high-resolution dendrometer, shrinkage-swelling pattern, stem growth rate, secondary growth, Central Africa forests, tropical forests
Abstract :
[en] IntroductionThe Congo Basin forests, a crucial global carbon sink, are expected to face increased challenges of climate change by 2027, with an expected temperature rise of 1.5°C above pre-industrial levels, accompanied by increased humidity conditions. However, studies that try to understand their functioning and untangle the species-specific responses about how weather conditions impact secondary growth dynamics are still rare.MethodsHere we present the results of a study on diel and annual stem growth in 17 trees, belonging to 11 most abundant species, both canopy and understory, in the Mayombe forest (Congo Basin) in the Democratic Republic of the Congo (DRC). We measured highly-resolved radial stem size variations and weather conditions, to comprehend the ongoing patterns of secondary growth and examine the potential influence of projected weather conditions on them.ResultsWe found that at the diel scale, trees probably grow mainly from 6pm to 9am, and that at the annual scale, they grow mainly during the rainy season, from October to May. Some trees grow year-round, while others stop growing for a period ranging from 1 to 4 months. This growth cessation typically occurs during the dry season from June to September. A generalized linear mixed-effect model revealed that annual radial stem growth is positively related to rainfall.DiscussionOur results suggest that trees in the study site have a significant potential to cope with the projected 1.5°C increase in global temperature and an additional 50 mm of local rainfall. Trees of the species T. superba exhibited improved growth under the projected scenarios. For the other tree species, no significant difference in growth was observed between the predicted and observed scenarios. We believe that much remains to be done to better understand the tree growth-climate interaction of the large variety of tree species in the Congo Basin.
Research Center/Unit :
TERRA Research Centre. Gestion des ressources forestières et des milieux naturels - ULiège
Albert L. P. Restrepo-Coupe N. Smith M. N. Wu J. Chavana-Bryant C. Prohaska N. et al. (2019). Cryptic phenology in plants: case studies, implications, and recommendations. Glob. Chang. Biol. 25, 3591–3608. doi: 10.1111/gcb.14759, PMID: 31343099
Anderson-Teixeira K. J. Herrmann V. Rollinson C. R. Gonzalez B. Gonzalez-Akre E. B. Ped-erson N. et al. (2022). Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 28, 245–266. doi: 10.1111/gcb.15934
Angoboy Ilondea B. Beeckman H. Van Acker J. Van den Bulcke J. Fayolle A. Couralet C. et al. (2021). Variation in onset of leaf unfolding and wood formation in a central African tropical tree species. Front. For. Glob. Change 4:152. doi: 10.3389/ffgc.2021.673575
Artaxo P. Hansson H.-C. Andreae M. O. Bäck J. Alves E. G. Barbosa H. M. J. et al. (2022). Tropical and boreal Forest – atmosphere interactions: a review. Tellus B 74:24. doi: 10.16993/tellusb.34
Bates D. Maechler M. Bolker B. Walker S. Christensen R. H. B. Singmann H. et al. (2024). lme4: Linear Mixed-Effects Models using “Eigen” and S4 (1.1–35.3). Available at: https://cran.r-project.org/web/packages/lme4/index.html
Bauman D. Fortunel C. Cernusak L. A. Bentley L. P. McMahon S. M. Rifai S. W. et al. (2022). Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Chang. Biol. 28, 1414–1432. doi: 10.1111/gcb.15982, PMID: 34741793
Beeckman H. (2016). Wood anatomy and trait-based ecology. IAWA J. 37, 127–151. doi: 10.1163/22941932-20160127
Bienu S. A. Lubalega T. K. Khasa D. P. kaviriri D. K. Yang L. Yuhua L. et al. (2023). Floristic diversity and structural parameters on the forest tree population in the Luki biosphere reserve, Democratic Republic of Congo. Glob. Ecol. Conserv. 44:e02489. doi: 10.1016/j.gecco.2023.e02489
Bonan G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449. doi: 10.1126/science.1155121, PMID: 18556546
Bowman D. M. J. S. Brienen R. J. W. Gloor E. Phillips O. L. Prior L. D. (2013). Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17. doi: 10.1016/j.tplants.2012.08.005
Brienen R. J. W. Zuidema P. A. (2005). Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146, 1–12. doi: 10.1007/s00442-005-0160-y, PMID: 16012820
Brienen R. J. W. Zuidema P. A. Martínez-Ramos M. (2010). Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia 163, 485–496. doi: 10.1007/s00442-009-1540-5, PMID: 20033820
Burnham K. P. Anderson D. R. (2002). Model selection and multimodel inference. New York: Springer.
Cabon A. Fernández-de-Uña L. Gea-Izquierdo G. Meinzer F. C. Woodruff D. R. Martínez-Vilalta J. et al. (2020). Water potential control of turgor-driven tracheid enlargement in scots pine at its xeric distribution edge. New Phytol. 225, 209–221. doi: 10.1111/nph.16146, PMID: 31461530
Cavaleri M. A. Reed S. C. Smith W. K. Wood T. E. (2015). Urgent need for warming experiments in tropical forests. Glob. Chang. Biol. 21, 2111–2121. doi: 10.1111/gcb.12860, PMID: 25641092
Chan T. Hölttä T. Berninger F. Mäkinen H. Nöjd P. Mencuccini M. et al. (2016). Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant Cell Environ. 39, 233–244. doi: 10.1111/pce.12541, PMID: 25808847
Chowdhury T. Islam M. Rahman M. (2023). Long-term growth and xylem hydraulic responses of Al-bizia procera (Roxb.) Benth. To climate in a moist tropical forest of Bangladesh. PPEES 61:125762. doi: 10.1016/j.ppees.2023.125762
Couralet C. Sterck F. J. Sass-Klaassen U. Van Acker J. Beeckman H. (2010). Species-specific growth responses to climate variations in understory trees of a central African rain forest. Biotropica 42, 503–511. doi: 10.1111/j.1744-7429.2009.00613.x
Couralet C. Van den Bulcke J. Ngoma L. Van Acker J. Beeckman H. (2013). Phenology in functional groups of central African rainforest trees. J. Trop. For. Sci. 25, 361–374.
D’Orangeville L. Itter M. Kneeshaw D. Munger J. W. Richardson A. D. Dyer J. M. et al. (2022). Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiol. 42, 304–316. doi: 10.1093/treephys/tpab101, PMID: 34312673
Dai Z. Edwards G. E. Ku M. S. B. (1992). Control of photosynthesis and stomatal conductance in Ricinus communis L. (Castor bean) by leaf to air vapor pressure deficit. Plant Physiol. 99, 1426–1434. doi: 10.1104/pp.99.4.1426, PMID: 16669054
Day M. E. (2000). Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens). Tree Physiol. 20, 57–63. doi: 10.1093/treephys/20.1.57, PMID: 12651527
De Mil T. Angoboy Ilondela B. Maginet S. Duvillier J. Van Acker J. Beeckman H. et al. (2017). Cambial activity in the understory of the Mayombe forest, DR Congo. Trees 31, 49–61. doi: 10.1007/s00468-016-1454-x
De Mil T. Hubau W. Angoboy Ilondea B. Rocha Vargas M. A. Boeckx P. Steppe K. et al. (2019). Asynchronous leaf and cambial phenology in a tree species of the Congo Basin requires space–time conversion of wood traits. Ann. Bot. 124, 245–253. doi: 10.1093/aob/mcz069, PMID: 31170728
De Souza B. C. Carvalho E. C. D. Oliveira R. S. de Araujo F. S. de Lima A. L. A. Rodal M. J. N. (2020). Drought response strategies of deciduous and evergreen woody species in a seasonally dry neotropical forest. Oecologia 194, 221–236. doi: 10.1007/s00442-020-04760-3, PMID: 32965523
Deslauriers A. Rossi S. Anfodillo T. Saracino A. (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol. 28, 863–871. doi: 10.1093/treephys/28.6.863, PMID: 18381267
Deslauriers A. Rossi S. Turcotte A. Morin H. Krause C. (2011). A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia 29, 151–161. doi: 10.1016/j.dendro.2011.01.008
Doughty C. E. (2011). An in situ leaf and branch warming experiment in the Amazon. Biotropica 43, 658–665. doi: 10.1111/j.1744-7429.2010.00746.x
Drew D. M. Downes G. M. (2009). The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27, 159–172. doi: 10.1016/j.dendro.2009.06.008
Eberhard S. Finazzi G. Wollman F.-A. (2008). The dynamics of photosynthesis. Annu. Rev. Genet. 42, 463–515. doi: 10.1146/annurev.genet.42.110807.091452
Etzold S. Sterck F. Bose A. K. Braun S. Buchmann N. Eugster W. et al. (2022). Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Letters 25, 427–439. doi: 10.1111/ele.13933, PMID: 34882952
Fauset S. Baker T. R. Lewis S. L. Feldpausch T. R. Affum-Baffoe K. Foli E. G. et al. (2012). Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Letters 15, 1120–1129. doi: 10.1111/j.1461-0248.2012.01834.x, PMID: 22812661
Feeley K. Martinez-Villa J. Perez T. Silva Duque A. Triviño Gonzalez D. Duque A. (2020). The thermal tolerances, distributions, and performances of tropical montane tree species. Front. For. Glob. Change 3:25. doi: 10.3389/ffgc.2020.00025
Fétéké F. Fayolle A. Dainou K. Bourland N. Dié A. Lejeune P. et al. (2017). Variations saisonnières de la croissance diamétrique et des phénologies foliaire et reproductive de trois espèces ligneuses commerciales d’afrique centrale. Bois For. Trop. 330:3. doi: 10.19182/bft2016.330.a31315
Forni E. Rossi V. Gillet J.-F. Bénédet F. Cornu G. Freycon V. et al. (2019). Dispositifs permanents de nouvelle génération pour le suivi de la dynamique forestière en Afrique centrale: bilan en République du Congo. Bois For. Trop. 341, 55–70. doi: 10.19182/bft2019.341.a31760
Friedlingstein P. Allen M. Canadell J. G. Peters G. P. Seneviratne S. I. (2019). Comment on “the global tree restoration potential.” Science 366:6463. doi: 10.1126/science.aay8060
Friend A. D. Eckes-Shephard A. H. Fonti P. Rademacher T. T. Rathgeber C. B. K. Richardson A. D. et al. (2019). On the need to consider wood formation processes in global vegetation models and a suggested approach. Ann. For. Sci. 76:49. doi: 10.1007/s13595-019-0819-x
Gilliam F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57, 845–858. doi: 10.1641/B571007
Giraldo J. A. Del Valle J. I. González-Caro S. David D. A. Taylor T. Tobón C. et al. (2023). Tree growth periodicity in the ever-wet tropical forest of the americas. J. Ecol. 111, 889–902. doi: 10.1111/1365-2745.14069
Giresse P. Maley J. Chepstow-Lusty A. (2023). A focus on the last 1000 years of natural environmental changes in the tropical rainforests of west and Central Africa. Can we detect anthropogenic disturbances? Glob. Planet. Change 220:103995. doi: 10.1016/j.gloplacha.2022.103995
Gliniars R. Becker G. S. Braun D. Dalitz H. (2013). Monthly stem increment in relation to climatic variables during 7 years in an east African rainforest. Trees 27, 1129–1138. doi: 10.1007/s00468-013-0863-3
Gond V. Fayolle A. Pennec A. Cornu G. Mayaux P. Camberlin P. et al. (2013). Vegetation structure and greenness in Central Africa from Modis multi-temporal data. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 368:20120309. doi: 10.1098/rstb.2012.0309, PMID: 23878336
Groenendijk P. Sass-Klaassen U. Bongers F. Zuidema P. A. (2014). Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. For. Ecol. Manag. 323, 65–78. doi: 10.1016/j.foreco.2014.03.037
Grossiord C. Buckley T. N. Cernusak L. A. Novick K. A. Poulter B. Siegwolf R. T. W. et al. (2020). Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566. doi: 10.1111/nph.16485, PMID: 32064613
Hammer Ø. Harper D. A. T. Ryan P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9.
Hart J. W. (2012). Light and plant growth. Berlin, Germany: Springer Science & Business Media.
Herrmann V. McMahon S. M. Detto M. Lutz J. A. Davies S. J. Chang-Yang C.-H. et al. (2016). Tree circumference dynamics in four forests characterized using automated dendrometer bands. PLoS One 11:e0169020. doi: 10.1371/journal.pone.0169020, PMID: 28030646
Hladik A. Blanc P. (1987). Croissance des plantes en sous-bois de forêt dense humide (Makokou, Gabon). Rev. Ecol. (Terre Vie) 42, 209–234. doi: 10.3406/revec.1987.5404
Hogan J. A. McMahon S. M. Buzzard V. Michaletz S. T. Enquist B. J. Thompson J. et al. (2019). Drought and the interannual variability of stem growth in an aseasonal, everwet forest. Biotropica 51, 139–154. doi: 10.1111/btp.12624
Holm J. A. Kueppers L. M. Chambers J. Q. (2017). Novel tropical forests: response to global change. New Phytol. 213, 988–992. doi: 10.1111/nph.14407, PMID: 28079931
Hubau W. De Mil T. Van den Bulcke J. Phillips O. L. Angoboy Ilondea B. Van Acker J. et al. (2019). The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140. doi: 10.1038/s41477-018-0316-5, PMID: 30664730
Hubau W. Lewis S. L. Phillips O. L. Affum-Baffoe K. Beeckman H. Cuní-Sanchez A. et al. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87. doi: 10.1038/s41586-020-2035-0, PMID: 32132693
Kaewmano A. Fu P.-L. Fan Z.-X. Pumijumnong N. Zuidema P. A. Bräuning A. (2022). Climatic influences on intra-annual stem radial variations and xylem formation of Toona ciliata at two Asian tropical forest sites with contrasting soil water availability. Agric. For. Meteorol. 318:108906. doi: 10.1016/j.agrformet.2022.108906
Klepper B. Browning V. D. Taylor H. M. (1971). Stem diameter in relation to plant water status. Plant Physiol. 48, 683–685. doi: 10.1104/pp.48.6.683, PMID: 16657861
Knüsel S. Peters R. L. Haeni M. Wilhelm M. Zweifel R. (2021). Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12:765. doi: 10.3390/f12060765
Kursar T. A. Wright S. J. Radulovich R. (1995). The effects of the rainy season and irrigation on soil water and oxygen in a seasonal Forest in Panama. J. Trop. Ecol. 11, 497–515. doi: 10.1017/S0266467400009044
Lewis S. L. Edwards D. P. Galbraith D. (2015). Increasing human dominance of tropical forests. Science 349, 827–832. doi: 10.1126/science.aaa9932
Locosselli G. M. Brienen R. J. W. Leite M. D. S. Gloor M. Krottenthaler S. Oliveira A. A. et al. (2020). Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl. Acad. Sci. 117, 33358–33364. doi: 10.1073/pnas.2003873117, PMID: 33318167
Lowman M. D. Moffett M. (1993). The ecology of tropical rain forest canopies. Trends Ecol. Evol. 8, 104–107. doi: 10.1016/0169-5347(93)90061-S
Lubini A. (1997). La végétation de la Réserve de biosphère de Luki au Mayombe (Zaïre). Meise, Belgium: Jardin botanique national de Belgique.
Medlyn B. E. Dreyer E. Ellsworth D. Forstreuter M. Harley P. C. Kirschbaum M. U. F. et al. (2002). Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179. doi: 10.1046/j.1365-3040.2002.00891.x
Mencuccini M. Salmon Y. Mitchell P. Hölttä T. Choat B. Meir P. et al. (2017). An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies. Plant Cell Environ. 40, 290–303. doi: 10.1111/pce.12863, PMID: 27861997
Monteiro R. F. R. (1962). Le massif forestier du Mayumbe Angolais. Bois For. Trop. 82, 3–17. doi: 10.19182/bft1962.82.a18862
Morin-Rivat J. Fayolle A. Favier C. Bremond L. Gourlet-Fleury S. Bayol N. et al. (2017). Present-day central African forest is a legacy of the 19th century human history. eLife 6:e20343. doi: 10.7554/eLife.20343
Ortega Rodriguez D. R. Sánchez-Salguero R. Hevia A. Granato-Souza D. Cintra B. B. L. Hornink B. et al. (2023). Climate variability of the southern Amazon inferred by a multi-proxy tree-ring approach using Cedrela fissilis Vell. Sci. Total Environ. 871:162064. doi: 10.1016/j.scitotenv.2023.162064, PMID: 36758695
Ouédraogo D.-Y. Mortier F. Gourlet-Fleury S. Freycon V. Picard N. (2013). Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J. Ecol. 101, 1459–1470. doi: 10.1111/1365-2745.12165
Pan Y. Birdsey R. A. Fang J. Houghton R. Kauppi P. E. Kurz W. A. et al. (2011). A large and persistent carbon sink in the World’s forests. Science 333, 988–993. doi: 10.1126/science.1201609, PMID: 21764754
Perez T. M. Feeley K. J. (2020). Photosynthetic heat tolerances and extreme leaf temperatures. Funct. Ecol. 34, 2236–2245. doi: 10.1111/1365-2435.13658
Peters R. L. Steppe K. Cuny H. E. De Pauw D. J. W. Frank D. C. Schaub M. et al. (2021). Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 229, 213–229. doi: 10.1111/nph.16872, PMID: 32790914
Pompa-García M. Camarero J. J. (Eds.) (2020). Latin American Dendroecology: Combining tree-ring sciences and ecology in a megadiverse territory. Cham, Switzerland: Springer.
Réjou-Méchain M. Mortier F. Bastin J.-F. Cornu G. Barbier N. Bayol N. et al. (2021). Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94. doi: 10.1038/s41586-021-03483-6, PMID: 33883743
Rondeux J. (1999). La mesure des arbres et des peuplements forestiers (2ème édition). Gembloux, Belgium: Les Presses agronomiques de Gembloux.
Rossi S. Anfodillo T. Menardi R. (2006a). Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27, 89–97. doi: 10.1163/22941932-90000139
Rossi S. Deslauriers A. Anfodillo T. (2006b). Assessment of cambial activity and Xylogenesis by microsampling tree species: an example at the alpine timberline. IAWA J. 27, 383–394. doi: 10.1163/22941932-90000161
RStudio Team (2022). RStudio: Integrated development environment for R. RStudio. Boston: PBC.
Schippers P. Sterck F. Vlam M. Zuidema P. A. (2015). Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2. Glob. Chang. Biol. 21, 2749–2761. doi: 10.1111/gcb.12877, PMID: 25626673
Sénéchal J. Kabala M. Fournier F. (1989). Revue des connaissances sur le Mayombe. Paris, France: UNESCO-PNUD.
Seo J.-W. Eckstein D. Schmitt U. (2007). The pinning method: from pinning to data preparation. Dendrochronologia 25, 79–86. doi: 10.1016/j.dendro.2007.04.001
Shi J. Q. Choi T. (2011). Gaussian process regression analysis for functional data. Chapman and Hall: CRC.
Sievert C. Parmer C. Hocking T. Chamberlain S. Ram K. Corvellec M. et al. (2024). Create Interactive Web Graphics via “plotly.js” [R package plotly version 4.10.4]. Comprehensive R Archive Network (CRAN). Available at: https://CRAN.R-project.org/package=plotly
Spanner G. C. Gimenez B. O. Wright C. L. Menezes V. S. Newman B. D. Collins A. D. et al. (2022). Dry season transpiration and soil water dynamics in the Central Amazon. Front. Plant Sci. 13:13. doi: 10.3389/fpls.2022.825097
Speer J. H. (2010). Fundamentals of tree-ring research. Arizona, USA: University of Arizona Press.
Steppe K. Sterck F. Deslauriers A. (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20, 335–343. doi: 10.1016/j.tplants.2015.03.015, PMID: 25911419
Sullivan M. J. P. Lewis S. L. Affum-Baffoe K. Castilho C. Costa F. Sanchez A. C. et al. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874. doi: 10.1126/science.aaw7578, PMID: 32439789
Taiz L. Zeiger E. (2010). Plant physiology. 5th Edn. Sunderland, MA: Sinauer Associates Inc.
Tarelkin Y. Delvaux C. Ridder M. D. Berkani T. E. Cannière C. D. Beeckman H. (2016). Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA J. 37, 275–S7. doi: 10.1163/22941932-20160134
Tarelkin Y. Hufkens K. Hahn S. Van den Bulcke J. Bastin J.-F. Ilondea B. A. et al. (2019). Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests. Trees 33, 893–909. doi: 10.1007/s00468-019-01826-5
Torti S. D. Coley P. D. Kursar T. A. (2001). Causes and consequences of monodominance in tropical lowland forests. Am. Nat. 157, 141–153. doi: 10.1086/318629, PMID: 18707268
Trenberth K. E. (2011). Changes in precipitation with climate change. Clim. Res. 47, 123–138. doi: 10.3354/cr00953
Trouet V. Coppin P. Beeckman H. (2006). Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38, 375–382. doi: 10.1111/j.1744-7429.2006.00155.x
Tsalefac M. Hiol-Hiol F. Mahé G. Laraque A. Sonwa D. J. Scholte P. et al. (2015). “Climate of Central Africa: Past, present and future” in The Forests of the Congo Basin: Forests and climate change. eds. C. D. M. Wasseige, T. R. Eba’a-Atyi and C. Doumenge. CIFOR, 37–52.
van den Berg E. Chazdon R. Corrêa B. S. (2012). Tree growth and death in a tropical gallery forest in Brazil: understanding the relationships among size, growth, and survivorship for understory and canopy dominant species. Plant Ecol. 213, 1081–1092. doi: 10.1007/s11258-012-0067-8
Vieira S. de Camargo P. B. Selhorst D. da Silva R. Hutyra L. Chambers J. Q. et al. (2004). Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 140, 468–479. doi: 10.1007/s00442-004-1598-z, PMID: 15221436
Wagner F. Rossi V. Aubry-Kientz M. Bonal D. Dalitz H. Gliniars R. et al. (2014). Pan-tropical analysis of climate effects on seasonal tree growth. PLoS One 9:e92337. doi: 10.1371/journal.pone.0092337, PMID: 24670981
WMO (2023). WMO global annual to decadal climate update (target years: 2023–2027). Geneva, Switzerland: World Meteorological Organization.
Worbes M. (1999). Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J. Ecol. 87, 391–403. doi: 10.1046/j.1365-2745.1999.00361.x
Zuidema P. A. Babst F. Groenendijk P. Trouet V. Abiyu A. Acuña-Soto R. et al. (2022). Tropical tree growth driven by dry-season climate variability. Nat. Geosci. 15, 269–276. doi: 10.1038/s41561-022-00911-8
Zweifel R. (2016). Radial stem variations – a source of tree physiological information not fully exploited yet. Plant Cell Environ. 39, 231–232. doi: 10.1111/pce.12613, PMID: 26184923
Zweifel R. Haeni M. Buchmann N. Eugster W. (2016). Are trees able to grow in periods of stem shrinkage? New Phytol. 211, 839–849. doi: 10.1111/nph.13995, PMID: 27189708
Zweifel R. Sterck F. Braun S. Buchmann N. Eugster W. Gessler A. et al. (2021). Why trees grow at night. New Phytol. 231, 2174–2185. doi: 10.1111/nph.17552, PMID: 34118158