[en] Poly(ethylene glycol) (PEG), despite being the most studied polymer electrolyte, suffers from serious drawbacks, which require fundamental studies behind its underperformance in lithium batteries. Here, we report the effect of the terminal group on triarm PEG stars bearing either hydroxyl (TPEG-OH) or carbonate-ketone (TPEG-Carb-ket) terminal groups. The latter is synthesized by a ring-opening reaction triggered by the -OH end group of TPEG-OH and results in a carbonate-ketone functionality. Indeed, the modified chain end is found to act as a sacrificial group by focusing the reactivity of the chain on the terminal group, protecting the rest of the TPEG molecule, which significantly reduces interfacial degradation and achieves a broader electrochemical stability window of up to 4.47 V, high Coulombic efficiency, and capacity retention. It furthermore demonstrates a stable interface with lithium metal after more than 1200 h of stripping and plating. When those electrolytes are investigated in reference cells based on LiFePO4 cathodes and Li anodes, the change in discharge capacity is observed from 118.7 to 113.8 and 108.9 to 5.03 mAh g-1 for TPEG-Carb-ket and TPEG-OH electrolytes, respectively, from the 1st to 100th cycle. The experimental results are further supported by density functional theory calculations and ab initio molecular dynamics simulations.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CERM - Center for Education and Research on Macromolecules - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Raj, Ashish; Université Catholique de Louvain [UCLouvain] - Institute of Condensed Matter and Nanoscience [IMCN] - Belgium
Panchireddy, Satyannarayana ; Université Catholique de Louvain [UCLouvain] - Institute of Condensed Matter and Nanoscience [IMCN] - Belgium
Bekaert, Lieven ; Vrije Universiteit Brussel [VUB] - Department of Materials and Chemistry - Electrochemical and Surface Engineering [SURF] - Eenheid Algemene Chemie [ALGC] - Belgium
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of Liège [ULiège] - FRITCO2T Platform - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Gohy, Jean-François ; Université Catholique de Louvain [UCLouvain] - Institute of Condensed Matter and Nanoscience [IMCN] - Belgium
Language :
English
Title :
Solid Polymer Electrolytes with Sacrificial End Groups for a Wide Oxidative Potential and Stable Interface in Lithium Metal Batteries.
Publication date :
11 September 2024
Journal title :
ACS Applied Materials and Interfaces
ISSN :
1944-8244
eISSN :
1944-8252
Publisher :
American Chemical Society, United States
Volume :
16
Issue :
36
Pages :
47464 - 47476
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Innoviris - Institut Bruxellois pour la Recherche et l'Innovation SPW - Service Public de Wallonie F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
AR and JFG are grateful to INNOVIRIS (BRIDGE project) and to Service Public de Wallonie (Win4Excellence BATFACTORY 310153 project) for supporting this research. C.D. is the F.R.S.-FNRS Research Director. The authors of Liege thank F.N.R.S. for funding.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451 ( 7179), 652- 657, 10.1038/451652a
Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1 ( 4), 16013, 10.1038/natrevmats.2016.13
Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13 ( 1), 69- 73, 10.1038/nmat3793
Wacker, C. Achievements and Results─Annual Report. Fraunhofer ISIT: Itzehoe, Germany, 2004.
Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy 2019, 4 ( 4), 269- 280, 10.1038/s41560-019-0336-z
Choudhury, S.; Stalin, S.; Vu, D.; Warren, A.; Deng, Y.; Biswal, P.; Archer, L. A. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat. Commun. 2019, 10 ( 1), 4398, 10.1038/s41467-019-12423-y
Armand, M. Polymer solid electrolytes - an overview. Solid State Ionics 1983, 9-10, 745- 754, 10.1016/0167-2738(83)90083-8
Arya, A.; Sharma, A. L. Polymer electrolytes for lithium ion batteries: a critical study. Ionics 2017, 23 ( 3), 497- 540, 10.1007/s11581-016-1908-6
Liu, T.; Zhang, M.; Wang, Y. L.; Wang, Q. Y.; Lv, C.; Liu, K. X.; Suresh, S.; Yin, Y. H.; Hu, Y. Y.; Li, Y. S.; Liu, X. B.; Zhong, S. W.; Xia, B. Y.; Wu, Z. P. Engineering the Surface/Interface of Horizontally Oriented Carbon Nanotube Macrofilm for Foldable Lithium-Ion Battery Withstanding Variable Weather. Adv. Energy Mater. 2018, 8 ( 30), 1802349 10.1002/aenm.201802349
Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12 ( 5), 452- 457, 10.1038/nmat3602
Li, W.; Wu, Y.; Wang, J.; Huang, D.; Chen, L.; Yang, G. Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. Eur. Polym. J. 2015, 67, 365- 372, 10.1016/j.eurpolymj.2015.04.014
Marcinek, M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T.; Kasprzyk, M.; Łężak, P.; Zukowska, Z.; Zalewska, A.; Wieczorek, W. Electrolytes for Li-ion transport - Review. Solid State Ionics 2015, 276, 107- 126, 10.1016/j.ssi.2015.02.006
Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A.; Bhattacharya, P.; Liu, J.; Xiao, J. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes. Adv. Energy Mater. 2015, 5 ( 3), 1400993 10.1002/aenm.201400993
Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9 ( 10), 3221- 3229, 10.1039/C6EE01674J
Meyer, W. H. Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater. 1998, 10 ( 6), 439- 448, 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
Murbach, M. D.; Schwartz, D. T. Analysis of Li-Ion Battery Electrochemical Impedance Spectroscopy Data: An Easy-to-Implement Approach for Physics-Based Parameter Estimation Using an Open-Source Tool. J. Electrochem. Soc. 2018, 165 ( 2), A297- A304, 10.1149/2.1021802jes
Du, M.; Liao, K.; Lu, Q.; Shao, Z. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ. Sci. 2019, 12 ( 6), 1780- 1804, 10.1039/C9EE00515C
Dai, J.; Yang, C.; Wang, C.; Pastel, G.; Hu, L. Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization. Adv. Mater. 2018, 30 ( 48), 1802068 10.1002/adma.201802068
Li, Y.; Zhang, D.; Xu, X.; Wang, Z.; Liu, Z.; Shen, J.; Liu, J.; Zhu, M. Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry 2021, 60, 32- 60, 10.1016/j.jechem.2020.12.017
Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy Environ. Sci. 2010, 3 ( 12), 1995- 2002, 10.1039/c0ee00266f
Zhu, J.; He, S.; Tian, H.; Hu, Y.; Xin, C.; Xie, X.; Zhang, L.; Gao, J.; Hao, S.-M.; Zhou, W.; Zhang, L. The Influences of DMF Content in Composite Polymer Electrolytes on Li+-Conductivity and Interfacial Stability with Li-Metal. Adv. Funct. Mater. 2023, 33 ( 25), 2301165 10.1002/adfm.202301165
Zhao, X.; Wang, C.; Liu, H.; Liang, Y.; Fan, L.-Z. A Review of Polymer-based Solid-State Electrolytes for Lithium-Metal Batteries: Structure, Kinetic, Interface Stability, and Application. Batteries Supercaps 2023, 6 ( 4), e202200502 10.1002/batt.202200502
Qin, S.; Yu, Y.; Zhang, J.; Ren, Y.; Sun, C.; Zhang, S.; Zhang, L.; Hu, W.; Yang, H.; Yang, D. Separator-Free In Situ Dual-Curing Solid Polymer Electrolytes with Enhanced Interfacial Contact for Achieving Ultrastable Lithium-Metal Batteries. Adv. Energy Mater. 2023, 13 ( 34), 2301470 10.1002/aenm.202301470
Henschel, J.; Peschel, C.; Klein, S.; Horsthemke, F.; Winter, M.; Nowak, S. Clarification of Decomposition Pathways in a State-of-the-Art Lithium Ion Battery Electrolyte through 13C-Labeling of Electrolyte Components. Angew. Chem., Int. Ed. 2020, 59 ( 15), 6128- 6137, 10.1002/anie.202000727
Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; Liang, J.; Li, W.; Li, J.; Liu, Y.; Huang, H.; Zhang, L.; Lu, S.; Lu, Q.; Li, R.; Singh, C. V.; Sun, X. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal - OH group?. Energy Environ. Sci. 2020, 13 ( 5), 1318- 1325, 10.1039/D0EE00342E
Fang, Z.; Luo, Y.; Liu, H.; Hong, Z.; Wu, H.; Zhao, F.; Liu, P.; Li, Q.; Fan, S.; Duan, W.; Wang, J. Boosting the Oxidative Potential of Polyethylene Glycol-Based Polymer Electrolyte to 4.36 V by Spatially Restricting Hydroxyl Groups for High-Voltage Flexible Lithium-Ion Battery Applications. Adv. Sci. 2021, 8 ( 16), 2100736 10.1002/advs.202100736
Pożyczka, K.; Marzantowicz, M.; Dygas, J. R.; Krok, F. Ionic conductivity and lithium transference number of poly(ethylene oxide):LiTFSI system. Electrochim. Acta 2017, 227, 127- 135, 10.1016/j.electacta.2016.12.172
Morioka, T.; Nakano, K.; Tominaga, Y. Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer. Macromol. Rapid Commun. 2017, 38 ( 8), 1600652, 10.1002/marc.201600652
Boujioui, F.; Zhuge, F.; Damerow, H.; Wehbi, M.; Améduri, B.; Gohy, J.-F. Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups. Journal of Materials Chemistry A 2018, 6 ( 18), 8514- 8522, 10.1039/C8TA01409D
Boujioui, F.; Damerow, H.; Zhuge, F.; Gohy, J.-F. Solid Polymer Electrolytes Based on Copolymers of Cyclic Carbonate Acrylate and n-Butylacrylate. Macromol. Chem. Phys. 2020, 221 ( 6), 1900556 10.1002/macp.201900556
Ouhib, F.; Meabe, L.; Mahmoud, A.; Grignard, B.; Thomassin, J.-M.; Boschini, F.; Zhu, H.; Forsyth, M.; Mecerreyes, D.; Detrembleur, C. Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO2-Sourced Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials 2020, 2 ( 2), 922- 931, 10.1021/acsapm.9b01130
Ngassam Tounzoua, C.; Grignard, B.; Brege, A.; Jerome, C.; Tassaing, T.; Mereau, R.; Detrembleur, C. A Catalytic Domino Approach toward Oxo-Alkyl Carbonates and Polycarbonates from CO2, Propargylic Alcohols, and (Mono- and Di-)Alcohols. ACS Sustainable Chem. Eng. 2020, 8 ( 26), 9698- 9710, 10.1021/acssuschemeng.0c01787
Frisch, G. W. T. M. J.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.; Gaussian 16 Revision A.03, 2016.
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 ( 7), 5648- 5652, 10.1063/1.464913
Parr, R. G.; Weitao, Y. Density-Functional Theory of Atoms and Molecules. Oxford University Press: 1995.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54 ( 16), 11169- 11186, 10.1103/PhysRevB.54.11169
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50 ( 24), 17953- 17979, 10.1103/PhysRevB.50.17953
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)].. Phys. Rev. Lett. 1997, 78 ( 7), 1396- 1396, 10.1103/PhysRevLett.78.1396
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry 2011, 32 ( 7), 1456- 1465, 10.1002/jcc.21759
Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44 ( 6), 1272- 1276, 10.1107/S0021889811038970
Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21 ( 8), 084204 10.1088/0953-8984/21/8/084204
Ngassam Tounzoua, C.; Grignard, B.; Detrembleur, C. Exovinylene Cyclic Carbonates: Multifaceted CO2-Based Building Blocks for Modern Chemistry and Polymer Science. Angew. Chem., Int. Ed. 2022, 61 ( 22), e202116066 10.1002/anie.202116066
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s. Angew. Chem., Int. Ed. 2017, 56 ( 35), 10394- 10398, 10.1002/anie.201704467
Wong, D. H. C.; Vitale, A.; Devaux, D.; Taylor, A.; Pandya, A. A.; Hallinan, D. T.; Thelen, J. L.; Mecham, S. J.; Lux, S. F.; Lapides, A. M.; Resnick, P. R.; Meyer, T. J.; Kostecki, R. M.; Balsara, N. P.; DeSimone, J. M. Phase Behavior and Electrochemical Characterization of Blends of Perfluoropolyether, Poly(ethylene glycol), and a Lithium Salt. Chem. Mater. 2015, 27 ( 2), 597- 603, 10.1021/cm504228a
Boschin, A.; Johansson, P. Characterization of NaX (X: TFSI, FSI) - PEO based solid polymer electrolytes for sodium batteries. Electrochim. Acta 2015, 175, 124- 133, 10.1016/j.electacta.2015.03.228
Rey, I.; Lassègues, J. C.; Grondin, J.; Servant, L. Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim. Acta 1998, 43 ( 10), 1505- 1510, 10.1016/S0013-4686(97)10092-5
Ruther, R. E.; Yang, G.; Delnick, F. M.; Tang, Z.; Lehmann, M. L.; Saito, T.; Meng, Y.; Zawodzinski, T. A.; Nanda, J. Mechanically Robust, Sodium-Ion Conducting Membranes for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2018, 3 ( 7), 1640- 1647, 10.1021/acsenergylett.8b00680
Stolwijk, N. A.; Heddier, C.; Reschke, M.; Wiencierz, M.; Bokeloh, J.; Wilde, G. Salt-Concentration Dependence of the Glass Transition Temperature in PEO-NaI and PEO-LiTFSI Polymer Electrolytes. Macromolecules 2013, 46 ( 21), 8580- 8588, 10.1021/ma401686r
Mac Callum, J. R.; Vincent, C. A. Eds, In Polymer Electrolyte Reviews 1, Elsevier: Elsevier, 1987.
Karan, N. K.; Pradhan, D. K.; Thomas, R.; Natesan, B.; Katiyar, R. S. Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO-LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics 2008, 179 ( 19), 689- 696, 10.1016/j.ssi.2008.04.034
Miyamoto, T.; Shibayama, K. Free-volume model for ionic conductivity in polymers. J. Appl. Phys. 1973, 44 ( 12), 5372- 5376, 10.1063/1.1662158
Xi, J.; Qiu, X.; Cui, M.; Tang, X.; Zhu, W.; Chen, L. Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves. J. Power Sources 2006, 156 ( 2), 581- 588, 10.1016/j.jpowsour.2005.06.007
Zhao, Y.; Huang, Z.; Chen, S.; Chen, B.; Yang, J.; Zhang, Q.; Ding, F.; Chen, Y.; Xu, X. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 2016, 295, 65- 71, 10.1016/j.ssi.2016.07.013
Liu, H.; Cheng, X.-B.; Xu, R.; Zhang, X.-Q.; Yan, C.; Huang, J.-Q.; Zhang, Q. Plating/Stripping Behavior of Actual Lithium Metal Anode. Adv. Energy Mater. 2019, 9 ( 44), 1902254 10.1002/aenm.201902254
Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17 ( 14), 8670- 8679, 10.1039/C4CP05865H
Leroy, S.; Martinez, H.; Dedryvère, R.; Lemordant, D.; Gonbeau, D. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Appl. Surf. Sci. 2007, 253 ( 11), 4895- 4905, 10.1016/j.apsusc.2006.10.071
Eshkenazi, V.; Peled, E.; Burstein, L.; Golodnitsky, D. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics 2004, 170 ( 1), 83- 91, 10.1016/S0167-2738(03)00107-3
Wood, K. N.; Teeter, G. XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction. ACS Applied Energy Materials 2018, 1 ( 9), 4493- 4504, 10.1021/acsaem.8b00406
Shi, P.; Zhang, L.; Xiang, H.; Liang, X.; Sun, Y.; Xu, W. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2018, 10 ( 26), 22201- 22209, 10.1021/acsami.8b05185
Grissa, R.; Fernandez, V.; Fairley, N.; Hamon, J.; Stephant, N.; Rolland, J.; Bouchet, R.; Lecuyer, M.; Deschamps, M.; Guyomard, D.; Moreau, P. XPS and SEM-EDX Study of Electrolyte Nature Effect on Li Electrode in Lithium Metal Batteries. ACS Appl. Energy Mater. 2018, 1 ( 10), 5694- 5702, 10.1021/acsaem.8b01256
Bekaert, L.; Raj, A.; Gohy, J.-F.; Hubin, A.; De Proft, F.; Mamme, M. H. Assessing the Long-Term Reactivity to Achieve Compatible Electrolyte-Electrode Interfaces for Solid-State Rechargeable Lithium Batteries Using First-Principles Calculations. J. Phys. Chem. C 2022, 126 ( 19), 8227- 8237, 10.1021/acs.jpcc.2c01144
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.