[en] Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Gong, Meijiao ✱; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
Myster, Françoise ✱; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Vaccinologie vétérinaire
Azouz, Abdulkader; Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium ; Center for Research in Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium
Sanchez Sanchez, Guillem; Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium ; Center for Research in Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium ; Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels 1050, Belgium ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre 1300, Belgium
Li, Shifang ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
CHARLOTEAUX, Benoit ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Yang, Bin ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Nichols, Jenna ; Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
Lefevre, Lucas; The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
Javaux, Justine ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Immunologie vétérinaire
Leemans, Sylvain ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Nivelles, Olivier ; Université de Liège - ULiège > GIGA > GIGA Research (AFT)
van Campe, Willem; Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
Roels, Stefan ; Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
Mostin, Laurent ; Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
van den Berg, Thierry; Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
Davison, Andrew J ; Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
Gillet, Laurent ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Vaccinologie vétérinaire
Connelley, Timothy; The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
Vermijlen, David ; Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium ; Center for Research in Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium ; Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels 1050, Belgium ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre 1300, Belgium
Goriely, Stanislas; Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium ; Center for Research in Immunology, Université Libre de Bruxelles, Gosselies 6041, Belgium
Vanderplasschen, Alain ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Immunologie vétérinaire ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre 1300, Belgium
Dewals, Benjamin G ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Immunologie vétérinaire ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre 1300, Belgium
F.R.S.-FNRS - Fonds de la Recherche Scientifique WELBIO - Walloon Excellence in Life Sciences and Biotechnology ERDF - European Regional Development Fund
M. J. Kauffman etal., Mapping out a future for ungulate migrations. Science (1979)372, 566–569 (2021).
C. J. Torney, J. G. C. Hopcraft, T. A. Morrison, I. D. Couzin, S. A. Levin, From single steps to mass migration: The problem of scale in the movement ecology of the Serengeti wildebeest. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170012 (2018).
M. P. Veldhuis et al., Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science (1979) 363, 1424–1428 (2019).
M. Gong et al., Wildebeest-derived malignant catarrhal fever: A bovine peripheral T cell lymphoma caused by cross-species transmission of Alcelaphine gammaherpesvirus 1. Viruses 15, 526 (2023).
W. Plowright, R. D. Ferris, G. R. Scott, Blue wildebeest and the aetiological agent of bovine malignant catarrhal fever. Nature 188, 1167–1169 (1960).
W. Plowright, Malignant catharrhal fever in East Africa. 1. Behaviour of the virus in free living populations of blue wildebeest (Gorgon taurinus taurinus, Burchell). Res. Vet. Sci. 6, 56–68 (1965).
W. Plowright, Malignant catarrhal fever, in East Africa. II. Observations on wildebeest calves at the laboratory and contact transmission of the infection to cattle. Res. Vet. Sci. 6, 69–83 (1965).
W. Plowright, Malignant catarrhal fever in East Africa 3. Neutralizing antibody in free-living wildebeest. Res. Vet. Sci. 8, 129–136 (1967).
C. Bedelian, D. Nkedianye, M. Herrero, Maasai perception of the impact and incidence of malignant catarrhal fever (MCF) in southern Kenya. Prev. Vet. Med. 78, 296–316 (2007).
D. Nthiwa, S. Alonso, D. Odongo, E. Kenya, B. Bett, A participatory epidemiological study of major cattle diseases amongst Maasai pastoralists living in wildlife-livestock interfaces in Maasai Mara, Kenya. Trop. Anim. Health Prod. 51, 1097–1103 (2019).
D. Mlilo et al., The epidemiology of malignant catarrhal fever (MCF) and contribution to cattle losses in farms around Rhodes Matopos National Park, Zimbabwe. Trop. Anim. Health Prod. 47, 989–994 (2015).
F. Lankester et al., The economic impact of malignant catarrhal fever on pastoralist livelihoods. PLoS ONE 10, e0116059 (2015).
W. Plowright, “Chapter 14: Malignant catarrhal fever virus” in Virus Infections of Ruminants, Virus Infections of Vertebrates Series, Z. Dinter, B. Morein, Eds. (Elsevier, 1990), pp. 123–150.
B. G. B. G. Dewals, A. Vanderplasschen, Malignant catarrhal fever induced by Alcelaphine herpesvirus 1 is characterized by an expansion of activated CD3+CD8+CD4- T cells expressing a cytotoxic phenotype in both lymphoid and non-lymphoid tissues. Vet. Res. 42, 95 (2011).
B. Dewals et al., Ex vivo bioluminescence detection of Alcelaphine herpesvirus 1 infection during malignant catarrhal fever. J. Virol. 85, 6941–6954 (2011).
B. Dewals, C. Boudry, F. Farnir, P.-V. Drion, A. Vanderplasschen, Malignant catarrhal fever induced by Alcelaphine herpesvirus 1 is associated with proliferation of DC8+ T cells supporting a latent infection. PLoS ONE 3, e1627 (2008).
B. Dewals et al., Cloning of the genome of Alcelaphine herpesvirus 1 as an infectious and pathogenic bacterial artificial chromosome. J. Gen. Virol. 87, 509–517 (2006).
O. Sorel et al., Small RNA deep sequencing identifies viral microRNAs during malignant catarrhal fever induced by Alcelaphine herpesvirus 1. J. Gen. Virol. 96, 3360–3372 (2015).
L. Palmeira et al., An essential role for gamma-herpesvirus latency-associated nuclear antigen homolog in an acute lymphoproliferative disease of cattle. Proc. Natl. Acad. Sci. U.S.A. 110, E1933-42 (2013).
A. Schock, H. W. Reid, Characterisation of the lymphoproliferation in rabbits experimentally affected with malignant catarrhal fever. Vet. Microbiol. 53, 111–119 (1996).
D. P. Dittmer, B. Damania, S. H. Sin, Animal models of tumorigenic herpesviruses—An update. Curr. Opin. Virol. 14, 145–150 (2015).
B. Damania, Oncogenic gamma-herpesviruses: Comparison of viral proteins involved in tumorigenesis. Nat. Rev. Microbiol. 2, 656–668 (2004).
F. Myster et al., Genomic duplication and translocation of reactivation transactivator and bZIP-homolog genes is a conserved event in Alcelaphine herpesvirus 1. Sci. Rep. 6, 38607 (2016).
O. Sorel etal., Macavirus latency-associated protein evades immune detection through regulation of protein synthesis in cis depending upon its glycin/glutamate-rich domain. PLoSPathog. 13, e1006691 (2017).
C. Boudry et al., The A5 gene of Alcelaphine herpesvirus 1 encodes a constitutively active G-protein-coupled receptor that is non-essential for the induction of malignant catarrhal fever in rabbits. J. Gen. Virol. 88, 3224–3233 (2007).
F. Myster et al., Alcelaphine herpesvirus 1 genes A7 and A8 regulate viral spread and are essential for malignant catarrhal fever. PLoS Pathog. 16, 1–26 (2020).
N. Parameswaran et al., The A2 gene of Alcelaphine herpesvirus-1 is a transcriptional regulator affecting cytotoxicity in virus-infected T cells but is not required for malignant catarrhal fever induction in rabbits. Virus Res. 188, 68–80 (2014).
F. Myster et al., Viral semaphorin inhibits dendritic cell phagocytosis and migration but is not essential for gammaherpesvirus-induced lymphoproliferation in malignant catarrhal fever. J. Virol. 89, 3630–3647 (2015).
M. Gong et al., Deep sequencing after alcelaphine gammaherpesvirus 1 infection reveals the nature of CD8+ T cell expansion and identify an essential viral protein for fatal bovine malignant catarrhal fever. Gene Expression Omnibus (GEO). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253729. Deposited 19 January 2024.
S. J. Carmona, I. Siddiqui, M. Bilous, W. Held, D. Gfeller, Deciphering the transcriptomic landscape of tumor-infiltrating CD8 lymphocytes in B16 melanoma tumors with single-cell RNA-Seq. Oncoimmunology 9, 1737369 (2020).
M. Rodríguez et al., Peripheral T-cell lymphoma: Molecular profiling recognizes subclasses and identifies prognostic markers. Blood Adv. 5, 5588–5598 (2021).
P. Naluyima et al., Terminal effector CD8 T cells defined by an IKZF2+IL-7R− transcriptional signature express FcγRIIIA, expand in HIV infection, and mediate potent HIV-specific antibody-dependent cellular cytotoxicity. J. Immunol. 203, 2210–2221 (2019).
P. Bost et al., Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 181, 1475–1488.e12 (2020).
H. Fickenscher, B. Fleckenstein, Herpesvirus saimiri. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 356, 545–567 (2001).
N.-H. Cho et al., Inhibition of T cell receptor signal transduction by tyrosine kinase–interacting protein of Herpesvirus saimiri. J. Exp. Med. 200, 681–687 (2004).
O. Khan et al., TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).
A. C. Scott et al., TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).
F. Alfei et al., TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).
C. Yao et al., Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).
H. Seo et al., TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl. Acad. Sci. U.S.A. 116, 12410–12415 (2019).
Q. P. Vong et al., TOX2 regulates human natural killer cell development by controlling T-BET expression. Blood 124, 3905–3913 (2014).
W. Xu et al., The transcription factor Tox2 drives T follicular helper cell development via regulating chromatin accessibility article the transcription factor Tox2 drives T follicular helper cell development via regulating chromatin accessibility. Immunity 53, 1–14 (2019).
M. Altmann, W. Hammerschmidt, Epstein-Barr virus provides a new paradigm: A requirement for the immediate inhibition of apoptosis. PLoS Biol. 3, e404 (2005).
F. Lankester et al., Alcelaphine herpesvirus-1 (malignant catarrhal fever virus) in wildebeest placenta: Genetic variation of ORF50 and A9.5 alleles. PLoS ONE 10, e0124121 (2015).
G. C. Russell et al., A novel spliced gene in Alcelaphine herpesvirus 1 encodes a glycoprotein which is secreted in vitro. J. Gen. Virol. 94, 2515–2523 (2013).
S. M. Duboise, J. Guo, S. Czajak, R. C. Desrosiers, J. U. Jung, STP and tip are essential for Herpesvirus saimiri oncogenicity. J. Virol. 72, 1308–1313 (1998).
J. Hart et al., Complete sequence and analysis of the ovine herpesvirus 2 genome. J. Gen. Virol. 88, 28–39 (2007).
N. S. Taus et al., Comparison of ovine herpesvirus 2 genomes isolated from domestic sheep (Ovis aries) and a clinically affected cow (Bos bovis). J. Gen. Virol. 88, 40–45 (2007).
S. M. Duboise et al., Mutation of the Lck-binding motif of tip enhances lymphoid cell activation by Herpesvirus saimiri. J. Virol. 72, 2607–2614 (1998).
J. Park et al., Herpesviral protein targets a cellular WD repeat endosomal protein to downregulate T lymphocyte receptor expression. Immunity 17, 221–233 (2002).