[en] This paper presents a dataset documenting 71 floating debris accumulations at bridges following an extreme hydrological event that hit Belgium and Germany in July 2021. Data were collected from various sources including public authorities' documents, public online databases, post event pictures and field visits. The dataset covers bridges geometry, flood conditions and debris accumulation. In particular, it systematically details accumulations dimensions and quantifies accumulations components, which contain a significant portion of anthropogenic objects, in addition to driftwood. This dataset constitutes a unique set of invaluable data to better understand debris accumulation at bridges but also to analyze their impact on both the affected structures and flood conditions.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Civil engineering
Author, co-author :
Erpicum, Sébastien ; Université de Liège - ULiège > Département d'hydraulique et de transport > Hydraulique générale, constructions hydrauliques et mécanique des fluides
Poppema, Daan; Delft University of technology, Delft, netherlands
Dewals, Benjamin ; Université de Liège - ULiège > Département d'hydraulique et de transport > HECE (Hydraulics in Environnemental and Civil Engineering)
Language :
English
Title :
A dataset of floating debris accumulation at bridges after July 2021 flood in Germany and Belgium
Alternative titles :
[fr] Base de données des accumulations de corps flottants au droit des ponts après la crue de juillet 2021 en Allemagne et en Belgique
Publication date :
05 October 2024
Journal title :
Scientific Data
eISSN :
2052-4463
Publisher :
Nature Publishing Group, London, United Kingdom
Volume :
11
Issue :
2024
Pages :
1092
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
11. Sustainable cities and communities 9. Industry, innovation and infrastructure 6. Clean water and sanitation
F. Comiti A. Lucía D. Rickenmann Large wood recruitment and transport during large floods: a review Geomorphology 2016 269 23 39 2016Geomo.269..23C 10.1016/j.geomorph.2016.06.016
P.N. De Cicco E. Paris V. Ruiz-Villanueva L. Solari M. Stoffel In-channel wood-related hazards at bridges: A review River Research and Applications 2018 34 7 617 628 10.1002/rra.3300
A. Bayón D. Valero M.J. Franca Urban Flood Drifters (UFDs): identification, classification and characterisation J. of Flood Risk Management 2024 2024 10.1111/jfr3.13002
J. Bruschin S. Bauer P. Delley G. Trucco The overtopping of the Palagnedra dam Water Power Dam Constr. 1981 34 1 13 19
P. Furlan M. Pfister J. Matos C. Amado A.J. Schleiss Experimental repetitions and blockage of large stems at ogee crested spillways with piers J. Hyd. Res. 2018 57 2 250 262 10.1080/00221686.2018.1478897
Furlan, P., Pfister, M., Matos, J., Amado, C., Schleiss, A. J. Blockage probability modeling of large wood at reservoir spillways with piers. Wat. Ress. Res., 57(8). https://doi.org/10.1029/2021WR029722 (2021).
Bénet, L., De Cesare, G. & Pfister, M. Reservoir Level Rise under Extreme Driftwood Blockage at Ogee Crest. J. Hyd. Eng. 147(1). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001818 (2020).
Bénet, L., De Cesare, G. & Pfister, M. Partial Driftwood Rack at Gated Ogee Crest: Trapping Rate and Discharge Efficiency. J. Hyd. Eng. 148(8). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001994 (2022).
I. Schalko C. Lageder L. Schmocker V. Weitbrecht R.M. Boes Laboratory flume experiments on the formation of spanwise large wood accumulations: I. Effect on backwater rise Wat. Ress. Res. 2019 55 6 4854 4870 10.1029/2018WR024649
I. Schalko L. Schmocker V. Weitbrecht R.M. Boes Risk reduction measures of large wood accumulations at bridges Env. Fluid Mech. 2020 20 3 485 502 10.1007/s10652-019-09719-4
P.N. De Cicco E. Paris L. Solari V. Ruiz‐Villanueva Bridge pier shape influence on wood accumulation: Outcomes from flume experiments and numerical modelling J. of Flood Risk Management 2020 13 2 10.1111/jfr3.12599
I. Schalko L. Schmocker V. Weitbrecht R.M. Boes Laboratory study on wood accumulation probability at bridge piers J. Hyd. Res. 2020 58 4 566 581 10.1080/00221686.2019.1625820
L. Schmocker W.H. Hager Probability of Drift Blockage at Bridge Decks J. Hyd. Eng. 2011 137 4 470 479 10.1061/(ASCE)HY.1943-7900.0000319
T. Gschnitzer B. Gems B. Mazzorana M. Aufleger Towards a robust assessment of bridge clogging processes in flood risk management Geomorphology 2017 279 128 140 2017Geomo.279.128G 10.1016/j.geomorph.2016.11.002
S. Mohr et al. A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis Natural Hazards and Earth System Sciences 2023 23 2 525 551 2023NHESS.23.525M 10.5194/nhess-23-525-2023
E.E. Koks K.C.H. van Ginkel M.J.E. van Marle A. Lemnitzer Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event Natural Hazards and Earth System Sciences 2022 22 12 3831 3838 2022NHESS.22.3831K 10.5194/nhess-22-3831-2022
Burghardt, L., Klopries, E.-M., & Schüttrumpf, H. Structural damage, clogging, collapsing: Analysis of the bridge damage at the rivers Ahr, Inde and Vicht caused by the flood of 2021. Journal of Flood Risk Management, e13001. https://doi.org/10.1111/jfr3.13001 (2024).
E. Tubaldi et al. Invited perspectives: Challenges and future directions in improving bridge flood resilience Natural Hazards and Earth System Sciences 2022 22 3 795 812 2022NHESS.22.795T 10.5194/nhess-22-795-2022
Wüthrich, D. et al. Field survey assessment of flood loads and related building damage from th July 2021 event in the Ahr Valley (Germany). Journal of Flood Risk Management, e13024, https://doi.org/10.1111/jfr3.13024 (2024).
I.N. Robertson H.R. Riggs S.C. Yim Y.L. Young Lessons from Hurricane Katrina Storm Surge on Bridges and Buildings Journal of Waterway, Port, Coastal, and Ocean Engineering 2007 133 6 463 483 10.1061/(ASCE)0733-950X(2007)133:6(463)
Chock, G., Robertson, I., Kriebel, D., Francis, M., & Nistor, I. Tohoku, Japan, earthquake and tsunami of 2011: Performance of structures under tsunami loads. ASCE Report (2013).
D. Wüthrich C.Y. Arbós M. Pfister A.J. Schleiss Effect of Debris Damming on Wave-Induced Hydrodynamic Loads against Free-Standing Buildings with Openings Journal of Waterway, Port, Coastal, and Ocean Engineering 2020 146 1 10.1061/(ASCE)WW.1943-5460.0000541
S. Erpicum et al. Database - Bridge clogging and debris - July 2021 flood (1.0) Zenodo. 2024 10.5281/zenodo.11551195
Dessers, C., Archambeau, P., Dewals, B., Erpicum, S. Pirotton, M. Hydrological modelling of July 2021 floods in Vesdre and Amblève catchments, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15619, https://doi.org/10.5194/egusphere-egu23-15619 (2023).
A. Bauwens C. Sohier A. Degré Hydrological response to climate change in the Lesse and the Vesdre catchments: contribution of a physically based model (Wallonia, Belgium) Hydrol. Earth Syst. Sci. 2011 15 6 1745 1756 2011HESS..15.1745B 10.5194/hess-15-1745-2011
M. Bruwier S. Erpicum M. Pirotton P. Archambeau B.J. Dewals Assessing the operation rules of a reservoir system based on a detailed modelling chain Nat. Hazards Earth Syst. Sci. 2015 15 3 365 379 2015NHESS.15.365B 10.5194/nhess-15-365-2015
T. Cuvelier P. Archambeau B. Dewals Q. Louveaux Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty Water Resources Management 2018 32 5 1599 1614 10.1007/s11269-017-1893-1
Deroanne, C., & Petit, F. Longitudinal evaluation of the bed load size and of its mobilisation in a gravel bed river. Floods and Landslides: Integrated Risk Assessment (pp. 335–342). Springer (1999).
T. Roggenkamp J. Herget Hochwasser der Ahr im Juli 2021 – Abflussabschätzung und Einordnung Hydrologie und Wasserbewirtschaftung 2022 66 1 40 49
S. Vorogushyn H. Apel M. Kemter A.H. Thieken Analyse der Hochwassergefährdung im Ahrtal unter Berücksichtigung historischer Hochwasser Hydrologie und Wasserbewirtschaftung 2022 66 5 244 254 10.5675/HyWa_2021.5_2
OpenStreetMap contributors. Planet dump. Retrieved from https://planet.openstreetmap.org (2015).