[en] Polyhydroxyurethane (PHU) thermosets are the most promising isocyanate-free substitutes to polyurethane ones when targeting the main applications of the PU business (coatings, adhesives, and foams). However, the curing of their solvent-free formulations at near-room temperature is slow and requires the utilization of organocatalysts, limiting the large-scale deployment of the technology. Herein, we study the impact of water, introduced as an additive (2 to 10 wt %), on the cross-linking rate of common solvent-free thermosetting PHU formulations composed of a polycyclic carbonate and a diamine. Rheology measurements, using a multifrequency approach, indicate that even small amounts of water (<5 wt %) impressively shorten gel times by up to 5-fold at 40 °C. The multifrequency methodology highlights for the first time the strong interactions of water with the growing PHU network during the cross-linking reaction. It suggests that water breaks down the multiple intra/intermolecular H- bond interactions within the PHU clusters, consequently enhancing the molecular mobility and delaying the vitrification (hydroplasticization), both phenomena that contribute to accelerating the cross-linking rate. On top of that, through a combination of model reactions and computational calculations, we demonstrate that water is an actual catalyst of cyclic carbonate aminolysis. Eventually, thanks to its multifaceted role, water can efficiently substitute the organocatalysts (e.g., TBD, DBU) usually required to cure PHU formulations at near-ambient temperature. This work demonstrates that the use of additive amounts of water in solvent- free formulations is a cost-effective, nontoxic, and robust solution to accelerate the production of PHU materials, free of any organocatalyst. It offers promising prospects for the deployment of PHU-based materials requiring mild processing conditions.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CERM - Center for Education and Research on Macromolecules - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Monie, Florent ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of Bordeaux - Bordeaux INP - CNRS - Organic Polymer Chemistry Laboratory [LCPO] - France
Vidil, Thomas ; University of Bordeaux - Bordeaux INP - CNRS - Organic Polymer Chemistry Laboratory [LCPO] - France
Grau, Etienne ; University of Bordeaux - Bordeaux INP - CNRS - Organic Polymer Chemistry Laboratory [LCPO] - France
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of Liège [ULiège] - FRITCO2T Platform - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Cramail, Henri; University of Bordeaux - Bordeaux INP - CNRS - Organic Polymer Chemistry Laboratory [LCPO] - France
Language :
English
Title :
The multifaceted role of water as an accelerator for the preparation of isocyanate-free polyurethane thermosets
H2020 - 955700 - NIPU - SYNTHESIS, CHARACTERIZATION, STRUCTURE AND PROPERTIES OF NOVEL NONISOCYANATE POLYURETHANES
Funders :
Marie Skłodowska-Curie Actions Walloon region EU - European Union
Funding text :
This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Scklodowska-Curie grant agreement no. 955700. Dr. Péroline Helbling is acknowledged for discussions preliminary to the project. C.D. thanks the Region Wallonne for funding the WEL-T research project (FRFS-WEL-T; project “CHEMISTRY”, convention WEL-T-CR-2023 A – 02) and the Win2Wal project ECOFOAM (convention 2010130).
Choong, P. S.; Chong, N. X.; Wai Tam, E. K.; Seayad, A. M.; Seayad, J.; Jana, S. Biobased Nonisocyanate Polyurethanes as Recyclable and Intrinsic Self-Healing Coating with Triple Healing Sites. ACS Macro Lett. 2021, 10 ( 5), 635- 641, 10.1021/acsmacrolett.1c00163
Panchireddy, S.; Thomassin, J.-M.; Grignard, B.; Damblon, C.; Tatton, A.; Jerome, C.; Detrembleur, C. Reinforced Poly(Hydroxyurethane) Thermosets as High Performance Adhesives for Aluminum Substrates. Polym. Chem. 2017, 8 ( 38), 5897- 5909, 10.1039/C7PY01209H
Panchireddy, S.; Grignard, B.; Thomassin, J.-M.; Jerome, C.; Detrembleur, C. Catechol Containing Polyhydroxyurethanes as High-Performance Coatings and Adhesives. ACS Sustainable Chem. Eng. 2018, 6 ( 11), 14936- 14944, 10.1021/acssuschemeng.8b03429
Monie, F.; Grignard, B.; Thomassin, J.-M.; Mereau, R.; Tassaing, T.; Jerome, C.; Detrembleur, C. Chemo- and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Self-Blowing Non-Isocyanate Polyurethane Foams. Angewandte Chemie - International Edition 2020, 59 ( 39), 17033- 17041, 10.1002/anie.202006267
Purwanto, N. S.; Chen, Y.; Wang, T.; Torkelson, J. M. Rapidly Synthesized, Self-Blowing, Non-Isocyanate Polyurethane Network Foams with Reprocessing to Bulk Networks via Hydroxyurethane Dynamic Chemistry. Polymer 2023, 272, 125858 10.1016/j.polymer.2023.125858
Coste, G.; Negrell, C.; Caillol, S. Cascade (Dithio)Carbonate Ring Opening Reactions for Self-Blowing Polyhydroxythiourethane Foams. Macromol. Rapid Commun. 2022, 43 ( 13), 2100833 10.1002/marc.202100833
Cornille, A.; Dworakowska, S.; Bogdal, D.; Boutevin, B.; Caillol, S. A New Way of Creating Cellular Polyurethane Materials: NIPU Foams. Eur. Polym. J. 2015, 66, 129- 138, 10.1016/j.eurpolymj.2015.01.034
Helbling, P.; Hermant, F.; Petit, M.; Vidil, T.; Cramail, H. Design of Plurifunctional Cyclocarbonates and Their Use as Precursors of Poly(Hydroxyurethane) Thermosets: A Review. Macro Chemistry & Physics 2023, 224 ( 23), 2300300 10.1002/macp.202300300
Blain, M.; Cornille, A.; Boutevin, B.; Auvergne, R.; Benazet, D.; Andrioletti, B.; Caillol, S. Hydrogen Bonds Prevent Obtaining High Molar Mass PHUs. J. Appl. Polym. Sci. 2017, 134 ( 45), 44958 10.1002/app.44958
Cornille, A.; Blain, M.; Auvergne, R.; Andrioletti, B.; Boutevin, B.; Caillol, S. A Study of Cyclic Carbonate Aminolysis at Room Temperature: Effect of Cyclic Carbonate Structures and Solvents on Polyhydroxyurethane Synthesis. Polym. Chem. 2017, 8, 592- 604, 10.1039/C6PY01854H
Bossion, A.; Aguirresarobe, R. H.; Irusta, L.; Taton, D.; Cramail, H.; Grau, E.; Mecerreyes, D.; Su, C.; Liu, G.; Müller, A. J.; Sardon, H. Unexpected Synthesis of Segmented Poly(Hydroxyurea-Urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis. Macromolecules 2018, 51 ( 15), 5556- 5566, 10.1021/acs.macromol.8b00731
Helbling, P.; Hermant, F.; Petit, M.; Tassaing, T.; Vidil, T.; Cramail, H. Unveiling the Reactivity of Epoxides in Carbonated Epoxidized Soybean Oil and Application in the Stepwise Synthesis of Hybrid Poly(Hydroxyurethane) Thermosets. Polym. Chem. 2023, 14 ( 4), 500- 513, 10.1039/D2PY01318E
Hu, D.; Lyu, J.; Liu, T.; Lang, M.; Zhao, L. Solvation Effect of CO 2 on Accelerating the Curing Reaction Process of Epoxy Resin. Chemical Engineering and Processing - Process Intensification 2018, 127, 159- 167, 10.1016/j.cep.2018.01.027
Kovaleva, E. G.; Savotchenko, S. E. Kinetic Features of Polymerization of Epoxy Resin Modified by Silicon-containing Additives and Mineral Fillers. Polymer Engineering & Sci. 2022, 62 ( 1), 75- 82, 10.1002/pen.25833
Choi, S.; Janisse, A. P.; Liu, C.; Douglas, E. P. Effect of Water Addition on the Cure Kinetics of an Epoxy-Amine Thermoset. J. Polym. Sci., Part A: Polym. Chem. 2011, 49 ( 21), 4650- 4659, 10.1002/pola.24909
Chen, J.; Nakamura, T.; Aoki, K.; Aoki, Y.; Utsunomiya, T. Curing of Epoxy Resin Contaminated with Water. J. Appl. Polym. Sci. 2001, 79 ( 2), 214- 220, 10.1002/1097-4628(20010110)79:2<214::AID-APP30>3.0.CO;2-S
Shah, S. P.; Olaya, M. N.; Plaka, E.; McDonald, J.; Hansen, C. J.; Maiarù, M. Effect of Moisture Absorption on Curing of Wind Blades during Repair. Composites Part A: Applied Science and Manufacturing 2023, 173, 107706 10.1016/j.compositesa.2023.107706
Monie, F.; Grignard, B.; Detrembleur, C. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett. 2022, 11, 236- 242, 10.1021/acsmacrolett.1c00793
Zubkevich, S. V.; Makarov, M.; Dieden, R.; Puchot, L.; Berthé, V.; Westermann, S.; Shaplov, A. S.; Schmidt, D. F. Unique Method for Facile Postsynthetic Modification of Nonisocyanate Polyurethanes. Macromolecules 2024, 57 ( 5), 2385- 2393, 10.1021/acs.macromol.3c02232
Magliozzi, F.; Scali, A.; Chollet, G.; Montarnal, D.; Grau, E.; Cramail, H. Hydrolyzable Biobased Polyhydroxyurethane Networks with Shape Memory Behavior at Body Temperature. ACS Sustainable Chem. Eng. 2020, 8 ( 24), 9125- 9135, 10.1021/acssuschemeng.0c02610
Pronoitis, C.; Hakkarainen, M.; Odelius, K. Structurally Diverse and Recyclable Isocyanate-Free Polyurethane Networks from CO 2 -Derived Cyclic Carbonates. ACS Sustainable Chem. Eng. 2022, 10 ( 7), 2522- 2531, 10.1021/acssuschemeng.1c08530
Łukaszewska, I.; Bukowczan, A.; Raftopoulos, K. N.; Pielichowski, K. Water-Polymer Interactions and Mechanisms of Water-Driven Glass Transition Decrease in Non-Isocyanate Polyhydroxyurethanes with Varying Hydration Sites. Polymer 2024, 302, 127060 10.1016/j.polymer.2024.127060
Ochiai, B.; Satoh, Y.; Endo, T. Nucleophilic Polyaddition in Water Based on Chemo-Selective Reaction of Cyclic Carbonate with Amine. Green Chem. 2005, 7 ( 11), 765, 10.1039/b511019j
Bourguignon, M.; Thomassin, J.-M.; Grignard, B.; Jerome, C.; Detrembleur, C. Fast and Facile One-Pot One-Step Preparation of Nonisocyanate Polyurethane Hydrogels in Water at Room Temperature. ACS Sustainable Chem. Eng. 2019, 7 ( 14), 12601- 12610, 10.1021/acssuschemeng.9b02624
Bourguignon, M.; Thomassin, J.; Grignard, B.; Vertruyen, B.; Detrembleur, C. Water-Borne Isocyanate-Free Polyurethane Hydrogels with Adaptable Functionality and Behavior. Macromol. Rapid Commun. 2021, 42 ( 3), 2000482 10.1002/marc.202000482
Bourguignon, M.; Grignard, B.; Detrembleur, C. Introducing Polyhydroxyurethane Hydrogels and Coatings for Formaldehyde Capture. ACS Appl. Mater. Interfaces 2021, 13 ( 45), 54396- 54408, 10.1021/acsami.1c16917
Guo, W.; Gónzalez-Fabra, J.; Bandeira, N. A. G.; Bo, C.; Kleij, A. W. A Metal-Free Synthesis of N-Aryl Carbamates under Ambient Conditions. Angew. Chem., Int. Ed. 2015, 54 ( 40), 11686- 11690, 10.1002/anie.201504956
Salanti, A.; Zoia, L.; Mauri, M.; Orlandi, M. Utilization of Cyclocarbonated Lignin as a Bio-Based Cross-Linker for the Preparation of Poly(Hydroxy Urethane)s. RSC Adv. 2017, 7 ( 40), 25054- 25065, 10.1039/C7RA03416D
Ricarte, R. G.; Shanbhag, S. A Tutorial Review of Linear Rheology for Polymer Chemists: Basics and Best Practices for Covalent Adaptable Networks. Polym. Chem. 2024, 15 ( 9), 815- 846, 10.1039/D3PY01367G
Grillet, A. M.; Wyatt, N. B.; Gloe, L. M. Polymer Gel Rheology and Adhesion. In Rheology; De Vicente, J., Ed.; InTech, 2012. 10.5772/36975.
Holly, E. E.; Venkataraman, S. K.; Chambon, F.; Henning Winter, H. Fourier Transform Mechanical Spectroscopy of Viscoelastic Materials with Transient Structure. J. Non-Newtonian Fluid Mech. 1988, 27 ( 1), 17- 26, 10.1016/0377-0257(88)80002-8
Purwanto, N. S.; Chen, Y.; Torkelson, J. M. Reprocessable, Bio-Based, Self-Blowing Non-Isocyanate Polyurethane Network Foams from Cashew Nutshell Liquid. ACS Appl. Polym. Mater. 2023, 5 ( 8), 6651- 6661, 10.1021/acsapm.3c01196
Winter, H. H. Can the Gel Point of a Cross-Linking Polymer Be Detected by theG’ -G″ Crossover?. Polym. Eng. Sci. 1987, 27 ( 22), 1698- 1702, 10.1002/pen.760272209
Winter, H. H. Gel Point. In Encyclopedia of Polymer Science and Technology; Wiley, 2016. 10.1002/0471440264.pst476.pub2.
Chambon, F.; Petrovic, Z. S.; MacKnight, W. J.; Winter, H. H. Rheology of Model Polyurethanes at the Gel Point. Macromolecules 1986, 19 ( 8), 2146- 2149, 10.1021/ma00162a007
Purwanto, N. S.; Chen, Y.; Torkelson, J. M. Biobased, Reprocessable, Self-Blown Non-Isocyanate Polyurethane Foams: Influence of Blowing Agent Structure and Functionality. Eur. Polym. J. 2024, 206, 112775 10.1016/j.eurpolymj.2024.112775
Mortimer, S.; Ryan, A. J.; Stanford, J. L. Rheological Behavior and Gel-Point Determination for a Model Lewis Acid-Initiated Chain Growth Epoxy Resin. Macromolecules 2001, 34 ( 9), 2973- 2980, 10.1021/ma001835x
Muthukumar, M. Screening Effect on Viscoelasticity near the Gel Point. Macromolecules 1989, 22 ( 12), 4656- 4658, 10.1021/ma00202a050
Vidil, T.; Cloître, M.; Tournilhac, F. Control of Gelation and Network Properties of Cationically Copolymerized Mono- and Diglycidyl Ethers. Macromolecules 2018, 51 ( 14), 5121- 5137, 10.1021/acs.macromol.8b00406
Scanlan, J. C.; Winter, H. H. Composition Dependence of the Viscoelasticity of End-Linked Poly(Dimethylsiloxane) at the Gel Point. Macromolecules 1991, 24 ( 1), 47- 54, 10.1021/ma00001a008
Muller, R.; Gerard, E.; Dugand, P.; Rempp, P.; Gnanou, Y. Rheological Characterization of the Gel Point: A New Interpretation. Macromolecules 1991, 24 ( 6), 1321- 1326, 10.1021/ma00006a017
Eloundou, J. P.; Feve, M.; Gerard, J. F.; Harran, D.; Pascault, J. P. Temperature Dependence of the Behavior of an Epoxy-Amine System near the Gel Point through Viscoelastic Study. 1. Low- T g Epoxy-Amine System. Macromolecules 1996, 29 ( 21), 6907- 6916, 10.1021/ma960287d
Hu, X.; Fan, J.; Yue, C. Y. Rheological Study of Crosslinking and Gelation in Bismaleimide/Cyanate Ester Interpenetrating Polymer Network. J. Appl. Polym. Sci. 2001, 80 ( 13), 2437- 2445, 10.1002/app.1350
Raman, V. I.; Palmese, G. R. Influence of Tetrahydrofuran on Epoxy-Amine Polymerization. Macromolecules 2005, 38 ( 16), 6923- 6930, 10.1021/ma0481555
Shechter, L.; Wynstra, J.; Kurkjy, R. P. Glycidyl Ether Reactions with Amines. Ind. Eng. Chem. 1956, 48 ( 1), 94- 97, 10.1021/ie50553a029
Hui, X.; Wang, L.; Shi, J.; Wei, T.; Guo, F.; Cao, Y.; He, P.; Zhang, J.; Li, H. Hydrogen bond promoted methoxycarbonylation of pentanediamine to biobased dicarbamate by accelerating proton transfer. ACS Sustainable Chem. Eng. 2024, 12 ( 25), 9320- 9330, 10.1021/acssuschemeng.3c07636
Garipov, R. M.; Sysoev, V. A.; Mikheev, V. V.; Zagidullin, A. I.; Deberdeev, R. Ya.; Irzhak, V. I.; Berlin, Al. Al. Reactivity of Cyclocarbonate Groups in Modified Epoxy-Amine Compositions. Doklady Physical Chemistry 2003, 393 ( 1-3), 289- 292, 10.1023/B:DOPC.0000003463.07883.c9
Levina, M. A.; Krasheninnikov, V. G.; Zabalov, M. V.; Tiger, R. P. Nonisocyanate Polyurethanes from Amines and Cyclic Carbonates: Kinetics and Mechanism of a Model Reaction. Polym. Sci. Ser. B 2014, 56 ( 2), 139- 147, 10.1134/S1560090414020092
Zabalov, M. V.; Tiger, R. P.; Berlin, A. A. Reaction of Cyclocarbonates with Amines as an Alternative Route to Polyurethanes: A Quantum-Chemical Study of Reaction Mechanism. Dokl Chem. 2011, 441 ( 2), 355- 360, 10.1134/S0012500811120032
Salvado, V.; Dolatkhani, M.; Grau, É.; Vidil, T.; Cramail, H. Sequence-Controlled Polyhydroxyurethanes with Tunable Regioregularity Obtained from Sugar-Based Vicinal Bis-Cyclic Carbonates. Macromolecules 2022, 55 ( 16), 7249- 7264, 10.1021/acs.macromol.2c01112
Ásgeirsson, V.; Birgisson, B. O.; Bjornsson, R.; Becker, U.; Neese, F.; Riplinger, C.; Jónsson, H. Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following. J. Chem. Theory Comput. 2021, 17 ( 8), 4929- 4945, 10.1021/acs.jctc.1c00462
Nemirovsky, V. D.; Skorokhodov, S. S. Kinetic Study of Aminolysis of Poly(vinylene Carbonate) and Related Model Compounds. Journal of Polymer Science: Part C 1967, 16, 1471- 1478, 10.1002/polc.5070160324
Mathieu, D.; Borges, I. Chapter 12 - Molecular dynamics simulation of hot spot formation and chemical reactions. In Theoretical and Computational Chemistry; Elsevier, 2022; Vol. 22, p 255- 289. 10.1016/B978-0-12-822971-2.00012-7.
Blain, M.; Jean-Gérard, L.; Auvergne, R.; Benazet, D.; Caillol, S.; Andrioletti, B. Rational Investigations in the Ring Opening of Cyclic Carbonates by Amines. Green Chem. 2014, 16, 4286- 4291, 10.1039/C4GC01032A
Lambeth, R. H.; Henderson, T. J. Organocatalytic Synthesis of (Poly)Hydroxyurethanes from Cyclic Carbonates and Amines. Polymer 2013, 54 ( 21), 5568- 5573, 10.1016/j.polymer.2013.08.053
Raftopoulos, K. N.; Łukaszewska, I.; Bujalance Calduch, C.; Stachak, P.; Lalik, S.; Hebda, E.; Marzec, M.; Pielichowski, K. Hydration and Glass Transition of Hybrid Non-Isocyanate Polyurethanes with POSS Inclusions. Polymer 2022, 253, 125010 10.1016/j.polymer.2022.125010
Sardon, H.; Engler, A. C.; Chan, J. M. W.; García, J. M.; Coady, D. J.; Pascual, A.; Mecerreyes, D.; Jones, G. O.; Rice, J. E.; Horn, H. W.; Hedrick, J. L. Organic Acid-Catalyzed Polyurethane Formation via a Dual-Activated Mechanism: Unexpected Preference of N-Activation over O-Activation of Isocyanates. J. Am. Chem. Soc. 2013, 135 ( 43), 16235- 16241, 10.1021/ja408641g
Eloundou, J.-P.; Gerard, J.-F.; Harran, D.; Pascault, J. P. Temperature Dependence of the Behavior of a Reactive Epoxy-Amine System by Means of Dynamic Rheology. 2. High- T g Epoxy-Amine System. Macromolecules 1996, 29 ( 21), 6917- 6927, 10.1021/ma9602886