biorefining; bioeconomy; green chemistry; carbohydrates
Résumé :
[en] Biorefining is defined as the art of converting biomass into bioenergy and valuable biobased products, providing partial or total alternatives to fossil energy and fossil-based chemical compounds. Among the biomasses worthy of interest for such technological, economic, and environmental promises, sugar-rich plants are the most strategic. They indeed enable the development of a wide range of technological intermediates and products, ranging from smaller molecules for chemistry to biodegradable bioplastics and new low-carbon footprint biofuels.
Sun, X. et al. (2022) ‘A Review: Plant Carbohydrate Types—The Potential Impact on Ruminant Methane Emissions’, Frontiers in Veterinary Science. Frontiers Media S.A. Available at: https://doi.org/10.3389/fvets.2022.880115.
Trouvelot, S. et al. (2014) ‘Carbohydrates in plant immunity and plant protection: Roles and potential application as foliar sprays’, Frontiers in Plant Science. Frontiers Media S.A. Available at: https://doi.org/10.3389/fpls.2014.00592.
Selvaraj, C. et al. (2023) ‘Macromolecular chemistry: An introduction’, in In-Silico Approaches to Macromolecular Chemistry. Elsevier, pp. 71-128. Available at: https://doi.org/10.1016/B978-0-323-90995-2.00007-2.
Rao, J. et al. (2023) ‘Hemicellulose: Structure, chemical modification, and application’, Progress in Polymer Science. Elsevier Ltd. Available at: https://doi.org/10.1016/j.progpolymsci.2023.101675.
Hall, M.B. and Eastridge, M.L. (2014) ‘INVITED REVIEW: Carbohydrate and fat: Considerations for energy and more’, Professional Animal Scientist. Elsevier Inc., pp. 140-149. Available at: https://doi.org/10.15232/S1080-7446(15)30101-7.
Niyigaba, T., Liu, D. and Habimana, J. de D. (2021) ‘The extraction, functionalities and applications of plant polysaccharides in fermented foods: A review’, Foods. MDPI. Available at: https://doi.org/10.3390/foods10123004.
Li, J. et al. (2022) ‘Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances’, Renewable Energy. Elsevier Ltd, pp. 223-239. Available at: https://doi.org/10.1016/j.renene.2022.02.038.
Gamage, A. et al. (2022) ‘Applications of Starch Biopolymers for a Sustainable Modern Agriculture’, Sustainability (Switzerland). MDPI. Available at: https://doi.org/10.3390/su14106085.
Rathour, R.K. et al. (2023) ‘Non-food crops derived lignocellulose biorefinery for sustainable production of biomaterials, biochemicals and bioenergy: A review on trends and techniques’, Industrial Crops and Products, 204. Available at: https://doi.org/10.1016/j.indcrop.2023.117220.
Gruska, R.M. et al. (2022) ‘Fresh and Stored Sugar Beet Roots as a Source of Various Types of Mono- and Oligosaccharides’, Molecules, 27(16). Available at: https://doi.org/10.3390/molecules27165125.
Mading Makur, M., Duraisamy, R. and Birhanu, T. (2019) ‘Clarifying Capacity of Eco-Friendly Nano Cao and Okra(AbelmoschusEsculentus) Extract on the Processing of Sugarcane Juice: A Review’, International Research Journal of Science and Technology, pp. 21-30. Available at: https://doi.org/10.46378/irjst.2019.010104.
Wortmann, C.S., Regassa, T., 2011. Sweet Sorghum as a Bioenergy Crop for the US Great Plains. Available at: http://www.intechopen.com.
van den Berg, A.K., Perkins, T.D. and Isselhardt, M.L. (2019) ‘Composition and Properties of Maple Sap, Concentrate, and Permeate’, Agricultural Sciences, 10(01), pp. 32-45. Available at: https://doi.org/10.4236/as.2019.101004.
Liu, Q. et al. (2007) ‘Physicochemical properties of dry matter and starch from potatoes grown in Canada’, Food Chemistry, 105(3), pp. 897-907. Available at: https://doi.org/10.1016/j.foodchem.2007.04.034.
Yu, J.K. and Moon, Y.S. (2022) ‘Corn starch: Quality and quantity improvement for industrial uses’, Plants. MDPI. Available at: https://doi.org/10.3390/plants11010092.
V, P. et al. (2019) ‘Starch accumulation in rice grains subjected to drought during grain filling stage’, Plant Physiology and Biochemistry, 142, pp. 440-451. Available at: https://doi.org/10.1016/j.plaphy.2019.07.027.
Kim, K.H. and Kim, J.Y. (2021) ‘Understanding wheat starch metabolism in properties, environmental stress condition, and molecular approaches for value-added utilization’, Plants. MDPI. Available at: https://doi.org/10.3390/plants10112282.
Herrera-Saldana, R.E., Huber, J.T. and Poore, M.H. (1990) ‘Dry Matter, Crude Protein, and Starch Degradability of Five Cereal Grains’, Journal of Dairy Science, 73(9), pp. 2386-2393. Available at: https://doi.org/10.3168/jds.S0022-0302(90)78922-9.
Sang, Y. et al. (2008) ‘Structure and functional properties of sorghum starches differing in amylose content’, Journal of Agricultural and Food Chemistry, 56(15), pp. 6680-6685. Available at: https://doi.org/10.1021/jf800577x.
Weselake, R.J., Chen, G. and Singer, S.D. (2018) Plant bioproducts, Plant Bioproducts. Springer New York. Available at: https://doi.org/10.1007/978-1-4939-8616-3.
Kumar, A. and Mallick, S. (2024) ‘Oil price dynamics in times of uncertainty: Revisiting the role of demand and supply shocks’, Energy Economics, 129. Available at: https://doi.org/10.1016/j.eneco.2023.107152.
Guleria, A., Kumari, G. and Saravanamurugan, S. (2019) ‘Cellulose valorization to potential platform chemicals’, in Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals. Elsevier Inc., pp. 433-457. Available at: https://doi.org/10.1016/B978-0-444-64307-0.00017-2.
Ning, P. et al. (2021) ‘Recent advances in the valorization of plant biomass’, Biotechnology for Biofuels. BioMed Central Ltd. Available at: https://doi.org/10.1186/s13068-021-01949-3.
Deng, W. et al. (2023) ‘Catalytic conversion of lignocellulosic biomass into chemicals and fuels’, Green Energy and Environment. KeAi Publishing Communications Ltd., pp. 10-114. Available at: https://doi.org/10.1016/j.gee.2022.07.003.
Zhang, R. et al. (2021) ‘A catalytic approach: Via retro-aldol condensation of glucose to furanic compounds’, Green Chemistry, 23(15), pp. 5481-5486. Available at: https://doi.org/10.1039/d1gc01429c.
Li, S. et al. (2018) ‘Catalytic transformation of cellulose and its derivatives into functionalized organic acids’, ChemSusChem. Wiley-VCH Verlag, pp. 1995-2028. Available at: https://doi.org/10.1002/cssc.201800440.
Pyo, S.H. et al. (2020) ‘Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration’, ACS Omega, 5(24), pp. 14275-14282. Available at: https://doi.org/10.1021/acsomega.9b04406.
Zhang, Z. and Huber, G.W. (2018) ‘Catalytic oxidation of carbohydrates into organic acids and furan chemicals’, Chemical Society Reviews. Royal Society of Chemistry, pp. 1351-1390. Available at: https://doi.org/10.1039/c7cs00213k.
Hu, H. et al. (2024) ‘Strategies for the biological synthesis of D-glucuronic acid and its derivatives’, World Journal of Microbiology and Biotechnology. Springer Science and Business Media B.V. Available at: https://doi.org/10.1007/s11274-024-03900-8.
Zabed, H.M. et al. (2023) ‘Biocatalytic gateway to convert glycerol into 3-hydroxypropionic acid in waste-based biorefineries: Fundamentals, limitations, and potential research strategies’, Biotechnology Advances. Elsevier Inc. Available at: https://doi.org/10.1016/j.biotechadv.2022.108075.
Sarchami, Tahereh; Batta, Neha; Berruti, Franco Production and separation of acetic acid from pyrolysis oil of lignocellulosic biomass: a review. Biofuels, Bioproducts and Biorefining (Biofpr) 2021. DOI:https://doi.org/10.1002/bbb.2273. In press.
K N, Y. et al. (2022) ‘Lignocellulosic biomass-based pyrolysis: A comprehensive review’, Chemosphere, 286. Available at: https://doi.org/10.1016/j.chemosphere.2021.131824.
Kim, J.S. and Choi, G.G. (2018) ‘Pyrolysis of lignocellulosic biomass for biochemical production’, in Waste Biorefinery: Potential and Perspectives. Elsevier, pp. 323-348. Available at: https://doi.org/10.1016/B978-0-444-63992-9.00011-2.
Deshmukh, G. and Manyar, H. (2021) Production Pathways of Acetic Acid and Its Versatile Applications in the Food Industry. IntechOpen. Edited by Peixoto Basso T., Olitta Basso T., and Carlos Basso L. Available at: www.intechopen.com.
Ventura, M., Marinas, A. and Domine, M.E. (2020) ‘Catalytic Processes for Biomass-Derived Platform Molecules Valorisation’, Topics in Catalysis, 63(9-10), pp. 846-865. Available at: https://doi.org/10.1007/s11244-020-01309-9.
Marianou, A.A. et al. (2016) ‘Glucose to Fructose Isomerization in Aqueous Media over Homogeneous and Heterogeneous Catalysts’, ChemCatChem, 8(6), pp. 1100-1110. Available at: https://doi.org/10.1002/cctc.201501203.
Weingarten, R. et al. (2014) ‘Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents’, ChemCatChem, 6(8), pp. 2229-2234. Available at: https://doi.org/10.1002/cctc.201402299.
Delbecq, F., Len, C., 2018. Recent advances in the microwave-assisted production of hydroxymethylfurfural by hydrolysis of cellulose derivatives — a review. Molecules. MDPI AG. Available at: https://doi.org/10.3390/molecules23081973.
Richel, A., Maireles-Torres, P. and Len, C. (2022) ‘Recent advances in continuous reduction of furfural to added value chemicals’, Current Opinion in Green and Sustainable Chemistry. Elsevier B.V. Available at: https://doi.org/10.1016/j.cogsc.2022.100655.
Adhami, W., Richel, A. and Len, C. (2023) ‘A review of recent advances in the production of furfural in batch system’, Molecular Catalysis. Elsevier B.V. Available at: https://doi.org/10.1016/j.mcat.2023.113178.
Manikandan, S. et al. (2023) ‘Critical review of biochemical pathways to transformation of waste and biomass into bioenergy’, Bioresource Technology. Elsevier Ltd. Available at: https://doi.org/10.1016/j.biortech.2023.128679.
Ma, S. et al. (2019) ‘Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion’, Energy, 189. Available at: https://doi.org/10.1016/j.energy.2019.116190.
Shrivastava, A. and Sharma, R.K. (2022) ‘Lignocellulosic biomass based microbial fuel cells: Performance and applications’, Journal of Cleaner Production. Elsevier Ltd. Available at: https://doi.org/10.1016/j.jclepro.2022.132269.
Lepage, Thibaut; Kammoun, Maroua; Schmetz, Quentin, et al. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy 2021. DOI:https://doi.org/10.1016/j.biombioe.2020.105920.
Okolie, J.A. et al. (2021) ‘Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass’, Waste and Biomass Valorization. Springer Science and Business Media B.V., pp. 2145-2169. Available at: https://doi.org/10.1007/s12649-020-01123-0.
Albuquerque, E.M. et al. (2017) ‘Relationship between Acid-Base Properties and the Activity of ZrO2-Based Catalysts for the Cannizzaro Reaction of Pyruvaldehyde to Lactic Acid’, ChemCatChem, 9(14), pp. 2675-2683. Available at: https://doi.org/10.1002/cctc.201700305.
Yamaguchi, S. et al. (2017) ‘Catalytic processes for utilizing carbohydrates derived from algal biomass’, Catalysts. MDPI. Available at: https://doi.org/10.3390/catal7050163.