CMBR polarisation; gravitational lensing; Inflation and CMBR theory; Astronomy and Astrophysics
Abstract :
[en] We explore the capability of measuring lensing signals in LiteBIRD full-sky polarization maps. With a 30 arcmin beam width and an impressively low polarization noise of 2.16 ìK-arcmin, LiteBIRD will be able to measure the full-sky polarization of the cosmic microwave background (CMB) very precisely. This unique sensitivity also enables the reconstruction of a nearly full-sky lensing map using only polarization data, even considering its limited capability to capture small-scale CMB anisotropies. In this paper, we investigate the ability to construct a full-sky lensing measurement in the presence of Galactic foregrounds, finding that several possible biases from Galactic foregrounds should be negligible after component separation by harmonic-space internal linear combination. We find that the signal-to-noise ratio of the lensing is approximately 40 using only polarization data measured over 80% of the sky. This achievement is comparable to Planck's recent lensing measurement with both temperature and polarization and represents a four-fold improvement over Planck's polarization-only lensing measurement. The LiteBIRD lensing map will complement the Planck lensing map and provide several opportunities for cross-correlation science, especially in the northern hemisphere.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Lonappan, A.I. ; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ; INFN Sezione di Roma2, Università di Roma Tor Vergata, Roma, Italy ; International School for Advanced Studies (SISSA), Trieste, Italy
Namikawa, T.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Piccirilli, G.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ; INFN Sezione di Roma2, Università di Roma Tor Vergata, Roma, Italy
Diego-Palazuelos, P.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain ; Dpto. de Física Moderna, Universidad de Cantabria, Santander, Spain
Ruiz-Granda, M.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain ; Dpto. de Física Moderna, Universidad de Cantabria, Santander, Spain
Migliaccio, M.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ; INFN Sezione di Roma2, Università di Roma Tor Vergata, Roma, Italy
Baccigalupi, C.; International School for Advanced Studies (SISSA), Trieste, Italy ; INFN Sezione di Trieste, Trieste, Italy ; IFPU, Grignano, Italy
Bartolo, N.; Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, Padova, Italy ; INFN Sezione di Padova, Padova, Italy ; INAF, Osservatorio Astronomico di Padova, Padova, Italy
Beck, D.; Stanford University, Department of Physics, United States
Benabed, K.; Institut d'Astrophysique de Paris, CNRS, Sorbonne Université, Paris, France
Challinor, A.; DAMTP, Centre for Mathematical Sciences, Cambridge, United Kingdom ; Institute of Astronomy, Cambridge, United Kingdom ; Kavli Institute for Cosmology Cambridge, Cambridge, United Kingdom
Errard, J.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Farrens, S.; AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris, Gif-sur-Yvette, France
Krachmalnicoff, N.; International School for Advanced Studies (SISSA), Trieste, Italy ; INFN Sezione di Trieste, Trieste, Italy ; IFPU, Grignano, Italy
Martínez-González, E.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Pettorino, V.; AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris, Gif-sur-Yvette, France
Sherwin, B.; DAMTP, Centre for Mathematical Sciences, Cambridge, United Kingdom ; Kavli Institute for Cosmology Cambridge, Cambridge, United Kingdom ; Lawrence Berkeley National Laboratory (LBNL), Physics Division, Berkeley, United States
Starck, J.; AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris, Gif-sur-Yvette, France
Vielva, P.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Akizawa, R.; The University of Tokyo, Department of Physics, Tokyo, Japan
Anand, A.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
Aumont, J.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Aurlien, R.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Norway
Azzoni, S.; Department of Astrophysical Sciences, Princeton University, Princeton, United States
Ballardini, M.; INAF - OAS Bologna, Bologna, Italy ; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy ; INFN Sezione di Ferrara, Ferrara, Italy
Banday, A.J.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Barreiro, R.B.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Bersanelli, M.; Dipartimento di Fisica, Universita' degli Studi di Milano, Milano, Italy ; INFN Sezione di Milano, Milano, Italy
Blinov, D.; Institute of Astrophysics, Foundation for Research and Technology-Hellas, Heraklion, Greece ; Department of Physics and ITCP, University of Crete, Heraklion, Greece
Bortolami, M.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy ; INFN Sezione di Ferrara, Ferrara, Italy
Brinckmann, T.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Calabrese, E.; School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
Campeti, P.; Max Planck Institute for Astrophysics, Garching, Germany ; Excellence Cluster ORIGINS, Garching, Germany
Carones, A.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ; INFN Sezione di Roma2, Università di Roma Tor Vergata, Roma, Italy
Carralot, F.; International School for Advanced Studies (SISSA), Trieste, Italy
Casas, F.J.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Cheung, K.; Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom ; University of California, Berkeley, Department of Physics, Berkeley, United States ; University of California, Berkeley, Space Sciences Laboratory, Berkeley, United States ; Lawrence Berkeley National Laboratory (LBNL), Computational Cosmology Center, Berkeley, United States
Clermont, Lionel ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Columbro, F.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
Conenna, G.; University of Milano Bicocca, Physics Department, Milan, Italy
Coppolecchia, A.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
Cuttaia, F.; INAF - OAS Bologna, Bologna, Italy
D'Alessandro, G.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
de Bernardis, P.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
De Petris, M.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
Della Torre, S.; INFN Sezione Milano Bicocca, Milano, Italy
Di Giorgi, E.; INFN Sezione di Pisa, Pisa, Italy
Eriksen, H.K.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Norway
Franceschet, C.; Dipartimento di Fisica, Universita' degli Studi di Milano, Milano, Italy ; INFN Sezione di Milano, Milano, Italy
Fuskeland, U.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Norway
Galloni, G.; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
Galloway, M.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Norway
Georges, Marc ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Gerbino, M.; INFN Sezione di Ferrara, Ferrara, Italy
Gervasi, M.; University of Milano Bicocca, Physics Department, Milan, Italy ; INFN Sezione Milano Bicocca, Milano, Italy
Génova-Santos, R.T.; Instituto de Astrofísica de Canarias, La Laguna, Spain ; Departamento de Astrofísica, Universidad de La Laguna (ULL), La Laguna, Spain
Ghigna, T.; International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
Giardiello, S.; School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
Gimeno-Amo, C.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Gjerløw, E.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Norway
Hazumi, M.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan ; International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan ; Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan ; Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara, Japan ; The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
Henrot-Versillé, S.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Hergt, L.T.; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
Hivon, E.; Institut d'Astrophysique de Paris, CNRS, Sorbonne Université, Paris, France
Kohri, K.; Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
Komatsu, E.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan ; Max Planck Institute for Astrophysics, Garching, Germany
Lamagna, L.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
Lattanzi, M.; INFN Sezione di Ferrara, Ferrara, Italy
Leloup, C.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Lembo, M.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
López-Caniego, M.; Aurora Technology for the European Space Agency, Madrid, Spain ; Universidad Europea de Madrid, Madrid, Spain
Luzzi, G.; Space Science Data Center, Italian Space Agency, Roma, Italy
Macias-Perez, J.; Université Grenoble Alpes, CNRS, LPSC-IN2P3, Grenoble, France
Maffei, B.; Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, Orsay, France
Masi, S.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
Massa, M.; INFN Sezione di Pisa, Pisa, Italy
Matarrese, S.; Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, Padova, Italy ; INFN Sezione di Padova, Padova, Italy ; INAF, Osservatorio Astronomico di Padova, Padova, Italy ; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
Matsumura, T.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Micheli, S.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Moggi, A.; INFN Sezione di Pisa, Pisa, Italy
Monelli, M.; Max Planck Institute for Astrophysics, Garching, Germany
Montier, L.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Morgante, G.; INAF - OAS Bologna, Bologna, Italy
Mot, B.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
Mousset, L.; IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France ; Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
Nagata, R.; Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara, Japan
Natoli, P.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy ; INFN Sezione di Ferrara, Ferrara, Italy
Novelli, A.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Obata, I.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Occhiuzzi, A.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Pagano, L.; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy ; INFN Sezione di Ferrara, Ferrara, Italy ; Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, Orsay, France
Paiella, A.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
Pascual-Cisneros, G.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain
Pavlidou, V.; Institute of Astrophysics, Foundation for Research and Technology-Hellas, Heraklion, Greece ; Department of Physics and ITCP, University of Crete, Heraklion, Greece
Piacentini, F.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy ; INFN Sezione di Roma, Roma, Italy
Pinchera, M.; INFN Sezione di Pisa, Pisa, Italy
Pisano, G.; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Polenta, G.; Space Science Data Center, Italian Space Agency, Roma, Italy
Puglisi, G.; Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy ; INAF, Osservatorio Astrofisico di Catania, Catania, Italy ; INFN, Sezione di Catania, Catania, Italy
Remazeilles, M.; Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Santander, Spain ; Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
Ritacco, A.; Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France ; INAF, Osservatorio Astronomico di Cagliari, Selargius, Italy
Rizzieri, A.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Sakurai, Y.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan ; Okayama University, Department of Physics, Okayama, Japan
Scott, D.; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
Shiraishi, M.; Suwa University of Science, Chino, Japan
Signorelli, G.; INFN Sezione di Pisa, Pisa, Italy
Stever, S.L.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan ; Okayama University, Department of Physics, Okayama, Japan
Takase, Y.; Okayama University, Department of Physics, Okayama, Japan
Tanimura, H.; Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, Japan
Tartari, A.; INFN Sezione di Pisa, Pisa, Italy ; Dipartimento di Fisica, Università di Pisa, Pisa, Italy
Tassis, K.; Institute of Astrophysics, Foundation for Research and Technology-Hellas, Heraklion, Greece ; Department of Physics and ITCP, University of Crete, Heraklion, Greece
Terenzi, L.; INAF - OAS Bologna, Bologna, Italy
Tristram, M.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Vacher, L.; International School for Advanced Studies (SISSA), Trieste, Italy
van Tent, B.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Wehus, I.K.; Institute of Theoretical Astrophysics, University of Oslo, Blindern, Norway
Weymann-Despres, G.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Zannoni, M.; University of Milano Bicocca, Physics Department, Milan, Italy ; INFN Sezione Milano Bicocca, Milano, Italy
Zhou, Y.; International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Canadian contribution is supported by the Canadian Space Agency. The French LiteBIRD phase A contribution is supported by the Centre National d'Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat \u00E0 l'Energie Atomique (CEA). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy (Grant No. EXC-2094-390783311). The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011) and has received funding from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme (Grant agreement No. 772253 and 819478). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigaci\u00F3n (AEI), project refs. PID2019-110610RB-C21, PID2020-120514GB-I00, ProID2020010108 and ICTP20210008. Funds that support contributions from Sweden come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The US contribution is supported by NASA grant no. 80NSSC18K0132. We also acknowledge the support from H2020-MSCA-RISE- 2020 European grant (Marie Sklodowska-Curie Research and Innovation Staff Exchange), JSPS KAKENHI Grant No. JP20H05859 and No. JP22K03682. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory.
M. Zaldarriaga and U. Seljak, An all sky analysis of polarization in the microwave background, Phys. Rev. D 55 (1997) 1830 [astro-ph/9609170] [INSPIRE].
M. Kamionkowski, A. Kosowsky and A. Stebbins, Statistics of cosmic microwave background polarization, Phys. Rev. D 55 (1997) 7368 [astro-ph/9611125] [INSPIRE].
U. Seljak, Measuring polarization in cosmic microwave background, Astrophys. J. 482 (1997) 6 [astro-ph/9608131] [INSPIRE].
U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background, Phys. Rev. Lett. 78 (1997) 2054 [astro-ph/9609169] [INSPIRE].
M. Kamionkowski, A. Kosowsky and A. Stebbins, A probe of primordial gravity waves and vorticity, Phys. Rev. Lett. 78 (1997) 2058 [astro-ph/9609132] [INSPIRE].
LiteBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey, PTEP 2023 (2023) 042F01 [arXiv:2202.02773] [INSPIRE].
M. Zaldarriaga and U. Seljak, Gravitational lensing effect on cosmic microwave background polarization, Phys. Rev. D 58 (1998) 023003 [astro-ph/9803150] [INSPIRE].
K.M. Smith, O. Zahn and O. Doré, Detection of Gravitational Lensing in the Cosmic Microwave Background, Phys. Rev. D 76 (2007) 043510 [arXiv:0705.3980] [INSPIRE].
C.M. Hirata et al., Correlation of CMB with large-scale structure: II. Weak lensing, Phys. Rev. D 78 (2008) 043520 [arXiv:0801.0644] [INSPIRE].
Herschel ATLAS collaboration, Cross-correlation between the CMB lensing potential measured by Planck and high-z sub-mm galaxies detected by the Herschel-ATLAS survey, Astrophys. J. 802 (2015) 64 [arXiv:1410.4502] [INSPIRE].
DES collaboration, CMB lensing tomography with the DES Science Verification galaxies, Mon. Not. Roy. Astron. Soc. 456 (2016) 3213 [arXiv:1507.05551] [INSPIRE].
S. Singh, R. Mandelbaum and J.R. Brownstein, Cross-correlating Planck CMB lensing with SDSS: Lensing-lensing and galaxy-lensing cross-correlations, Mon. Not. Roy. Astron. Soc. 464 (2017) 2120 [arXiv:1606.08841] [INSPIRE].
DES and SPT collaborations, Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck, Phys. Rev. D 100 (2019) 043501 [arXiv:1810.02342] [INSPIRE].
Polarbear collaboration, Cross-correlation of POLARBEAR CMB Polarization Lensing with High-z Sub-mm Herschel-ATLAS galaxies, Astrophys. J. 886 (2019) 38 [arXiv:1903.07046] [INSPIRE].
G.A. Marques and A. Bernui, Tomographic analyses of the CMB lensing and galaxy clustering to probe the linear structure growth, JCAP 05 (2020) 052 [arXiv:1908.04854] [INSPIRE].
O. Darwish et al., The Atacama Cosmology Telescope: A CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies, Mon. Not. Roy. Astron. Soc. 500 (2020) 2250 [arXiv:2004.01139] [INSPIRE].
A. Krolewski, S. Ferraro and M. White, Cosmological constraints from unWISE and Planck CMB lensing tomography, JCAP 12 (2021) 028 [arXiv:2105.03421] [INSPIRE].
F. Dong et al., Detection of a Cross-correlation between Cosmic Microwave Background Lensing and Low-density Points, Astrophys. J. 923 (2021) 153 [arXiv:2107.08694] [INSPIRE].
Z. Sun et al., Cross-correlation of Planck cosmic microwave background lensing with DESI galaxy groups, Mon. Not. Roy. Astron. Soc. 511 (2022) 3548 [arXiv:2109.07387] [INSPIRE].
H. Miyatake et al., First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at z ∼ 4: Constraints on Matter Density Fluctuations at High Redshift, Phys. Rev. Lett. 129 (2022) 061301 [arXiv:2103.15862] [INSPIRE].
C.S. Saraf, P. Bielewicz and M. Chodorowski, Cross-correlation between Planck CMB lensing potential and galaxy catalogues from HELP, Mon. Not. Roy. Astron. Soc. 515 (2022) 1993 [arXiv:2106.02551] [INSPIRE].
DES and SPT collaborations, Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices, Phys. Rev. D 107 (2023) 023529 [arXiv:2203.12439] [INSPIRE].
DES and SPT collaborations, Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints, Phys. Rev. D 107 (2023) 023530 [arXiv:2203.12440] [INSPIRE].
G. Piccirilli, M. Migliaccio, E. Branchini and A. Dolfi, A cross-correlation analysis of CMB lensing and radio galaxy maps, Astron. Astrophys. 671 (2023) A42 [arXiv:2208.07774] [INSPIRE].
J. Yao et al., KiDS-1000: cross-correlation with Planck cosmic microwave background lensing and intrinsic alignment removal with self-calibration, Astron. Astrophys. 673 (2023) A111 [arXiv:2301.13437] [INSPIRE].
ACT collaboration, The Atacama Cosmology Telescope: Cosmology from Cross-correlations of unWISE Galaxies and ACT DR6 CMB Lensing, Astrophys. J. 966 (2024) 157 [arXiv:2309.05659] [INSPIRE].
G.S. Farren et al., Detection of the CMB lensing — galaxy bispectrum, arXiv:2311.04213 [INSPIRE].
N. Hand et al., First Measurement of the Cross-Correlation of CMB Lensing and Galaxy Lensing, Phys. Rev. D 91 (2015) 062001 [arXiv:1311.6200] [INSPIRE].
DES collaboration, Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing, Mon. Not. Roy. Astron. Soc. 459 (2016) 21 [arXiv:1512.04535] [INSPIRE].
J. Liu and J.C. Hill, Cross-correlation of Planck CMB Lensing and CFHTLenS Galaxy Weak Lensing Maps, Phys. Rev. D 92 (2015) 063517 [arXiv:1504.05598] [INSPIRE].
J. Harnois-Déraps et al., CFHTLenS and RCSLenS Cross-Correlation with Planck Lensing Detected in Fourier and Configuration Space, Mon. Not. Roy. Astron. Soc. 460 (2016) 434 [arXiv:1603.07723] [INSPIRE].
J. Harnois-Déraps et al., KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing, Mon. Not. Roy. Astron. Soc. 471 (2017) 1619 [arXiv:1703.03383] [INSPIRE].
DES and SPT collaborations, Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope +Planck CMB weak lensing, Phys. Rev. D 100 (2019) 043517 [arXiv:1810.02441] [INSPIRE].
POLARBEAR and HSC collaborations, Evidence for the Cross-correlation between Cosmic Microwave Background Polarization Lensing from POLARBEAR and Cosmic Shear from Subaru Hyper Suprime-Cam, Astrophys. J. 882 (2019) 62 [arXiv:1904.02116] [INSPIRE].
N.C. Robertson et al., Strong detection of the CMB lensing and galaxy weak lensing cross-correlation from ACT-DR4, Planck Legacy, and KiDS-1000, Astron. Astrophys. 649 (2021) A146 [arXiv:2011.11613] [INSPIRE].
G.A. Marques, J. Liu, K.M. Huffenberger and J. Colin Hill, Cross-correlation between Subaru Hyper Suprime-Cam Galaxy Weak Lensing and Planck Cosmic Microwave Background Lensing, Astrophys. J. 904 (2020) 182 [arXiv:2008.04369] [INSPIRE].
ACT and DES collaborations, Cosmology from cross-correlation of ACT-DR4 CMB lensing and DES-Y3 cosmic shear, Mon. Not. Roy. Astron. Soc. 528 (2024) 2112 [arXiv:2309.04412] [INSPIRE].
Planck collaboration, Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, Astron. Astrophys. 571 (2014) A19 [arXiv:1303.5079] [INSPIRE].
J. Carron, A. Lewis and G. Fabbian, Planck integrated Sachs-Wolfe-lensing likelihood and the CMB temperature, Phys. Rev. D 106 (2022) 103507 [arXiv:2209.07395] [INSPIRE].
J.C. Hill and D.N. Spergel, Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data, JCAP 02 (2014) 030 [arXiv:1312.4525] [INSPIRE].
F. McCarthy and J.C. Hill, Cross-correlation of the thermal Sunyaev-Zel’dovich and CMB lensing signals in Planck PR4 data with robust CIB decontamination, Phys. Rev. D 109 (2024) 023529 [arXiv:2308.16260] [INSPIRE].
G.P. Holder et al., A Cosmic Microwave Background Lensing Mass Map and Its Correlation with the Cosmic Infrared Background, Astrophys. J. Lett. 771 (2013) L16 [arXiv:1303.5048] [INSPIRE].
Planck collaboration, Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation, Astron. Astrophys. 571 (2014) A18 [arXiv:1303.5078] [INSPIRE].
SPTpol collaboration, Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope, Phys. Rev. Lett. 111 (2013) 141301 [arXiv:1307.5830] [INSPIRE].
POLARBEAR collaboration, Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-correlation with the Cosmic Infrared Background, Phys. Rev. Lett. 112 (2014) 131302 [arXiv:1312.6645] [INSPIRE].
ACT collaboration, The Atacama Cosmology Telescope: Lensing of CMB Temperature and Polarization Derived from Cosmic Infrared Background Cross-Correlation, Astrophys. J. 808 (2015) 7 [arXiv:1412.0626] [INSPIRE].
Y. Cao et al., Cross-Correlation of Far-Infrared Background Anisotropies and CMB Lensing from Herschel and Planck satellites, Astrophys. J. 901 (2020) 34 [arXiv:1912.12840] [INSPIRE].
M. Kesden, A. Cooray and M. Kamionkowski, Separation of gravitational wave and cosmic shear contributions to cosmic microwave background polarization, Phys. Rev. Lett. 89 (2002) 011304 [astro-ph/0202434] [INSPIRE].
U. Seljak and C.M. Hirata, Gravitational lensing as a contaminant of the gravity wave signal in CMB, Phys. Rev. D 69 (2004) 043005 [astro-ph/0310163] [INSPIRE].
K.M. Smith et al., Delensing CMB Polarization with External Datasets, JCAP 06 (2012) 014 [arXiv:1010.0048] [INSPIRE].
T. Okamoto and W. Hu, CMB lensing reconstruction on the full sky, Phys. Rev. D 67 (2003) 083002 [astro-ph/0301031] [INSPIRE].
W. Hu and T. Okamoto, Mass reconstruction with cmb polarization, Astrophys. J. 574 (2002) 566 [astro-ph/0111606] [INSPIRE].
S. Das et al., Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope, Phys. Rev. Lett. 107 (2011) 021301 [arXiv:1103.2124] [INSPIRE].
B.D. Sherwin et al., Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements, Phys. Rev. Lett. 107 (2011) 021302 [arXiv:1105.0419] [INSPIRE].
B.D. Sherwin et al., Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum, Phys. Rev. D 95 (2017) 123529 [arXiv:1611.09753] [INSPIRE].
ACT collaboration, The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth, Astrophys. J. 962 (2024) 112 [arXiv:2304.05202] [INSPIRE].
ACT collaboration, The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters, Astrophys. J. 962 (2024) 113 [arXiv:2304.05203] [INSPIRE].
ACT collaboration, The Atacama Cosmology Telescope: Mitigating the Impact of Extragalactic Foregrounds for the DR6 Cosmic Microwave Background Lensing Analysis, Astrophys. J. 966 (2024) 138 [arXiv:2304.05196] [INSPIRE].
BICEP2 and Keck Array collaborations, BICEP2/Keck Array VIII: Measurement of gravitational lensing from large-scale B-mode polarization, Astrophys. J. 833 (2016) 228 [arXiv:1606.01968] [INSPIRE].
BICEP/Keck collaboration, BICEP/Keck. XVII. Line-of-sight Distortion Analysis: Estimates of Gravitational Lensing, Anisotropic Cosmic Birefringence, Patchy Reionization, and Systematic Errors, Astrophys. J. 949 (2023) 43 [arXiv:2210.08038] [INSPIRE].
Planck collaboration, Planck 2013 results. XVII. Gravitational lensing by large-scale structure, Astron. Astrophys. 571 (2014) A17 [arXiv:1303.5077] [INSPIRE].
J. Carron, M. Mirmelstein and A. Lewis, CMB lensing from Planck PR4 maps, JCAP 09 (2022) 039 [arXiv:2206.07773] [INSPIRE].
POLARBEAR collaboration, Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR experiment, Phys. Rev. Lett. 113 (2014) 021301 [arXiv:1312.6646] [INSPIRE].
POLARBEAR collaboration, Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum from Two Years of POLARBEAR Data, Astrophys. J. 893 (2020) 85 [arXiv:1911.10980] [INSPIRE].
A. van Engelen et al., A measurement of gravitational lensing of the microwave background using South Pole Telescope data, Astrophys. J. 756 (2012) 142 [arXiv:1202.0546] [INSPIRE].
SPT collaboration, A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data, Astrophys. J. 810 (2015) 50 [arXiv:1412.4760] [INSPIRE].
W.L.K. Wu et al., A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data, Astrophys. J. 884 (2019) 70 [arXiv:1905.05777] [INSPIRE].
M. Millea et al., Optimal Cosmic Microwave Background Lensing Reconstruction and Parameter Estimation with SPTpol Data, Astrophys. J. 922 (2021) 259 [arXiv:2012.01709] [INSPIRE].
SPT collaboration, Measurement of gravitational lensing of the cosmic microwave background using SPT-3G 2018 data, Phys. Rev. D 108 (2023) 122005 [arXiv:2308.11608] [INSPIRE].
Simons Observatory collaboration, The Simons Observatory: Science goals and forecasts, JCAP 02 (2019) 056 [arXiv:1808.07445] [INSPIRE].
K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan, arXiv:1907.04473 [INSPIRE].
J. Liu et al., Forecasts on CMB lensing observations with AliCPT-1, Sci. China Phys. Mech. Astron. 65 (2022) 109511 [arXiv:2204.08158] [INSPIRE].
L. Perotto et al., Reconstruction of the CMB lensing for Planck, arXiv:0903.1308 [INSPIRE].
S. Plaszczynski, A. Lavabre, L. Perotto and J.-L. Starck, A hybrid approach to CMB lensing reconstruction on all-sky intensity maps, Astron. Astrophys. 544 (2012) A27 [arXiv:1201.5779] [INSPIRE].
T. Namikawa, D. Hanson and R. Takahashi, Bias-Hardened CMB Lensing, Mon. Not. Roy. Astron. Soc. 431 (2013) 609 [arXiv:1209.0091] [INSPIRE].
T. Namikawa and R. Takahashi, Bias-Hardened CMB Lensing with Polarization, Mon. Not. Roy. Astron. Soc. 438 (2014) 1507 [arXiv:1310.2372] [INSPIRE].
A. Benoit-Levy et al., Full-sky CMB lensing reconstruction in presence of sky-cuts, Astron. Astrophys. 555 (2013) A37 [arXiv:1301.4145] [INSPIRE].
D. Hanson, G. Rocha and K. Górski, Lensing reconstruction from PLANCK sky maps: inhomogeneous noise, Mon. Not. Roy. Astron. Soc. 400 (2009) 2169 [arXiv:0907.1927] [INSPIRE].
S.J. Osborne, D. Hanson and O. Doré, Extragalactic Foreground Contamination in Temperature-based CMB Lens Reconstruction, JCAP 03 (2014) 024 [arXiv:1310.7547] [INSPIRE].
E. Schaan and S. Ferraro, Foreground-Immune Cosmic Microwave Background Lensing with Shear-Only Reconstruction, Phys. Rev. Lett. 122 (2019) 181301 [arXiv:1804.06403] [INSPIRE].
N. Mishra and E. Schaan, Bias to CMB lensing from lensed foregrounds, Phys. Rev. D 100 (2019) 123504 [arXiv:1908.08057] [INSPIRE].
N. Sailer, E. Schaan and S. Ferraro, Lower bias, lower noise CMB lensing with foreground-hardened estimators, Phys. Rev. D 102 (2020) 063517 [arXiv:2007.04325] [INSPIRE].
D. Han and N. Sehgal, Mitigating foreground bias to the CMB lensing power spectrum for a CMB-HD survey, Phys. Rev. D 105 (2022) 083516 [arXiv:2112.02109] [INSPIRE].
O. Darwish et al., Optimizing foreground mitigation for CMB lensing with combined multifrequency and geometric methods, Phys. Rev. D 107 (2023) 043519 [arXiv:2111.00462] [INSPIRE].
N. Sailer, S. Ferraro and E. Schaan, Foreground-immune CMB lensing reconstruction with polarization, Phys. Rev. D 107 (2023) 023504 [arXiv:2211.03786] [INSPIRE].
F.J. Qu, A. Challinor and B.D. Sherwin, CMB lensing with shear-only reconstruction on the full sky, Phys. Rev. D 108 (2023) 063518 [arXiv:2208.14988] [INSPIRE].
M. Mirmelstein, G. Fabbian, A. Lewis and J. Peloton, Instrumental systematics biases in CMB lensing reconstruction: A simulation-based assessment, Phys. Rev. D 103 (2021) 123540 [arXiv:2011.13910] [INSPIRE].
R. Nagata and T. Namikawa, A numerical study of observational systematic errors in lensing analysis of CMB polarization, PTEP 2021 (2021) 053 [arXiv:2102.00133] [INSPIRE].
D. Beck, J. Errard and R. Stompor, Impact of Polarized Galactic Foreground Emission on CMB Lensing Reconstruction and Delensing of B-Modes, JCAP 06 (2020) 030 [arXiv:2001.02641] [INSPIRE].
LiteBIRD collaboration, LiteBIRD Science Goals and Forecasts: Improving Sensitivity to Inflationary Gravitational Waves with Multitracer Delensing, arXiv:2312.05194 [INSPIRE].
M. Tegmark, A. de Oliveira-Costa and A. Hamilton, A high resolution foreground cleaned CMB map from WMAP, Phys. Rev. D 68 (2003) 123523 [astro-ph/0302496] [INSPIRE].
A. Challinor and G. Chon, Geometry of weak lensing of CMB polarization, Phys. Rev. D 66 (2002) 127301 [astro-ph/0301064] [INSPIRE].
A. Lewis and A. Challinor, Weak gravitational lensing of the CMB, Phys. Rept. 429 (2006) 1 [astro-ph/0601594] [INSPIRE].
D. Hanson, A. Challinor and A. Lewis, Weak lensing of the CMB, Gen. Rel. Grav. 42 (2010) 2197 [arXiv:0911.0612] [INSPIRE].
B. Hadzhiyska, D. Spergel and J. Dunkley, Small-scale modification to the lensing kernel, Phys. Rev. D 97 (2018) 043521 [arXiv:1711.03168] [INSPIRE].
G. Pratten and A. Lewis, Impact of post-Born lensing on the CMB, JCAP 08 (2016) 047 [arXiv:1605.05662] [INSPIRE].
A. Lewis and G. Pratten, Effect of lensing non-Gaussianity on the CMB power spectra, JCAP 12 (2016) 003 [arXiv:1608.01263] [INSPIRE].
G. Fabbian, M. Calabrese and C. Carbone, CMB weak-lensing beyond the Born approximation: a numerical approach, JCAP 02 (2018) 050 [arXiv:1702.03317] [INSPIRE].
T. Namikawa, Cosmology from weak lensing of CMB, PTEP 2014 (2014) 06B108 [arXiv:1403.3569] [INSPIRE].
A. Lewis, A. Challinor and D. Hanson, The shape of the CMB lensing bispectrum, JCAP 03 (2011) 018 [arXiv:1101.2234] [INSPIRE].
E. Komatsu, New physics from the polarized light of the cosmic microwave background, Nature Rev. Phys. 4 (2022) 452 [arXiv:2202.13919] [INSPIRE].
T. Namikawa, CMB mode coupling with isotropic polarization rotation, Mon. Not. Roy. Astron. Soc. 506 (2021) 1250 [arXiv:2105.03367] [INSPIRE].
C.M. Hirata and U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization, Phys. Rev. D 68 (2003) 083002 [astro-ph/0306354] [INSPIRE].
K.M. Smith et al., CMBPol Mission Concept Study: Gravitational Lensing, AIP Conf. Proc. 1141 (2009) 121 [arXiv:0811.3916] [INSPIRE].
N. Macellari, E. Pierpaoli, C. Dickinson and J. Vaillancourt, Galactic foreground contributions to the WMAP5 maps, Mon. Not. Roy. Astron. Soc. 418 (2011) 888 [arXiv:1108.0205] [INSPIRE].
J. Delabrouille et al., A full sky, low foreground, high resolution CMB map from WMAP, Astron. Astrophys. 493 (2009) 835 [arXiv:0807.0773] [INSPIRE].
H.K. Eriksen et al., Power spectrum estimation from high-resolution maps by Gibbs sampling, Astrophys. J. Suppl. 155 (2004) 227 [astro-ph/0407028] [INSPIRE].
T. Namikawa et al., Simons Observatory: Constraining inflationary gravitational waves with multitracer B-mode delensing, Phys. Rev. D 105 (2022) 023511 [arXiv:2110.09730] [INSPIRE].
M. Remazeilles et al., An improved source-subtracted and destriped 408 MHz all-sky map, Mon. Not. Roy. Astron. Soc. 451 (2015) 4311 [arXiv:1411.3628] [INSPIRE].
WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].
M.-A. Miville-Deschenes et al., Separation of anomalous and synchrotron emissions using WMAP polarization data, Astron. Astrophys. 490 (2008) 1093 [arXiv:0802.3345] [INSPIRE].
K.M. Górski et al., HEALPix — A Framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophys. J. 622 (2005) 759 [astro-ph/0409513] [INSPIRE].
M.H. Kesden, A. Cooray and M. Kamionkowski, Lensing reconstruction with CMB temperature and polarization, Phys. Rev. D 67 (2003) 123507 [astro-ph/0302536] [INSPIRE].
T. Namikawa, cmblensplus: A tool to analyze cosmic microwave background anisotropies, Astrophysics Source Code Library, ascl:2104.021.
D. Hanson, A. Challinor, G. Efstathiou and P. Bielewicz, CMB temperature lensing power reconstruction, Phys. Rev. D 83 (2011) 043005 [arXiv:1008.4403] [INSPIRE].
V. Böhm, M. Schmittfull and B.D. Sherwin, Bias to CMB lensing measurements from the bispectrum of large-scale structure, Phys. Rev. D 94 (2016) 043519 [arXiv:1605.01392] [INSPIRE].
V. Böhm et al., Effect of non-Gaussian lensing deflections on CMB lensing measurements, Phys. Rev. D 98 (2018) 123510 [arXiv:1806.01157] [INSPIRE].
M.M. Schmittfull, A. Challinor, D. Hanson and A. Lewis, Joint analysis of CMB temperature and lensing-reconstruction power spectra, Phys. Rev. D 88 (2013) 063012 [arXiv:1308.0286] [INSPIRE].
J. Peloton et al., Full covariance of CMB and lensing reconstruction power spectra, Phys. Rev. D 95 (2017) 043508 [arXiv:1611.01446] [INSPIRE].
G. Fabbian, A. Lewis and D. Beck, CMB lensing reconstruction biases in cross-correlation with large-scale structure probes, JCAP 10 (2019) 057 [arXiv:1906.08760] [INSPIRE].
Euclid collaboration, Euclid preparation. VII. Forecast validation for Euclid cosmological probes, Astron. Astrophys. 642 (2020) A191 [arXiv:1910.09273] [INSPIRE].
LSST Dark Energy Science collaboration, The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document, arXiv:1809.01669 [INSPIRE].
LSST Dark Energy Science collaboration, Transitioning from Stage-III to Stage-IV: cosmology from galaxy×CMB lensing and shear×CMB lensing, Mon. Not. Roy. Astron. Soc. 514 (2022) 2181 [arXiv:2111.04917] [INSPIRE].
N. Dalal, O. Doré, D. Huterer and A. Shirokov, The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D 77 (2008) 123514 [arXiv:0710.4560] [INSPIRE].
D. Jeong, E. Komatsu and B. Jain, Galaxy-CMB and galaxy-galaxy lensing on large scales: sensitivity to primordial non-Gaussianity, Phys. Rev. D 80 (2009) 123527 [arXiv:0910.1361] [INSPIRE].
M. Schmittfull and U. Seljak, Parameter constraints from cross-correlation of CMB lensing with galaxy clustering, Phys. Rev. D 97 (2018) 123540 [arXiv:1710.09465] [INSPIRE].
M. Ballardini, W.L. Matthewson and R. Maartens, Constraining primordial non-Gaussianity using two galaxy surveys and CMB lensing, Mon. Not. Roy. Astron. Soc. 489 (2019) 1950 [arXiv:1906.04730] [INSPIRE].
F. McCarthy and M.S. Madhavacheril, Improving models of the cosmic infrared background using CMB lensing mass maps, Phys. Rev. D 103 (2021) 103515 [arXiv:2010.16405] [INSPIRE].
F. McCarthy, M.S. Madhavacheril and A.S. Maniyar, Constraints on primordial non-Gaussianity from halo bias measured through CMB lensing cross-correlations, Phys. Rev. D 108 (2023) 083522 [arXiv:2210.01049] [INSPIRE].
R.K. Sachs and A.M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147 (1967) 73 [INSPIRE].
D.M. Goldberg and D.N. Spergel, Microwave background bispectrum. 2. A probe of the low redshift universe, Phys. Rev. D 59 (1999) 103002 [astro-ph/9811251] [INSPIRE].
R. Pearson, B. Sherwin and A. Lewis, CMB lensing reconstruction using cut sky polarization maps and pure-B modes, Phys. Rev. D 90 (2014) 023539 [arXiv:1403.3911] [INSPIRE].
M. Mirmelstein, J. Carron and A. Lewis, Optimal filtering for CMB lensing reconstruction, Phys. Rev. D 100 (2019) 123509 [arXiv:1909.02653] [INSPIRE].