahraman Predicting dryland wheat yield from meteorological data using expert system, Khorasan Province, Iran J Agric Sci Technol 2011 13 4 627 640
K. Khosravi M. Panahi D. Tien Bui Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization Hydrol Earth Syst Sci 2018 22 9 4771 4792
B.H. Khudair M.M. Jasim A.S. Alsaqqar Artificial neural network model for the prediction of groundwater quality Civ Eng J 2018 4 12 2959 2970
W. Leal Filho J. Barbir M. Sima A. Kalbus G.J. Nagy A. Paletta A. Villamizar R. Martinez U.M. Azeiteiro M.J. Pereira Reviewing the role of ecosystems services in the sustainability of the urban environment: a multi-country analysis J Clean Prod 2020 262
S. Mirjalili S.M. Mirjalili A. Hatamlou Multi-verse optimizer: a nature-inspired algorithm for global optimization Neural Comput Appl 2016 27 2 495 513
Moayedi H, Mosavi A (2021) Hybridizing neural network with multi-verse, black hole, and shuffled complex evolution optimizer algorithms predicting the dissolved oxygen
H. Moayedi P.J. Canatalay A. Ahmadi Dehrashid M.A. Cifci M. Salari B.N. Le Multilayer perceptron and their comparison with two nature-inspired hybrid techniques of biogeography-based optimization (BBO) and backtracking search algorithm (BSA) for assessment of landslide susceptibility Land 2023 12 1 242
H. Moayedi M. Salari A.A. Dehrashid B.N. Le Groundwater quality evaluation using hybrid model of the multi-layer perceptron combined with neural-evolutionary regression techniques: case study of Shiraz plain Stoch Environ Res Risk Assess 2023 37 1 16
Moayedi H, Ahmadi Dehrashid A, Nguyen Le B (2024) A novel problem-solving method by multi-computational optimisation of artificial neural network for modelling and prediction of the flow erosion processes. Eng Appl Comput Fluid Mech 31;18(1):2300456
S.A. Naghibi H.R. Pourghasemi B. Dixon GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran Environ Monit Assess 2016 188 1 27
S.A. Naghibi K. Ahmadi A. Daneshi Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping Water Resour Manage 2017 31 2761 2775
N.F.C. Nordin N.S. Mohd S. Koting Z. Ismail M. Sherif A. El-Shafie Groundwater quality forecasting modelling using artificial intelligence: a review Groundw Sustain Dev 2021 14
W.H. Organization The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research 1993 Geneva World Health Organization
N. Prakash A. Manconi S. Loew A new strategy to map landslides with a generalized convolutional neural network Sci Rep 2021 11 1 9722 1:CAS:528:DC%2BB3MXhtVGltbbN 10.1038/s41598-021-89015-8
O. Rahmati H.R. Pourghasemi A.M. Melesse Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran CATENA 2016 137 360 372
G.R. Rakhshandehroo M. Vaghefi M.A. Aghbolaghi Forecasting groundwater level in Shiraz plain using artificial neural networks Arab J Sci Eng 2012 37 1871 1883
R.V. Rao V.J. Savsani D. Vakharia Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems Comput Aid Des 2011 43 3 303 315
A. Sadollah H. Eskandar A. Bahreininejad J.H. Kim Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems Appl Soft Comput 2015 30 58 71
A. Sadollah H. Eskandar H.M. Lee J.H. Kim Water cycle algorithm: a detailed standard code SoftwareX 2016 5 37 43
E. Salami M. Ehetshami A. Karimi-Jashni M. Salari S. Nikbakht Sheibani A. Ehteshami A mathematical method and artificial neural network modeling to simulate osmosis membrane’s performance Model Earth Syst Environ 2016 2 1 11
E. Salami M. Salari M. Ehteshami N. Bidokhti H. Ghadimi Application of artificial neural networks and mathematical modeling for the prediction of water quality variables (case study: southwest of Iran) Desalin Water Treat 2016 57 56 27073 27084 1:CAS:528:DC%2BC28XmtVGkt78%3D
M. Salari G. Rakhshandehroo M. Ehetshami Investigating the spatial variability of some important groundwater quality factors based on the geostatistical simulation (case study: Shiraz plain) Desalin Water Treat 2017 65 2 163 174
M. Salari E.S. Shahid S.H. Afzali M. Ehteshami G.O. Conti Z. Derakhshan S.N. Sheibani Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water Food Chem Toxicol 2018 118 212 219 1:CAS:528:DC%2BC1cXpsFCgsrw%3D
S. Salari M. Moghaddasi M. Mohammadi Ghaleni M. Akbari Groundwater level prediction in Golpayegan aquifer using ANFIS and PSO combination Iran J Soil Water Res 2021 52 3 721 732
B. Sarker K.N. Keya F.I. Mahir K.M. Nahiun S. Shahida R.A. Khan Surface and ground water pollution: Causes and effects of urbanization and industrialization in South Asia Sci Rev 2021 7 3 32 41
Shen Y, Ahmadi Dehrashid A, Bahar RA, Moayedi H, Nasrollahizadeh B (2023) A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Environ Sci Pollut Res 30(59):123527–123555
K.K. Sunayana O. Dube R. Sharma Use of neural networks and spatial interpolation to predict groundwater quality Environ Dev Sustain 2020 22 4 2801 2816
K. Tsakiri A. Marsellos S. Kapetanakis Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York Water 2018 10 9 1158
H. Tyralis G. Papacharalampous A. Langousis A brief review of random forests for water scientists and practitioners and their recent history in water resources Water 2019 11 5 910
S.-C. Wang S.-C. Wang Artificial neural network Interdisciplinary computing in Java programming 2003 New York Springer 81 100 10.1007/978-1-4615-0377-4_5
Wu Z, Moayedi H, Salari M, Le BN, Ahmadi Dehrashid A (2024) Assessment of sodium adsorption ratio (SAR) in groundwater: Integrating experimental data with cutting-edge swarm intelligence approaches. Stochastic Environ Res Risk Assess 1-18
M. Yalcintas S. Akkurt Artificial neural networks applications in building energy predictions and a case study for tropical climates Int J Energy Res 2005 29 10 891 901
Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC)
M. Zhu J. Wang X. Yang Y. Zhang L. Zhang H. Ren B. Wu L. Ye A review of the application of machine learning in water quality evaluation Eco-Environ Health 2022 1 107
J. Zurada Introduction to artificial neural systems 1992 Eagan West Publishing Co.