CMBR experiments; gravitational waves and CMBR polarization; inflation; primordial gravitational waves (theory); Astronomy and Astrophysics
Abstract :
[en] We study the possibility of using the LiteBIRD satellite B-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike"field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Campeti, P. ; Max Planck Institute for Astrophysics, Garching, Germany ; Excellence Cluster ORIGINS, Garching, Germany ; INFN, Sezione di Ferrara, Ferrara, Italy
Komatsu, E.; Max Planck Institute for Astrophysics, Garching, Germany ; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Baccigalupi, C.; International School for Advanced Studies (SISSA), Trieste, Italy ; INFN, Sezione di Trieste, Trieste, Italy ; IFPU, Trieste, Italy
Ballardini, M.; INFN, Sezione di Ferrara, Ferrara, Italy ; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy ; INAF, OAS Bologna, Bologna, Italy
Bartolo, N.; Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, Padova, Italy ; INFN, Sezione di Padova, Padova, Italy ; INAF, Osservatorio Astronomico di Padova, Padova, Italy
Carones, A.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma2, Università di Roma Tor Vergata, Roma, Italy
Errard, J.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Flauger, R.; University of California, San Diego, Department of Physics, San Diego, United States
Galli, S.; Institut d'Astrophysique de Paris, CNRS, Sorbonne Université, Paris, France
Galloni, G.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
Giardiello, S.; School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
Hazumi, M.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan ; International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan ; Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan ; Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara, Japan ; The Graduate University for Advanced Studies (SOKENDAI), Japan
Henrot-Versillé, S.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Hergt, L.T.; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
Kohri, K.; Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
Leloup, C.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Lesgourgues, J.; Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen, Aachen, Germany
Macias-Perez, J.; Université Grenoble Alpes, CNRS, LPSC-IN2P3, Grenoble, France
Martínez-González, E.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Matarrese, S.; Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, Padova, Italy ; INFN, Sezione di Padova, Padova, Italy ; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
Matsumura, T.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Montier, L.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Namikawa, T.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Poletti, D.; University of Milano Bicocca, Physics Department, Milan, Italy ; INFN, Sezione Milano Bicocca, Milano, Italy
Remazeilles, M.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain ; Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
Shiraishi, M.; Suwa University of Science, Chino, Japan
van Tent, B.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Tristram, M.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Vacher, L.; International School for Advanced Studies (SISSA), Trieste, Italy
Vittorio, N.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma2, Università di Roma Tor Vergata, Roma, Italy
Weymann-Despres, G.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Anand, A.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
Aumont, J.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Aurlien, R.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Banday, A.J.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Barreiro, R.B.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Basyrov, A.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Bersanelli, M.; Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy ; INFN, Sezione di Milano, Milano, Italy
Blinov, D.; Institute of Astrophysics, Foundation for Research and Technology-Hellas, Heraklion, Greece ; Department of Physics and ITCP, University of Crete, Heraklion, Greece
Bortolami, M.; INFN, Sezione di Ferrara, Ferrara, Italy ; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Brinckmann, T.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Calabrese, E.; School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
Carralot, F.; International School for Advanced Studies (SISSA), Trieste, Italy
Casas, F.J.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Clermont, Lionel ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Columbro, F.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
Conenna, G.; University of Milano Bicocca, Physics Department, Milan, Italy
Coppolecchia, A.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
Cuttaia, F.; INAF, OAS Bologna, Bologna, Italy
D'Alessandro, G.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
de Bernardis, P.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
De Petris, M.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
Della Torre, S.; INFN, Sezione Milano Bicocca, Milano, Italy
Di Giorgi, E.; INFN, Sezione di Pisa, Pisa, Italy
Diego-Palazuelos, P.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain ; Departamento de Física Moderna, Universidad de Cantabria, Santander, Spain
Eriksen, H.K.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Franceschet, C.; Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy ; INFN, Sezione di Milano, Milano, Italy
Fuskeland, U.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Galloway, M.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Georges, Marc ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Gerbino, M.; INFN, Sezione di Ferrara, Ferrara, Italy
Gervasi, M.; University of Milano Bicocca, Physics Department, Milan, Italy ; INFN, Sezione Milano Bicocca, Milano, Italy
Ghigna, T.; International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
Gimeno-Amo, C.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Gjerløw, E.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Gudmundsson, J.E.; The Oskar Klein Centre, Department of Physics, Stockholm University, Stockholm, Sweden
Krachmalnicoff, N.; International School for Advanced Studies (SISSA), Trieste, Italy ; INFN, Sezione di Trieste, Trieste, Italy ; IFPU, Trieste, Italy
Lamagna, L.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
Lattanzi, M.; INFN, Sezione di Ferrara, Ferrara, Italy
Lembo, M.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Lonappan, A.I.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
Masi, S.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
Massa, M.; INFN, Sezione di Pisa, Pisa, Italy
Micheli, S.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Moggi, A.; INFN, Sezione di Pisa, Pisa, Italy
Monelli, M.; Max Planck Institute for Astrophysics, Garching, Germany
Morgante, G.; INAF, OAS Bologna, Bologna, Italy
Mot, B.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Mousset, L.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France ; Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
Nagata, R.; Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara, Japan
Natoli, P.; INFN, Sezione di Ferrara, Ferrara, Italy ; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Novelli, A.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Obata, I.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Pagano, L.; INFN, Sezione di Ferrara, Ferrara, Italy ; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy ; Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, Orsay, France
Paiella, A.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
Pavlidou, V.; Institute of Astrophysics, Foundation for Research and Technology-Hellas, Heraklion, Greece ; Department of Physics and ITCP, University of Crete, Heraklion, Greece
Piacentini, F.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN, Sezione di Roma, Roma, Italy
Pinchera, M.; INFN, Sezione di Pisa, Pisa, Italy
Pisano, G.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Puglisi, G.; Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy ; INAF, Osservatorio Astrofisico di Catania, Catania, Italy ; INFN, Sezione di Catania, Catania, Italy
Raffuzzi, N.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Ritacco, A.; Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France ; INAF, Osservatorio Astronomico di Cagliari, Selargius, Italy
Rizzieri, A.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Ruiz-Granda, M.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain ; Departamento de Física Moderna, Universidad de Cantabria, Santander, Spain
Savini, G.; Physics and Astronomy Department, University College London (UCL), London, United Kingdom
Scott, D.; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
Signorelli, G.; INFN, Sezione di Pisa, Pisa, Italy
Stever, S.L.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan ; Okayama University, Department of Physics, Okayama, Japan
Stutzer, N.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Sullivan, R.M.; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
Tartari, A.; INFN, Sezione di Pisa, Pisa, Italy ; Dipartimento di Fisica, Università di Pisa, Pisa, Italy
Tassis, K.; Institute of Astrophysics, Foundation for Research and Technology-Hellas, Heraklion, Greece ; Department of Physics and ITCP, University of Crete, Heraklion, Greece
Terenzi, L.; INAF, OAS Bologna, Bologna, Italy
Thompson, K.L.; SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Menlo Park, United States ; Stanford University, Department of Physics, Stanford, United States
Vielva, P.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Wehus, I.K.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
Zhou, Y.; International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
The authors thank Jose Luis Bernal, Tomohiro Fujita and Martin Reinecke for useful and stimulating discussion. This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy. EXC-2094-390783311. This work has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk.odowska-Curie grant agreement No. 101007633. This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Canadian contribution is supported by the Canadian Space Agency. The French LiteBIRD phase A contribution is supported by the Centre National d'Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l'Energie Atomique (CEA). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy (Grant No. EXC-2094-390783311). The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011) and has received funding from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme (Grant agreement No. 772253 and 819478). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21, PID2020-120514GB-I00, ProID2020010108 and ICTP20210008. Funds that support contributions from Sweden come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The U.S. contribution is supported by NASA grant no. 80NSSC18K0132. The numerical analyses in this work have been supported by the Max Planck Computing and Data Facility (MPCDF) computer clusters Cobra, Freya and Raven.
L.P. Grishchuk, Amplification of gravitational waves in an istropic universe, Zh. Eksp. Teor. Fiz. 67 (1974) 825 [INSPIRE].
A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [INSPIRE].
V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532 [INSPIRE].
S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].
A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].
A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].
J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].
WMAP Science Team collaboration, Results from the Wilkinson Microwave Anisotropy Probe, Prog. Theor. Exp. Phys. 2014 (2014) 06B102 [arXiv:1404.5415] [INSPIRE].
Planck collaboration, Planck 2018 results. Part X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].
Planck collaboration, Planck 2018 results. Part IX. Constraints on primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].
A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].
K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].
A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].
A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].
M. Kamionkowski, A. Kosowsky and A. Stebbins, A Probe of primordial gravity waves and vorticity, Phys. Rev. Lett. 78 (1997) 2058 [astro-ph/9609132] [INSPIRE].
U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background, Phys. Rev. Lett. 78 (1997) 2054 [astro-ph/9609169] [INSPIRE].
P. Campeti, E. Komatsu, D. Poletti and C. Baccigalupi, Measuring the spectrum of primordial gravitational waves with CMB, PTA and Laser Interferometers, JCAP 01 (2021) 012 [arXiv:2007.04241] [INSPIRE].
NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [arXiv:2306.16213] [INSPIRE].
NANOGrav collaboration, The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023) L11 [arXiv:2306.16219] [INSPIRE].
EPTA and InPTA: collaborations, The second data release from the European Pulsar Timing Array. Part III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50 [arXiv:2306.16214] [INSPIRE].
J. Antoniadis et al., The second data release from the European Pulsar Timing Array. Part V. Implications for massive black holes, dark matter and the early Universe, arXiv:2306.16227 [INSPIRE].
D.J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [arXiv:2306.16215] [INSPIRE].
H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024 [arXiv:2306.16216] [INSPIRE].
T. Broadhurst, C. Chen, T. Liu and K.-F. Zheng, Binary Supermassive Black Holes Orbiting Dark Matter Solitons: From the Dual AGN in UGC4211 to NanoHertz Gravitational Waves, arXiv:2306.17821 [INSPIRE].
H. Middleton, A. Sesana, S. Chen, A. Vecchio, W. Del Pozzo and P.A. Rosado, Massive black hole binary systems and the NANOGrav 12.5 yr results, Mon. Not. Roy. Astron. Soc. 502 (2021) L99 [Erratum ibid. 526 (2023) L34] [arXiv:2011.01246] [INSPIRE].
NANOGrav collaboration, Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection, Astrophys. J. Lett. 911 (2021) L34 [arXiv:2010.11950] [INSPIRE].
C. Unal, A. Papageorgiou and I. Obata, Axion-Gauge Dynamics During Inflation as the Origin of Pulsar Timing Array Signals and Primordial Black Holes, arXiv:2307.02322 [INSPIRE].
K. Murai and W. Yin, A novel probe of supersymmetry in light of nanohertz gravitational waves, JHEP 10 (2023) 062 [arXiv:2307.00628] [INSPIRE].
J. Ellis et al., What is the source of the PTA GW signal?, Phys. Rev. D 109 (2024) 023522 [arXiv:2308.08546] [INSPIRE].
BICEP and Keck collaborations, Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett. 127 (2021) 151301 [arXiv:2110.00483] [INSPIRE].
M. Tristram et al., Improved limits on the tensor-to-scalar ratio using BICEP and Planck data, Phys. Rev. D 105 (2022) 083524 [arXiv:2112.07961] [INSPIRE].
D. Paoletti, F. Finelli, J. Valiviita and M. Hazumi, Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements, Phys. Rev. D 106 (2022) 083528 [arXiv:2208.10482] [INSPIRE].
D. Beck, A. Cukierman and W.L.K. Wu, Bias on tensor-to-scalar ratio inference with estimated covariance matrices, Mon. Not. Roy. Astron. Soc. 515 (2022) 229 [arXiv:2202.05949] [INSPIRE].
P. Campeti and E. Komatsu, New Constraint on the Tensor-to-scalar Ratio from the Planck and BICEP/Keck Array Data Using the Profile Likelihood, Astrophys. J. 941 (2022) 110 [arXiv:2205.05617] [INSPIRE].
G. Galloni, N. Bartolo, S. Matarrese, M. Migliaccio, A. Ricciardone and N. Vittorio, Updated constraints on amplitude and tilt of the tensor primordial spectrum, JCAP 04 (2023) 062 [arXiv:2208.00188] [INSPIRE].
B. Westbrook et al., The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status, J. Low Temp. Phys. 193 (2018) 758 [arXiv:2210.04117] [INSPIRE].
Simons Observatory collaboration, The Simons Observatory: Science goals and forecasts, JCAP 02 (2019) 056 [arXiv:1808.07445] [INSPIRE].
L. Moncelsi et al., Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole, Proc. SPIE 11453 (2020) 1145314 [arXiv:2012.04047] [INSPIRE].
K. Harrington et al., The Cosmology Large Angular Scale Surveyor, Proc. SPIE 9914 (2016) 99141K [arXiv:1608.08234] [INSPIRE].
CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].
SPIDER collaboration, A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope, Astrophys. J. 927 (2022) 174 [arXiv:2103.13334] [INSPIRE].
D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
E. Komatsu, New physics from the polarized light of the cosmic microwave background, Nat. Rev. Phys. 4 (2022) 452 [arXiv:2202.13919] [INSPIRE].
P. Campeti, O. Özsoy, I. Obata and M. Shiraishi, New constraints on axion-gauge field dynamics during inflation from Planck and BICEP/Keck data sets, JCAP 07 (2022) 039 [arXiv:2203.03401] [INSPIRE].
P. Campeti, D. Poletti and C. Baccigalupi, Principal component analysis of the primordial tensor power spectrum, JCAP 09 (2019) 055 [arXiv:1905.08200] [INSPIRE].
T. Hiramatsu, E. Komatsu, M. Hazumi and M. Sasaki, Reconstruction of primordial tensor power spectra from B-mode polarization of the cosmic microwave background, Phys. Rev. D 97 (2018) 123511 [arXiv:1803.00176] [INSPIRE].
A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088] [INSPIRE].
N. Bartolo and G. Orlando, Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves, JCAP 07 (2017) 034 [arXiv:1706.04627] [INSPIRE].
N. Bartolo, G. Orlando and M. Shiraishi, Measuring chiral gravitational waves in Chern-Simons gravity with CMB bispectra, JCAP 01 (2019) 050 [arXiv:1809.11170] [INSPIRE].
J.L. Cook and L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev. D 85 (2012) 023534 [Erratum ibid. 86 (2012) 069901] [arXiv:1109.0022] [INSPIRE].
L. Senatore, E. Silverstein and M. Zaldarriaga, New Sources of Gravitational Waves during Inflation, JCAP 08 (2014) 016 [arXiv:1109.0542] [INSPIRE].
M. Biagetti, M. Fasiello and A. Riotto, Enhancing Inflationary Tensor Modes through Spectator Fields, Phys. Rev. D 88 (2013) 103518 [arXiv:1305.7241] [INSPIRE].
D. Carney, W. Fischler, E.D. Kovetz, D. Lorshbough and S. Paban, Rapid field excursions and the inflationary tensor spectrum, JHEP 11 (2012) 042 [arXiv:1209.3848] [INSPIRE].
Y.-F. Cai, J. Jiang, M. Sasaki, V. Vardanyan and Z. Zhou, Beating the Lyth Bound by Parametric Resonance during Inflation, Phys. Rev. Lett. 127 (2021) 251301 [arXiv:2105.12554] [INSPIRE].
LISA Cosmology Working Group, Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel. 26 (2023) 5 [arXiv:2204.05434] [INSPIRE].
L.T. Hergt, F.J. Agocs, W.J. Handley, M.P. Hobson and A.N. Lasenby, Finite inflation in curved space, Phys. Rev. D 106 (2022) 063529 [arXiv:2205.07374] [INSPIRE].
L.T. Hergt, W.J. Handley, M.P. Hobson and A.N. Lasenby, Case for kinetically dominated initial conditions for inflation, Phys. Rev. D 100 (2019) 023502 [arXiv:1809.07185] [INSPIRE].
N. Barnaby and M. Peloso, Large Non-Gaussianity in Axion Inflation, Phys. Rev. Lett. 106 (2011) 181301 [arXiv:1011.1500] [INSPIRE].
M. Mirbabayi, L. Senatore, E. Silverstein and M. Zaldarriaga, Gravitational Waves and the Scale of Inflation, Phys. Rev. D 91 (2015) 063518 [arXiv:1412.0665] [INSPIRE].
R.Z. Ferreira and M.S. Sloth, Universal Constraints on Axions from Inflation, JHEP 12 (2014) 139 [arXiv:1409.5799] [INSPIRE].
O. Özsoy, K. Sinha and S. Watson, How Well Can We Really Determine the Scale of Inflation?, Phys. Rev. D 91 (2015) 103509 [arXiv:1410.0016] [INSPIRE].
R. Namba, M. Peloso, M. Shiraishi, L. Sorbo and C. Unal, Scale-dependent gravitational waves from a rolling axion, JCAP 01 (2016) 041 [arXiv:1509.07521] [INSPIRE].
R. Namba, E. Dimastrogiovanni and M. Peloso, Gauge-flation confronted with Planck, JCAP 11 (2013) 045 [arXiv:1308.1366] [INSPIRE].
L. Sorbo, Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton, JCAP 06 (2011) 003 [arXiv:1101.1525] [INSPIRE].
N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu et al., Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, Phys. Rev. D 86 (2012) 103508 [arXiv:1206.6117] [INSPIRE].
J.L. Cook and L. Sorbo, An inflationary model with small scalar and large tensor non-Gaussianities, JCAP 11 (2013) 047 [arXiv:1307.7077] [INSPIRE].
M. Shiraishi, C. Hikage, R. Namba, T. Namikawa and M. Hazumi, Testing statistics of the CMB B-mode polarization toward unambiguously establishing quantum fluctuation of the vacuum, Phys. Rev. D 94 (2016) 043506 [arXiv:1606.06082] [INSPIRE].
V. Domcke, M. Pieroni and P. Binétruy, Primordial gravitational waves for universality classes of pseudoscalar inflation, JCAP 06 (2016) 031 [arXiv:1603.01287] [INSPIRE].
O. Özsoy, Synthetic Gravitational Waves from a Rolling Axion Monodromy, JCAP 04 (2021) 040 [arXiv:2005.10280] [INSPIRE].
K. Choi, K.-Y. Choi, H. Kim and C.S. Shin, Primordial perturbations from dilaton-induced gauge fields, JCAP 10 (2015) 046 [arXiv:1507.04977] [INSPIRE].
T. Fujita, I. Obata, T. Tanaka and S. Yokoyama, Statistically Anisotropic Tensor Modes from Inflation, JCAP 07 (2018) 023 [arXiv:1801.02778] [INSPIRE].
M. Kawasaki, H. Nakatsuka and I. Obata, Generation of Primordial Black Holes and Gravitational Waves from Dilaton-Gauge Field Dynamics, JCAP 05 (2020) 007 [arXiv:1912.09111] [INSPIRE].
O. Özsoy and Z. Lalak, Primordial black holes as dark matter and gravitational waves from bumpy axion inflation, JCAP 01 (2021) 040 [arXiv:2008.07549] [INSPIRE].
A. Maleknejad and M.M. Sheikh-Jabbari, Gauge-flation: Inflation From Non-Abelian Gauge Fields, Phys. Lett. B 723 (2013) 224 [arXiv:1102.1513] [INSPIRE].
A. Maleknejad and M.M. Sheikh-Jabbari, Non-Abelian Gauge Field Inflation, Phys. Rev. D 84 (2011) 043515 [arXiv:1102.1932] [INSPIRE].
A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge Fields and Inflation, Phys. Rep. 528 (2013) 161 [arXiv:1212.2921] [INSPIRE].
A. Maleknejad, Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves, JHEP 07 (2016) 104 [arXiv:1604.03327] [INSPIRE].
E. Dimastrogiovanni and M. Peloso, Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound, Phys. Rev. D 87 (2013) 103501 [arXiv:1212.5184] [INSPIRE].
E. Dimastrogiovanni, M. Fasiello and T. Fujita, Primordial Gravitational Waves from Axion-Gauge Fields Dynamics, JCAP 01 (2017) 019 [arXiv:1608.04216] [INSPIRE].
I. Obata and J. Soda, Chiral primordial Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation, Phys. Rev. D 93 (2016) 123502 [Addendum ibid. 95 (2017) 109903] [arXiv:1602.06024] [INSPIRE].
A. Agrawal, T. Fujita and E. Komatsu, Large tensor non-Gaussianity from axion-gauge field dynamics, Phys. Rev. D 97 (2018) 103526 [arXiv:1707.03023] [INSPIRE].
A. Agrawal, T. Fujita and E. Komatsu, Tensor Non-Gaussianity from Axion-Gauge-Fields Dynamics: Parameter Search, JCAP 06 (2018) 027 [arXiv:1802.09284] [INSPIRE].
P. Adshead, E. Martinec and M. Wyman, Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound, Phys. Rev. D 88 (2013) 021302 [arXiv:1301.2598] [INSPIRE].
P. Adshead, E. Martinec and M. Wyman, Perturbations in Chromo-Natural Inflation, JHEP 09 (2013) 087 [arXiv:1305.2930] [INSPIRE].
P. Adshead, E. Martinec, E.I. Sfakianakis and M. Wyman, Higgsed Chromo-Natural Inflation, JHEP 12 (2016) 137 [arXiv:1609.04025] [INSPIRE].
P. Adshead and E.I. Sfakianakis, Higgsed Gauge-flation, JHEP 08 (2017) 130 [arXiv:1705.03024] [INSPIRE].
Y. Watanabe and E. Komatsu, Gravitational Wave from Axion-SU(2) Gauge Fields: Effective Field Theory for Kinetically Driven Inflation, arXiv:2004.04350 [INSPIRE].
B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu and M. Shiraishi, Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers, Phys. Rev. D 97 (2018) 043506 [arXiv:1707.03240] [INSPIRE].
T. Fujita, K. Murai and R. Namba, Universality of linear perturbations in SU(N) natural inflation, Phys. Rev. D 105 (2022) 103518 [arXiv:2203.03977] [INSPIRE].
K. Ishiwata, E. Komatsu and I. Obata, Axion-gauge field dynamics with backreaction, JCAP 03 (2022) 010 [arXiv:2111.14429] [INSPIRE].
S. Hamimeche and A. Lewis, Likelihood Analysis of CMB Temperature and Polarization Power Spectra, Phys. Rev. D 77 (2008) 103013 [arXiv:0801.0554] [INSPIRE].
G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
Particle Data collaboration, Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01 [INSPIRE].
L. Herold, E.G.M. Ferreira and E. Komatsu, New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood, Astrophys. J. Lett. 929 (2022) L16 [arXiv:2112.12140] [INSPIRE].
Planck collaboration, Planck intermediate results. Part XVI. Profile likelihoods for cosmological parameters, Astron. Astrophys. 566 (2014) A54 [arXiv:1311.1657] [INSPIRE].
P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural inflation on a steep potential with classical non-Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302 [arXiv:1202.2366] [INSPIRE].
A. Maleknejad and E. Erfani, Chromo-Natural Model in Anisotropic Background, JCAP 03 (2014) 016 [arXiv:1311.3361] [INSPIRE].
V. Domcke, B. Mares, F. Muia and M. Pieroni, Emerging chromo-natural inflation, JCAP 04 (2019) 034 [arXiv:1807.03358] [INSPIRE].
I. Wolfson, A. Maleknejad and E. Komatsu, How attractive is the isotropic attractor solution of axion-SU(2) inflation?, JCAP 09 (2020) 047 [arXiv:2003.01617] [INSPIRE].
I. Wolfson, A. Maleknejad, T. Murata, E. Komatsu and T. Kobayashi, The isotropic attractor solution of axion-SU(2) inflation: universal isotropization in Bianchi type-I geometry, JCAP 09 (2021) 031 [arXiv:2105.06259] [INSPIRE].
T. Fujita, E.I. Sfakianakis and M. Shiraishi, Tensor Spectra Templates for Axion-Gauge Fields Dynamics during Inflation, JCAP 05 (2019) 057 [arXiv:1812.03667] [INSPIRE].
A. Maleknejad and E. Komatsu, Production and Backreaction of Spin-2 Particles of SU(2) Gauge Field during Inflation, JHEP 05 (2019) 174 [arXiv:1808.09076] [INSPIRE].
K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger Effect by an SU(2) Gauge Field during Inflation, JHEP 02 (2019) 041 [arXiv:1805.09318] [INSPIRE].
V. Domcke, Y. Ema, K. Mukaida and R. Sato, Chiral Anomaly and Schwinger Effect in Non-Abelian Gauge Theories, JHEP 03 (2019) 111 [arXiv:1812.08021] [INSPIRE].
L. Mirzagholi, A. Maleknejad and K.D. Lozanov, Production and backreaction of fermions from axion-SU(2) gauge fields during inflation, Phys. Rev. D 101 (2020) 083528 [arXiv:1905.09258] [INSPIRE].
A. Maleknejad, Dark Fermions and Spontaneous CP violation in SU(2)-axion Inflation, JHEP 07 (2020) 154 [arXiv:1909.11545] [INSPIRE].
T. Fujita, R. Namba and Y. Tada, Does the detection of primordial gravitational waves exclude low energy inflation?, Phys. Lett. B 778 (2018) 17 [arXiv:1705.01533] [INSPIRE].
O. Iarygina, E.I. Sfakianakis, R. Sharma and A. Brandenburg, Backreaction of axion-SU(2) dynamics during inflation, JCAP 04 (2024) 018 [arXiv:2311.07557] [INSPIRE].
A. Papageorgiou, M. Peloso and C. Unal, Nonlinear perturbations from the coupling of the inflaton to a non-Abelian gauge field, with a focus on Chromo-Natural Inflation, JCAP 09 (2018) 030 [arXiv:1806.08313] [INSPIRE].
A. Papageorgiou, M. Peloso and C. Unal, Nonlinear perturbations from axion-gauge fields dynamics during inflation, JCAP 07 (2019) 004 [arXiv:1904.01488] [INSPIRE].
E. Komatsu, Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background, Class. Quant. Grav. 27 (2010) 124010 [arXiv:1003.6097] [INSPIRE].
A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
J. Hamann and A. Malhotra, Constraining primordial tensor features with the anisotropies of the cosmic microwave background, JCAP 12 (2022) 015 [arXiv:2209.00827] [INSPIRE].
K.M. Górski et al., HEALPix — A Framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophys. J. 622 (2005) 759 [astro-ph/0409513] [INSPIRE].
B. Thorne, J. Dunkley, D. Alonso and S. Naess, The Python Sky Model: software for simulating the Galactic microwave sky, Mon. Not. Roy. Astron. Soc. 469 (2017) 2821 [arXiv:1608.02841] [INSPIRE].
A. Zonca, B. Thorne, N. Krachmalnicoff and J. Borrill, The Python Sky Model 3 software, J. Open Source Softw. 6 (2021) 3783 [arXiv:2108.01444] [INSPIRE].
M. Remazeilles, C. Dickinson, A.J. Banday, M.A. Bigot-Sazy and T. Ghosh, An improved source-subtracted and destriped 408 MHz all-sky map, Mon. Not. Roy. Astron. Soc. 451 (2015) 4311 [arXiv:1411.3628] [INSPIRE].
WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].
M.-A. Miville-Deschenes et al., Separation of anomalous and synchrotron emissions using WMAP polarization data, Astron. Astrophys. 490 (2008) 1093 [arXiv:0802.3345] [INSPIRE].
R. Stompor, S.M. Leach, F. Stivoli and C. Baccigalupi, Maximum Likelihood algorithm for parametric component separation in CMB experiments, Mon. Not. Roy. Astron. Soc. 392 (2009) 216 [arXiv:0804.2645] [INSPIRE].
J. Errard and R. Stompor, Characterizing bias on large scale CMB B-modes after galactic foregrounds cleaning, Phys. Rev. D 99 (2019) 043529 [arXiv:1811.00479] [INSPIRE].
R. Stompor, J. Errard and D. Poletti, Forecasting performance of CMB experiments in the presence of complex foreground contaminations, Phys. Rev. D 94 (2016) 083526 [arXiv:1609.03807] [INSPIRE].
M. Tristram et al., Planck constraints on the tensor-to-scalar ratio, Astron. Astrophys. 647 (2021) A128 [arXiv:2010.01139] [INSPIRE].
LSST Dark Energy Science collaboration, A unified pseudo-Cℓ framework, Mon. Not. Roy. Astron. Soc. 484 (2019) 4127 [arXiv:1809.09603] [INSPIRE].
M. Tegmark and A. de Oliveira-Costa, How to measure CMB polarization power spectra without losing information, Phys. Rev. D 64 (2001) 063001 [astro-ph/0012120] [INSPIRE].
S. Vanneste, S. Henrot-Versillé, T. Louis and M. Tristram, Quadratic estimator for CMB cross-correlation, Phys. Rev. D 98 (2018) 103526 [arXiv:1807.02484] [INSPIRE].
J. Grain, M. Tristram and R. Stompor, Polarized CMB spectrum estimation using the pure pseudo cross-spectrum approach, Phys. Rev. D 79 (2009) 123515 [arXiv:0903.2350] [INSPIRE].
J. Grain, M. Tristram and R. Stompor, CMB EB and TB cross-spectrum estimation via pseudo-spectrum techniques, Phys. Rev. D 86 (2012) 076005 [arXiv:1207.5344] [INSPIRE].
A. Mangilli, S. Plaszczynski and M. Tristram, Large-scale cosmic microwave background temperature and polarization cross-spectra likelihoods, Mon. Not. Roy. Astron. Soc. 453 (2015) 3174 [arXiv:1503.01347] [INSPIRE].
E. Sellentin and A.F. Heavens, Parameter inference with estimated covariance matrices, Mon. Not. Roy. Astron. Soc. 456 (2016) L132 [arXiv:1511.05969] [INSPIRE].
J. Neyman, Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability, Philos. Trans. Roy. Soc. Lond. A 236 (1937) 333 [INSPIRE].
ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-014 CERN, Geneva, Switzerland (2013).
J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Observational bounds on the cosmic radiation density, JCAP 08 (2007) 021 [arXiv:0705.0440] [INSPIRE].
K. Cranmer, Statistical challenges for searches for new physics at the LHC, in the proceedings of the PHYSTAT (2005): Statistical Problems in Particle Physics, Astrophysics and Cosmology, Oxford, England, U.K., 12–15 September 2005, L. Lyons and M. Karagöz Ünel eds., World Scientific Publishing (2006), pp. 112–123 [DOI:10.1142/9781860948985_0026] [physics/0511028] [INSPIRE].
S. Saito, K. Ichiki and A. Taruya, Probing polarization states of primordial gravitational waves with CMB anisotropies, JCAP 09 (2007) 002 [arXiv:0705.3701] [INSPIRE].
V. Gluscevic and M. Kamionkowski, Testing Parity-Violating Mechanisms with Cosmic Microwave Background Experiments, Phys. Rev. D 81 (2010) 123529 [arXiv:1002.1308] [INSPIRE].
M. Gerbino, A. Gruppuso, P. Natoli, M. Shiraishi and A. Melchiorri, Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra, JCAP 07 (2016) 044 [arXiv:1605.09357] [INSPIRE].
R. de Belsunce, S. Gratton and G. Efstathiou, B-mode constraints from Planck low-multipole polarization data, Mon. Not. Roy. Astron. Soc. 518 (2022) 3675 [arXiv:2207.04903] [INSPIRE].
A. Caravano, E. Komatsu, K.D. Lozanov and J. Weller, Lattice simulations of Abelian gauge fields coupled to axions during inflation, Phys. Rev. D 105 (2022) 123530 [arXiv:2110.10695] [INSPIRE].
A. Caravano, E. Komatsu, K.D. Lozanov and J. Weller, Lattice simulations of axion-U(1) inflation, Phys. Rev. D 108 (2023) 043504 [arXiv:2204.12874] [INSPIRE].
R.-G. Cai et al., On networks of space-based gravitational-wave detectors, arXiv:2305.04551 [INSPIRE].
R. Kato and J. Soda, Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays, Phys. Rev. D 93 (2016) 062003 [arXiv:1512.09139] [INSPIRE].
E. Belgacem and M. Kamionkowski, Chirality of the gravitational-wave background and pulsar-timing arrays, Phys. Rev. D 102 (2020) 023004 [arXiv:2004.05480] [INSPIRE].
G. Tasinato, Kinematic anisotropies and pulsar timing arrays, Phys. Rev. D 108 (2023) 103521 [arXiv:2309.00403] [INSPIRE].
C. Fu, J. Liu, X.-Y. Yang, W.-W. Yu and Y. Zhang, Explaining pulsar timing array observations with primordial gravitational waves in parity-violating gravity, Phys. Rev. D 109 (2024) 063526 [arXiv:2308.15329] [INSPIRE].
N. Bartolo et al., Anisotropies and non-Gaussianity of the Cosmological Gravitational Wave Background, Phys. Rev. D 100 (2019) 121501 [arXiv:1908.00527] [INSPIRE].
N. Bartolo et al., Characterizing the cosmological gravitational wave background: Anisotropies and non-Gaussianity, Phys. Rev. D 102 (2020) 023527 [arXiv:1912.09433] [INSPIRE].
LISA Cosmology Working Group, Probing anisotropies of the Stochastic Gravitational Wave Background with LISA, JCAP 11 (2022) 009 [arXiv:2201.08782] [INSPIRE].
T. Fujita, Y. Minami, M. Shiraishi and S. Yokoyama, Can primordial parity violation explain the observed cosmic birefringence?, Phys. Rev. D 106 (2022) 103529 [arXiv:2208.08101] [INSPIRE].
Y. Minami and E. Komatsu, New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data, Phys. Rev. Lett. 125 (2020) 221301 [arXiv:2011.11254] [INSPIRE].
P. Diego-Palazuelos et al., Cosmic Birefringence from the Planck Data Release 4, Phys. Rev. Lett. 128 (2022) 091302 [arXiv:2201.07682] [INSPIRE].
J.R. Eskilt, Frequency-dependent constraints on cosmic birefringence from the LFI and HFI Planck Data Release 4, Astron. Astrophys. 662 (2022) A10 [arXiv:2201.13347] [INSPIRE].
J.R. Eskilt and E. Komatsu, Improved constraints on cosmic birefringence from the WMAP and Planck cosmic microwave background polarization data, Phys. Rev. D 106 (2022) 063503 [arXiv:2205.13962] [INSPIRE].