Controlled human hookworm infection remodels plasmacytoid dendritic cells and regulatory T cells towards profiles seen in natural infections in endemic areas
[en] Hookworm infection remains a significant public health concern, particularly in low- and middle-income countries, where mass drug administration has not stopped reinfection. Developing a vaccine is crucial to complement current control measures, which necessitates a thorough understanding of host immune responses. By leveraging controlled human infection models and high-dimensional immunophenotyping, here we investigated the immune remodeling following infection with 50 Necator americanus L3 hookworm larvae in four naïve volunteers over two years of follow-up and compared the profiles with naturally infected populations in endemic areas. Increased plasmacytoid dendritic cell frequency and diminished responsiveness to Toll-like receptor 7/8 ligand were observed in both controlled and natural infection settings. Despite the increased CD45RA+ regulatory T cell (Tregs) frequencies in both settings, markers of Tregs function, including inducible T-cell costimulatory (ICOS), tumor necrosis factor receptor 2 (TNFR2), and latency-associated peptide (LAP), as well as in vitro Tregs suppressive capacity were higher in natural infections. Taken together, this study provides unique insights into the immunological trajectories following a first-in-life hookworm infection compared to natural infections.
Disciplines :
Immunology & infectious disease
Author, co-author :
Manurung, Mikhael D. ; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Sonnet, Friederike; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Hoogerwerf, Marie-Astrid ; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Janse, Jacqueline J.; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Kruize, Yvonne; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Bes-Roeleveld, Laura de; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
König, Marion ; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Loukas, Alex; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
Dewals, Benjamin G ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Immunologie vétérinaire
Supali, Taniawati; Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
Jochems, Simon P. ; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Roestenberg, Meta ; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Coppola, Mariateresa ; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Yazdanbakhsh, Maria ; Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
Controlled human hookworm infection remodels plasmacytoid dendritic cells and regulatory T cells towards profiles seen in natural infections in endemic areas
We would like to thank the Flow Cytometry Core Facility at Leiden University Medical Center for assistance with our flow and mass cytometry experiments. This study is part of the EDCTP2 programme supported by the European Union. The Controlled Human Hookworm Infection in Leiden (CHHIL) trial was funded by the Dioraphte Foundation and by NWO Spinoza prize of M.Y. M.D.M. is funded by the Indonesian Endowment Fund for Education (LPDP, Reference No. S-1598/LPDP.3/2016). B.G.D. is a Senior Research Associate of the Fonds de la Recherche Scientifique (F.R.S-FNRS).
A. Loukas R.M. Maizels P.J. Hotez The yin and yang of human soil-transmitted helminth infections Int J. Parasitol. 2021 51 1243 1253 1:CAS:528:DC%2BB38XmvVKrsrw%3D 34774540 9145206
T.-W. Jia S. Melville J. Utzinger C.H. King X.-N. Zhou Soil-Transmitted Helminth Reinfection after Drug Treatment: A Systematic Review and Meta-Analysis PLOS Neglected Tropical Dis. 2012 6 e1621 1:CAS:528:DC%2BC38XnvFWnur0%3D
J. Keiser J. Utzinger Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis JAMA 2008 299 1937 1948 1:CAS:528:DC%2BD1cXltFWnsrw%3D 18430913
S.E. de Jong et al. Systems analysis and controlled malaria infection in Europeans and Africans elucidate naturally acquired immunity Nat. Immunol. 2021 22 654 665 33888898
Sandoval, D. M. et al. Adaptive T cells regulate disease tolerance in human malaria. medRxiv, 2021.2008.2019.21262298, https://doi.org/10.1101/2021.08.19.21262298 (2021).
P.R. Chapman P. Giacomin A. Loukas J.S. McCarthy Experimental human hookworm infection: a narrative historical review PLOS Neglected Tropical Dis. 2021 15 e0009908
S. Gaze et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection PLoS Pathog. 2012 8 e1002520 1:CAS:528:DC%2BC38XivVWgsL8%3D 22346753 3276555
S.M. Geiger R.T. Fujiwara H. Santiago R. Corrêa-Oliveira J.M. Bethony Early stage-specific immune responses in primary experimental human hookworm infection Microbes Infect. 2008 10 1524 1535 1:CAS:528:DC%2BD1cXhsVKlsL7L 18848637
M.A. Hoogerwerf et al. New Insights Into the Kinetics and Variability of Egg Excretion in Controlled Human Hookworm Infections J. Infect. Dis. 2019 220 1044 1048 31077279
K. de Ruiter et al. Helminth infections drive heterogeneity in human type 2 and regulatory cells Sci. Transl. Med. 2020 12 31894102
K.A. Smith et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths Mucosal. Immunol. 2016 9 428 443 1:CAS:528:DC%2BC2MXhtlGnsr%2FO 26286232
M.D. Taylor et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo J. Immunol. 2005 174 4924 4933 1:CAS:528:DC%2BD2MXivFKiu78%3D 15814720
J. Faget et al. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells Cancer Res. 2012 72 6130 6141 1:CAS:528:DC%2BC38XhslGlu7zJ 23026134
E. Dann N.C. Henderson S.A. Teichmann M.D. Morgan J.C. Marioni Differential abundance testing on single-cell data using k-nearest neighbor graphs Nat. Biotechnol. 2022 40 245 253 1:CAS:528:DC%2BB3MXitFGru7vN 34594043
J. Wang A. Ioan-Facsinay E.I. van der Voort T.W. Huizinga R.E. Toes Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells Eur. J. Immunol. 2007 37 129 138 1:CAS:528:DC%2BD2sXhtFGitL4%3D 17154262
M. Miyara et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor Immunity 2009 30 899 911 1:CAS:528:DC%2BD1MXpsFCnurk%3D 19464196
K.R. Moon et al. Visualizing structure and transitions in high-dimensional biological data Nat. Biotechnol. 2019 37 1482 1492 1:CAS:528:DC%2BC1MXit12rsrbK 31796933 7073148
J. Yang et al. Antigen-Specific T Cell Analysis Reveals That Active Immune Responses to beta Cell Antigens Are Focused on a Unique Set of Epitopes J. Immunol. 2017 199 91 96 1:CAS:528:DC%2BC2sXhtVWmsbzE 28550202
A. Loukas et al. Hookworm infection Nat. Rev. Dis. Prim. 2016 2 27929101
R.M. Maizels H.H. Smits H.J. McSorley Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules Immunity 2018 49 801 818 1:CAS:528:DC%2BC1cXit1yltrnK 30462997 6269126
Y. Ye B. Gaugler M. Mohty F. Malard Plasmacytoid dendritic cell biology and its role in immune-mediated diseases Clin. Transl. Immunol. 2020 9
J. Gregorio et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons J. Exp. Med. 2010 207 2921 2930 1:CAS:528:DC%2BC3cXhs1artbzI 21115688 3005239
M. Ogata et al. Plasmacytoid dendritic cells have a cytokine-producing capacity to enhance ICOS ligand-mediated IL-10 production during T-cell priming Int. Immunol. 2012 25 171 182 23125331
T. Ito et al. Plasmacytoid dendritic cells prime IL-10–producing T regulatory cells by inducible costimulator ligand J. Exp. Med. 2007 204 105 115 1:CAS:528:DC%2BD2sXhtFGjtro%3D 17200410 2118437
S.A. Redpath et al. ICOS controls Foxp3+ regulatory T-cell expansion, maintenance and IL-10 production during helminth infection Eur. J. Immunol. 2013 43 705 715 1:CAS:528:DC%2BC3sXhslaitrg%3D 23319295 3615169
A.A. Patel F. Ginhoux S. Yona Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease Immunology 2021 163 250 261 1:CAS:528:DC%2BB3MXmt1ersLw%3D 33555612 8207393
F.M. Grant et al. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression J. Exp. Med. 2020 217 1:CAS:528:DC%2BB3cXhsVeiurzE 32515782 7478731
G. Cheng et al. IL-2 Receptor Signaling Is Essential for the Development of Klrg1+ Terminally Differentiated T Regulatory Cells J. Immunol. 2012 189 1780 1791 1:CAS:528:DC%2BC38XhtFaqsLvO 22786769
N.J. Booth et al. Different Proliferative Potential and Migratory Characteristics of Human CD4+ Regulatory T Cells That Express either CD45RA or CD45RO J. Immunol. 2010 184 4317 4326 1:CAS:528:DC%2BC3cXkt1Wqt7g%3D 20231690
J. Croese et al. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease J. Allergy Clin. Immunol. 2015 135 508 516.e505 1:CAS:528:DC%2BC2cXhsFyqsrvL 25248819
P.Y. Mantel et al. Molecular mechanisms underlying FOXP3 induction in human T cells J. Immunol. 2006 176 3593 3602 1:CAS:528:DC%2BD28XitVSku7o%3D 16517728
M.A. Gavin et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development Proc. Natl Acad. Sci. USA 2006 103 6659 6664 2006PNAS.103.6659G 1:CAS:528:DC%2BD28XksVKrtLo%3D 16617117 1458937
S. Sakaguchi et al. Regulatory T Cells and Human Disease Annu Rev. Immunol. 2020 38 541 566 1:CAS:528:DC%2BB3cXit1Chs7Y%3D 32017635
E.A. Wohlfert et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice J. Clin. Invest. 2011 121 4503 4515 1:CAS:528:DC%2BC3MXhsVCksLrN 21965331 3204837
A.G. Levine et al. Stability and function of regulatory T cells expressing the transcription factor T-bet Nature 2017 546 421 425 2017Natur.546.421L 1:CAS:528:DC%2BC2sXpt1Oqtb4%3D 28607488 5482236
S. Valkiers et al. Recent advances in T-cell receptor repertoire analysis: Bridging the gap with multimodal single-cell RNA sequencing ImmunoInformatics 2022 5 1:CAS:528:DC%2BB38XisVCks73J
D. Blount et al. Immunologic profiles of persons recruited for a randomized, placebo-controlled clinical trial of hookworm infection Am. J. Trop. Med. Hyg. 2009 81 911 916 1:CAS:528:DC%2BD1MXhsFejsLzL 19861631
J. Feary et al. Safety of hookworm infection in individuals with measurable airway responsiveness: a randomized placebo-controlled feasibility study Clin. Exp. Allergy 2009 39 1060 1068 1:STN:280:DC%2BD1MzpvVamsg%3D%3D 19400893 2728895
J.R. Feary et al. Experimental hookworm infection: a randomized placebo-controlled trial in asthma Clin. Exp. Allergy 2010 40 299 306 1:STN:280:DC%2BC3c7msVClsA%3D%3D 20030661 2814083
R. Tanasescu et al. Hookworm Treatment for Relapsing Multiple Sclerosis: A Randomized Double-Blinded Placebo-Controlled Trial JAMA Neurol. 2020 77 1089 1098 32539079
J. Braun et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19 Nature 2020 587 270 274 2020Natur.587.270B 1:CAS:528:DC%2BB3cXitVSqu7nF 32726801
E.J. Carr et al. The cellular composition of the human immune system is shaped by age and cohabitation Nat. Immunol. 2016 17 461 468 1:CAS:528:DC%2BC28XisFWqsLs%3D 26878114 4890679
D.L. Tahapary et al. Helminth infections and type 2 diabetes: a cluster-randomized placebo controlled SUGARSPIN trial in Nangapanda, Flores, Indonesia BMC Infect. Dis. 2015 15 25888525 4389675
Johnston, C. J. et al. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products. J. Vis. Exp. e52412, https://doi.org/10.3791/52412 (2015).
C.B. Bagwell et al. Automated Data Cleanup for Mass Cytometry Cytom. Part A 2020 97 184 198 1:CAS:528:DC%2BB3cXhvFOisbk%3D
S. Chevrier et al. Compensation of Signal Spillover in Suspension and Imaging Mass Cytometry Cell Syst. 2018 6 612 620.e615 1:CAS:528:DC%2BC1cXhtVantLbL 29605184 5981006
S. Van Gassen et al. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data Cytom. Part A 2015 87 636 645
R. Tibshirani G. Walther T. Hastie Estimating the number of clusters in a data set via the gap statistic J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 2001 63 411 423 1841503
V. van Unen et al. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types Nat. Commun. 2017 8 2017NatCo..8.1740V 29170529 5700955
G.C. Linderman M. Rachh J.G. Hoskins S. Steinerberger Y. Kluger Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data Nat. Methods 2019 16 243 245 1:CAS:528:DC%2BC1MXmsVymtro%3D 30742040 6402590
Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, https://doi.org/10.1038/s41467-019-13056-x (2019).
C.B. Pedersen et al. cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies Nat. Commun. 2022 13 2022NatCo.13.1698P 1:CAS:528:DC%2BB38Xos1yhs7c%3D 35361793 8971492
H. Wickham et al. Welcome to the Tidyverse J. Open Source Softw. 2019 4 1686 2019JOSS..4.1686W
Z. Gu R. Eils M. Schlesner Complex heatmaps reveal patterns and correlations in multidimensional genomic data Bioinformatics 2016 32 2847 2849 1:CAS:528:DC%2BC2sXhtFGlurjF 27207943
Nowicka, M. et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets [version 4; peer review: 2 approved]. F1000Res. 6, https://doi.org/10.12688/f1000research.11622.4 (2019).
M.E. Ritchie et al. limma powers differential expression analyses for RNA-sequencing and microarray studies Nucleic Acids Res. 2015 43 e47 e47 25605792 4402510