Neurology; Neuropsychology; Psychiatry; Time perception; Timing; Humans; Cognition; Judgment; Auditory Perception; Time Perception; Mental Disorders/psychology; Mental Disorders; Neuropsychology and Physiological Psychology; Cognitive Neuroscience; Behavioral Neuroscience
Abstract :
[en] A central question in understanding cognition and pathology-related cognitive changes is how we process time. However, time processing difficulties across several neurological and psychiatric conditions remain seldom investigated. The aim of this review is to develop a unifying taxonomy of time processing, and a neuropsychological perspective on temporal difficulties. Four main temporal judgments are discussed: duration processing, simultaneity and synchrony, passage of time, and mental time travel. We present an integrated theoretical framework of timing difficulties across psychiatric and neurological conditions based on selected patient populations. This framework provides new mechanistic insights on both (a) the processes involved in each temporal judgement, and (b) temporal difficulties across pathologies. By identifying underlying transdiagnostic time-processing mechanisms, this framework opens fruitful avenues for future research.
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Hinault, Thomas ; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France. Electronic address: thomas.hinault@inserm.fr
Bowler, Dermot M; Autism Research Group, City, University of London, EC1V 0HB London, United Kingdom
La Corte, Valentina; Laboratoire Mémoire, Cerveau et Cognition (MC2Lab), UR 7536, Université de Paris cité, 92774 Boulogne-Billancourt, France, Institut Universitaire de France, 75231 Paris, France
Desaunay, Pierre; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France, Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, 14000 Caen, France
Provasi, Joelle; CHArt laboratory (Human and Artificial Cognition), EPHE-PSL, 75014 Paris, France
Platel, Hervé; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
Tran The, Jessica; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
Charretier, Laura; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
Giersch, Anne; Cognitive Neuropsychology and Pathophysiology of Schizophrenia Laboratory, National Institute of Health and Medical Research, University of Strasbourg, 67081 Strasbourg, France
Droit-Volet, Sylvie; Université Clermont Auvergne, LAPSCO, CNRS, UMR 6024, 60032 Clermont-Ferrand, France
Language :
English
Title :
Time processing in neurological and psychiatric conditions.
The 2022 Jean-Louis Signoret Seminar (Caen, Normandy) was a unique opportunity for exchanges between clinicians and researchers exploring different aspects of cognitive time, and for discussions on their developmental changes and alterations in pathology. We thank the participants of the seminar for their thought-provoking interactions. We gratefully acknowledge the contribution of Giulia Buzi to the paper's figures, and extensive discussions with Catherine Thomas-Antérion, Isabelle Serça, Francis Eustache, Jacques Dayan, Philippe Fossati, and Vincent De La Sayette. Finally, Thomas Hinault thanks his son, Thillian, for being an endless source of reflections on the passage of time.
Abbott, A., COVID's mental-health toll: how scientists are tracking a surge in depression. Nature 590 (2021), 194–195.
Addis, D.R., Sacchetti, D.C., Ally, B.A., Budson, A.E., Schacter, D.L., Episodic simulation of future events is impaired in mild Alzheimer's disease. Neuropsychologia 47 (2009), 2660–2671.
Agostino, P., Golombek, D., Meck, W., Unwinding the molecular basis of interval and circadian timing. Front. Integr. Neurosci., 5, 2011, 64.
Allman, M.J., Meck, W.H., Pathophysiological distortions in time perception and timed performance. Brain 135 (2012), 656–677.
Assal, G., Bindschaedler, C., [Systematized temporal delusion and hearing disorders of cortical origin]. Rev. Neurol. (Paris) 146 (1990), 249–255.
Azizi, L., Polti, I., Wassenhove, V. van., Spontaneous alpha brain dynamics track the episodic “when. J. Neurosci, 2023, 10.1523/JNEUROSCI.0816-23.2023.
Balcı, F., et al. Dynamics of retrospective timing: A big data approach. Psychon. Bull. Rev., 2023, 1–8, 10.3758/s13423-023-02277-3.
Bao, Y., et al. Synchronization as a biological, psychological and social mechanism to create common time: A theoretical frame and a single case study. PsyCh. J. 4 (2015), 243–254.
Bellmund, J.L.S., Deuker, L., Montijn, N.D., Doeller, C.F., Mnemonic construction and representation of temporal structure in the hippocampal formation. Nat. Commun., 13, 2022, 3395.
Ben Malek, H., et al. Temporal processing of past and future autobiographical events in patients with schizophrenia. Sci. Rep., 9, 2019, 13858.
Benoit, R.G., Schacter, D.L., Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75 (2015), 450–457.
Berntsen, D., Rubin, D.C., When a trauma becomes a key to identity: enhanced integration of trauma memories predicts posttraumatic stress disorder symptoms. Appl. Cogn. Psychol. 21 (2007), 417–431.
Block, R.A., Zakay, D., Prospective and retrospective duration judgments: A meta-analytic review. Psychon. Bull. Rev. 4 (1997), 184–197.
Block, R.A., Grondin, S. & Zakay, D. Prospective and Retrospective Timing Processes: Theories, Methods, and Findings. 32–51 (Brill, 2018). doi:10.1163/9789004280205_003.
Boucher, J., Pons, F., Lind, S., Williams, D., Temporal cognition in children with autistic spectrum disorders: tests of diachronic thinking. J. Autism Dev. Disord. 37 (2007), 1413–1429.
Brown, A.D., et al. Episodic and semantic components of autobiographical memories and imagined future events in post-traumatic stress disorder. Memory 22 (2014), 595–604.
Brunette, A.M., Schacter, D.L., Cognitive mechanisms of episodic simulation in psychiatric populations. Behav. Res Ther., 136, 2021, 103778.
Buhusi, C.V., Meck, W.H., What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6 (2005), 755–765.
Buzi, G., Eustache, F., D'Argembeau, A., Hinault, T., The role of depressive symptoms in the interplay between aging and temporal processing. Sci. Rep., 13, 2023, 11375.
Cáceda, R., et al. Slower perception of time in depressed and suicidal patients. Eur. Neuropsychopharmacol. 40 (2020), 4–16.
Capa, R.L., Duval, C.Z., Blaison, D., Giersch, A., Patients with schizophrenia selectively impaired in temporal order judgments. Schizophr. Res. 156 (2014), 51–55.
Capizzi, M., Visalli, A., Faralli, A., Mioni, G., Explicit and implicit timing in older adults: Dissociable associations with age and cognitive decline. PLOS ONE, 17, 2022, e0264999.
Capizzi, M., Visalli, A., Wiener, M., Mioni, G., The contribution of the supplementary motor area to explicit and implicit timing: A high-definition transcranial Random Noise Stimulation (HD-tRNS) study. Behav. Brain Res., 445, 2023, 114383.
Chan, J.S., Langer, A., Kaiser, J., Temporal integration of multisensory stimuli in autism spectrum disorder: a predictive coding perspective. J. Neural Transm. 123 (2016), 917–923.
Chassignolle, M., et al. Dopamine precursor depletion in healthy volunteers impairs processing of duration but not temporal order. J. Cogn. Neurosci. 33 (2021), 946–963.
Coelho, P., Rodrigues, J.A., Nascimento Alves, P., Fonseca, A.C., Time perception changes in stroke patients: A systematic literature review. Front. Neurol., 13, 2022.
Coelho, S., et al. Time Perception in Mild Cognitive Impairment: Interval Length and Subjective Passage of Time. J. Int. Neuropsychol. Soc. 22 (2016), 755–764.
Colás-Blanco, I., Mioche, J., La Corte, V., Piolino, P., The role of temporal distance of the events on the spatiotemporal dynamics of mental time travel to one's personal past and future. Sci. Rep., 12, 2022, 2378.
Conway, M.A., Justice, L.V., D'Argembeau, A., The self-memory system revisited: Past, present, and future. The Organization and Structure of Autobiographical Memory, 2019, Oxford University Press, 28–51, 10.1093/oso/9780198784845.003.0003.
Coull, J.T., Droit-Volet, S., Explicit understanding of duration develops implicitly through action. Trends Cogn. Sci. 22 (2018), 923–937.
Coull, J.T., Giersch, A., The distinction between temporal order and duration processing, and implications for schizophrenia. Nat. Rev. Psychol. 1 (2022), 257–271.
D'Argembeau, A., Zooming in and out on one's life: autobiographical representations at multiple time scales. J. Cogn. Neurosci. 32 (2020), 2037–2055.
Dalla Bella, S., et al. BAASTA: battery for the assessment of auditory sensorimotor and timing abilities. Behav. Res 49 (2017), 1128–1145.
Di Cosmo, G., et al. Body-environment integration: Temporal processing of tactile and auditory inputs along the schizophrenia continuum. J. Psychiatr. Res. 134 (2021), 208–214.
Droit-Volet, S., Time perception, emotions and mood disorders. J. Physiol. -Paris 107 (2013), 255–264.
Droit-Volet, S., et al. Time and Covid-19 stress in the lockdown situation: Time free, “Dying” of boredom and sadness. PLoS ONE, 15, 2020, e0236465.
Droit-Volet, S., et al. The Persistence of Slowed Time Experience During the COVID-19 Pandemic: Two Longitudinal Studies in France. Front. Psychol., 12, 2021, 721716.
Droit-Volet, S., Meck, W.H., How emotions colour our perception of time. Trends Cogn. Sci. 11 (2007), 504–513.
Droit-Volet, S., Wearden, J., Les modèles d'horloge interne en psychologie du temps. psy 103 (2003), 617–654.
Droit-Volet, S., Fanget, M., Dambrun, M., Mindfulness meditation and relaxation training increases time sensitivity. Conscious. Cogn. 31 (2015), 86–97.
Droit-Volet, S., Monceau, S., Berthon, M., Trahanias, P., Maniadakis, M., The explicit judgment of long durations of several minutes in everyday life: Conscious retrospective memory judgment and the role of affects?. PLOS ONE, 13, 2018, e0195397.
Droit-Volet, S., Chaulet, M., Dutheil, F., Dambrun, M., Mindfulness meditation, time judgment and time experience: Importance of the time scale considered (seconds or minutes). PLoS One, 14, 2019, e0223567.
Du, Y., et al. Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder. Commun. Biol. 4 (2021), 1–16.
El Haj, M., Kapogiannis, D., Time distortions in Alzheimer's disease: a systematic review and theoretical integration. npj Aging Mech. Dis., 2, 2016, 16016.
El Haj, M., Moroni, C., Samson, S., Fasotti, L., Allain, P., Prospective and retrospective time perception are related to mental time travel: Evidence from Alzheimer's disease. Brain Cogn. 83 (2013), 45–51.
Fang, P., et al. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging. PLOS ONE, 7, 2012, e45972.
Fenner, B., Cooper, N., Romei, V., Hughes, G., Individual differences in sensory integration predict differences in time perception and individual levels of schizotypy. Conscious. Cogn., 84, 2020, 102979.
Fiveash, A., Bella, S.D., Bigand, E., Gordon, R.L., Tillmann, B., You got rhythm, or more: The multidimensionality of rhythmic abilities. Atten. Percept. Psychophys. 84 (2022), 1370–1392.
Foerster, F.R., et al. Volatility of subliminal haptic feedback alters the feeling of control in schizophrenia. J. Abnorm. Psychol. 130 (2021), 775–784.
Foss-Feig, J.H., et al. An extended multisensory temporal binding window in autism spectrum disorders. Exp. Brain Res 203 (2010), 381–389.
Friedman, N.P., Miyake, A., Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex 86 (2017), 186–204.
Ghaderi, A.H., et al. Time estimation and beta segregation: An EEG study and graph theoretical approach. PLOS ONE, 13, 2018, e0195380.
Giersch, A., et al. Disruption of information processing in schizophrenia: The time perspective. Schizophr. Res Cogn. 2 (2015), 78–83.
Grahn, J.A., The role of the basal ganglia in beat perception. Ann. N. Y. Acad. Sci. 1169 (2009), 35–45.
Green, J., et al. Parent-mediated communication-focused treatment in children with autism (PACT): a randomised controlled trial. Lancet 375 (2010), 2152–2160.
Grisham, E.L., Jones, N.M., Silver, R.C., Holman, E.A., Do past events sow future fears? Temporal disintegration, distress, and fear of the future following collective trauma. 216770262211194 Clin. Psychol. Sci., 2022, 10.1177/21677026221119477.
Grondin, S., Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Atten., Percept., Psychophys. 72 (2010), 561–582.
Hallford, D.J., Austin, D.W., Takano, K., Raes, F., Psychopathology and episodic future thinking: A systematic review and meta-analysis of specificity and episodic detail. Behav. Res Ther. 102 (2018), 42–51.
Hanson, J.V.M., Heron, J., Whitaker, D., Recalibration of perceived time across sensory modalities. Exp. Brain Res 185 (2008), 347–352.
Hashimoto, Y., Yotsumoto, Y., The amount of time dilation for visual flickers corresponds to the amount of neural entrainments measured by EEG. Front. Comput. Neurosci., 12, 2018, 30.
Hass, J., Durstewitz, D., Time at the center, or time at the side? Assessing current models of time perception. Curr. Opin. Behav. Sci. 8 (2016), 238–244.
Heinik, J., Ayalon, L., Self-estimation of performance time versus actual performance time in older adults with suspected mild cognitive impairment: a clinical perspective. Isr. J. Psychiatry Relat. Sci. 47 (2010), 291–296.
Hwang, S.-L., Gau, S.S.-F., Hsu, W.-Y., Wu, Y.-Y., Deficits in interval timing measured by the dual-task paradigm among children and adolescents with attention-deficit/hyperactivity disorder. J. Child Psychol. Psychiatry 51 (2010), 223–232.
Irish, M., Piolino, P., Impaired capacity for prospection in the dementias–Theoretical and clinical implications. Br. J. Clin. Psychol. 55 (2016), 49–68.
Issa, J.B., Tocker, G., Hasselmo, M.E., Heys, J.G., Dombeck, D.A., Navigating through time: a spatial navigation perspective on how the brain may encode time. Annu. Rev. Neurosci. 43 (2020), 73–93.
Jones, C.R.G., Jahanshahi, M., Motor and Perceptual Timing in Parkinson's Disease. Merchant, H., de Lafuente, V., (eds.) in Neurobiology of Interval Timing, vol. 829, 2014, Springer, New York, 265–290.
Kent, L., Van Doorn, G., Klein, B., Time dilation and acceleration in depression. Acta Psychol. 194 (2019), 77–86.
Kent, L., Nelson, B., Northoff, G., Can disorders of subjective time inform the differential diagnosis of psychiatric disorders? A transdiagnostic taxonomy of time. Early Interv. Psych. eip, 13333, 2022, 10.1111/eip.13333.
Klaus, K., Pennington, K., Dopamine and working memory: genetic variation, stress and implications for mental health. Curr. Top. Behav. Neurosci. 41 (2019), 369–391.
Kononowicz, T.W., van Rijn, H., Meck, W.H., Timing and time perception: a critical review of neural timing signatures before, during, and after the to-be-timed interval. Wixted, J.T., (eds.) Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 2018, John Wiley & Sons, Inc, 1–38, 10.1002/9781119170174.epcn114.
Kononowicz, T.W., Sander, T., Van Rijn, H., van Wassenhove, V., Precision Timing with α–β Oscillatory Coupling: Stopwatch or Motor Control?. J. Cogn. Neurosci. 32 (2020), 1624–1636.
Kosak, F., Kuhbandner, C., Hilbert, S., Time passes too fast? Then recall the past!—Evidence for a reminiscence heuristic in passage of time judgments. Acta Psychol. 193 (2019), 197–202.
Kunda, M., Goel, A.K., Thinking in Pictures as a cognitive account of autism. J. Autism Dev. Disord. 41 (2011), 1157–1177.
La Corte, V., et al. The role of semantic memory in prospective memory and episodic future thinking: new insights from a case of semantic dementia. Memory 29 (2021), 943–962.
La Corte, V., Piolino, P., On the role of personal semantic memory and temporal distance in episodic future thinking: the TEDIFT model. Front. Hum. Neurosci., 10, 2016.
Lakatos, P., Gross, J., Thut, G., A new unifying account of the roles of neuronal entrainment. Curr. Biol. 29 (2019), R890–R905.
Lalanne, L., van Assche, M., Giersch, A., When predictive mechanisms go wrong: disordered visual synchrony thresholds in schizophrenia. Schizophr. Bull. 38 (2012), 506–513.
Lee, A.C.H., Thavabalasingam, S., Alushaj, D., Çavdaroğlu, B., Ito, R., The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia, 137, 2020, 107300.
Lind, S.E., Bowler, D.M., Episodic memory and episodic future thinking in adults with autism. J. Abnorm Psychol. 119 (2010), 896–905.
Liu, L., Bulley, A., Irish, M., Subjective time in dementia: a critical review. Brain Sci., 11, 2021, 1502.
Liu, Z.-Q. et al. Time-resolved structure-function coupling in brain networks. 〈http://biorxiv.org/lookup/doi/10.1101/2021.07.08.451672〉 (2021b) doi: 10.1101/2021.07.08.451672.
Lositsky, O., et al. Neural pattern change during encoding of a narrative predicts retrospective duration estimates. eLife, 5, 2016, e16070.
Love, S.A., Petrini, K., Cheng, A., Pollick, F.E., A Psychophysical Investigation of Differences between Synchrony and Temporal Order Judgments. PLOS ONE, 8, 2013, e54798.
Marinho, V., et al. The dopaminergic system dynamic in the time perception: a review of the evidence. Int. J. Neurosci. 128 (2018), 262–282.
Marinho, V., et al. Impaired decision-making and time perception in individuals with stroke: Behavioral and neural correlates. Rev. Neurol. 175 (2019), 367–376.
Marques-Carneiro, J.E., Krieg, J., Duval, C.Z., Schwitzer, T., Giersch, A., Paradoxical Sensitivity to Sub-threshold Asynchronies in Schizophrenia: A Behavioral and EEG Approach. Schizophr. Bull. Open 2, sgab011, 2021.
Martel, A.-C., Apicella, P., Temporal processing in the striatum: Interplay between midbrain dopamine neurons and striatal cholinergic interneurons. Eur. J. Neurosci. 53 (2021), 2090–2099.
Martin, B., et al. Fragile temporal prediction in patients with schizophrenia is related to minimal self disorders. Sci. Rep., 7, 2017, 8278.
Martinelli, N., Droit-Volet, S., What factors underlie our experience of the passage of time? Theoretical consequences. Psychol. Res. 86 (2022), 522–530.
Martinelli, N.N., Droit-Volet, S., Development and relationship between the judgment of the speed of passage of time and the judgment of duration in children. Front. Psychol., 14, 2023.
Matthews, W.J., Meck, W.H., Time perception: the bad news and the good: Time perception. Wiley Interdiscip. Rev.: Cogn. Sci. 5 (2014), 429–446.
Matthews, W.J., Meck, W.H., Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychol. Bull. 142 (2016), 865–907.
Meck, W.H., Neuropsychology of timing and time perception. Brain Cogn. 58 (2005), 1–8.
Merchant, H., Zarco, W., Bartolo, R., Prado, L., The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLOS ONE, 3, 2008, e3169.
Merchant, H., Harrington, D.L., Meck, W.H., Neural basis of the perception and estimation of time. Annu. Rev. Neurosci. 36 (2013), 313–336.
Mioni, G., et al. Dissociating Explicit and Implicit Timing in Parkinson's Disease Patients: Evidence from Bisection and Foreperiod Tasks. Front. Hum. Neurosci., 12, 2018.
Mioni, G., Stablum, F., Prunetti, E., Grondin, S., Time perception in anxious and depressed patients: A comparison between time reproduction and time production tasks. J. Affect. Disord. 196 (2016), 154–163.
Mioni, G., Román-Caballero, R., Clerici, J., Capizzi, M., Prospective and retrospective timing in mild cognitive impairment and Alzheimer's disease patients: A systematic review and meta-analysis. Behav. Brain Res., 410, 2021, 113354.
Mitchell, J.M., Dopamine, time perception, and future time perspective., 11, 2018.
Mondok, C., Wiener, M., Selectivity of timing: A meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Front. Hum. Neurosci., 16, 2023.
Naghibi, N., et al. Embodying Time in the Brain: A Multi-Dimensional Neuroimaging Meta-Analysis of 95 Duration Processing Studies. Neuropsychol. Rev., 2023, 10.1007/s11065-023-09588-1.
Nakano, T., Ota, H., Kato, N., Kitazawa, S., Deficit in visual temporal integration in autism spectrum disorders. Proc. Biol. Sci. 277 (2010), 1027–1030.
Nani, A., et al. The Neural Correlates of Time: A Meta-analysis of Neuroimaging Studies. J. Cogn. Neurosci. 31 (2019), 1796–1826.
Nasreddine, Z.S., et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 (2005), 695–699.
Nikolaidis, A., He, X., Pekar, J., Rosch, K., Mostofsky, S.H., Frontal corticostriatal functional connectivity reveals task positive and negative network dysregulation in relation to ADHD, sex, and inhibitory control. Dev. Cogn. Neurosci., 54, 2022, 101101.
Noel, J.-P., Stevenson, R.A., Wallace, M.T., Atypical audiovisual temporal function in autism and schizophrenia: similar phenotype, different cause. Eur. J. Neurosci. 47 (2018), 1230–1241.
Northoff, G., Daub, J., Hirjak, D., Overcoming the translational crisis of contemporary psychiatry – converging phenomenological and spatiotemporal psychopathology. Mol. Psychiatry 1–8, 2023, 10.1038/s41380-023-02245-2.
Nuyens, F.M., Billieux, J., Maurage, P., Time perception and alcohol use: A systematic review. Neurosci. Biobehav. Rev. 127 (2021), 377–403.
Ogden, R.S., The passage of time during the UK Covid-19 lockdown. PLoS ONE, 15, 2020, e0235871.
Panagiotidi, M., Overton, P.G., Stafford, T., Multisensory integration and ADHD-like traits: Evidence for an abnormal temporal integration window in ADHD. Acta Psychol. 181 (2017), 10–17.
Papoulidi, A., Papaeliou, C. & Samartzi, S. Atypical patterns of rhythmical mother-child interaction as an early sign of autism spectrum disorder, 2020.
Raffard, S., et al. Projecting the self into the future in individuals with schizophrenia: a preliminary cross-sectional study. Memory 24 (2016), 826–837.
Rammsayer, T., Altenmüller, E., Temporal information processing in musicians and nonmusicians. Music Percept. 24 (2006), 37–48.
Rammsayer, T.H., Brandler, S., Aspects of temporal information processing: A dimensional analysis. Psychol. Res. 69 (2004), 115–123.
Rekkas, P.V., et al. Neural correlates of temporal-order judgments versus those of spatial-location: deactivation of hippocampus may facilitate spatial performance. Brain Cogn. 59 (2005), 103–113.
Requena-Komuro, M.-C., et al. Altered Time Awareness in Dementia. Front. Neurol., 11, 2020, 291.
Rutrecht, H., Wittmann, M., Khoshnoud, S., Igarzábal, F.A., Time speeds up during flow states: a study in virtual reality with the video game thumper. Timing Time Percept. 9 (2021), 353–376.
Schötz, E., et al. Time perception, mindfulness and attentional capacities in transcendental meditators and matched controls. Personal. Individ. Differ. 93 (2016), 16–21.
Schurr, R., et al. Temporal dissociation of neocortical and hippocampal contributions to mental time travel using intracranial recordings in humans. Front. Comput. Neurosci., 12, 2018.
Shiromaru-Sugimoto, A., et al. The subjective perception of past, present, and future time in patients with Alzheimer's disease: a qualitative study. Neuropsychiatr. Dis. Treat., 14, 2018, 3185.
Smith, A., Taylor, E., Warner Rogers, J., Newman, S., Rubia, K., Evidence for a pure time perception deficit in children with ADHD. J. Child Psychol. Psychiatry 43 (2002), 529–542.
Smith, J.G., Harper, D.N., Gittings, D., Abernethy, D., The effect of Parkinson's disease on time estimation as a function of stimulus duration range and modality. Brain Cogn. 64 (2007), 130–143.
St. Jacques, P., Rubin, D.C., LaBar, K.S., Cabeza, R., The Short and Long of It: Neural Correlates of Temporal-order Memory for Autobiographical Events. J. Cogn. Neurosci. 20 (2008), 1327–1341.
Stawarczyk, D., D'Argembeau, A., Neural correlates of personal goal processing during episodic future thinking and mind-wandering: An ALE meta-analysis. Hum. Brain Mapp. 36 (2015), 2928–2947.
Stevenson, R.A., et al. Multisensory temporal integration in autism spectrum disorders. J. Neurosci. 34 (2014), 691–697.
Suddendorf, T., Corballis, M.C., The evolution of foresight: What is mental time travel, and is it unique to humans?. (discussion) Behav. Brain Sci. 30:299–313 (2007), 313–351.
Szpunar, K.K., Spreng, R.N., Schacter, D.L., A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proc. Natl. Acad. Sci. 111 (2014), 18414–18421.
Teghil, A., et al. Neural substrates of internally-based and externally-cued timing: An activation likelihood estimation (ALE) meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 96 (2019), 197–209.
Teixeira, S., et al. Time perception distortion in neuropsychiatric and neurological disorders. CNSNDDT 12 (2013), 567–582.
Teki, S., Gu, B.-M., Meck, W.H., The persistence of memory: how the brain encodes time in memory. Curr. Opin. Behav. Sci. 17 (2017), 178–185.
Terao, Y., et al. Time Distortion in Parkinsonism. Front. Neurosci., 15, 2021.
Thönes, S., Oberfeld, D., Time perception in depression: A meta-analysis. J. Affect. Disord. 175 (2015), 359–372.
Thönes, S., Wittmann, M., Time perception in yogic mindfulness meditation—Effects on retrospective duration judgments and time passage. Psychol. Conscious.: Theory, Res., Pract. 3 (2016), 316–325.
Tsao, A., Yousefzadeh, S.A., Meck, W.H., Moser, M.-B., Moser, E.I., The neural bases for timing of durations. Nat. Rev. Neurosci., 2022, 10.1038/s41583-022-00623-3.
Vatakis, A., Allman, M. J. (Eds.), 2015. Time Distortions in Mind: Temporal Processing in Clinical Populations. Brill. https://www.jstor.org/stable/10.1163/j.ctt1w8h2wk.
Venskus, A., Hughes, G., Individual differences in alpha frequency are associated with the time window of multisensory integration, but not time perception. Neuropsychologia, 159, 2021, 107919.
Vibell, J., Lim, A., Sinnett, S., Temporal perception and attention in trained musicians. Music Percept. 38 (2021), 293–312.
Waldmann, A., Volkmann, J., Zeller, D., Parkinson's disease may reduce sensitivity to visual-tactile asynchrony irrespective of dopaminergic treatment: Evidence from the rubber hand illusion. Park. Relat. Disord. 78 (2020), 100–104.
Walg, M., Hapfelmeier, G., El-Wahsch, D., Prior, H., The faster internal clock in ADHD is related to lower processing speed: WISC-IV profile analyses and time estimation tasks facilitate the distinction between real ADHD and pseudo-ADHD. Eur. Child Adolesc. Psychiatry 26 (2017), 1177–1186.
van Wassenhove, V., Minding time in an amodal representational space. Philos. Trans. R. Soc. B 364 (2009), 1815–1830.
van Wassenhove, V., Herbst, S.K., Kononowicz, T.W., Timing the brain to time the mind: critical contributions of time-resolved neuroimaging for temporal cognition. Supek, S., Aine, C.J., (eds.) Magnetoencephalography, 2019, Springer International Publishing, 855–905, 10.1007/978-3-030-00087-5_67.
Wearden, J.H., Passage of time judgements. Conscious. Cogn. 38 (2015), 165–171.
Wiener, M., Kanai, R., Frequency tuning for temporal perception and prediction. Curr. Opin. Behav. Sci. 8 (2016), 1–6.
Wiener, M., Parikh, A., Krakow, A., Coslett, H.B., An Intrinsic Role of Beta Oscillations in Memory for Time Estimation. Sci. Rep., 8, 2018, 7992.
Wilson, T.W., Heinrichs-Graham, E., White, M.L., Knott, N.L., Wetzel, M.W., Estimating the Passage of Minutes: Deviant Oscillatory Frontal Activity in Medicated and Un-Medicated ADHD. Neuropsychology 27 (2013), 654–665.
Wimpory, D., A social timing model of autism, informed by typical development. Brill, 2015, 57–92, 10.1163/9789004230699_004.
Wittmann, M., The inner sense of time: how the brain creates a representation of duration. Nat. Rev. Neurosci. 14 (2013), 217–223.
Wöllner, C., London, J., Wöllner, C., London, J., Performing Time: Synchrony and Temporal Flow in Music and Dance. 2023, Oxford University Press,.
Zakay, D. & Block, R.A. The role of attention in time estimation processes. in Advances in Psychology (eds. Pastor, M. A. & Artieda, J.) vol. 115 143–164 (North-Holland, 1996).
Zélanti, P.S., Droit-Volet, S., Auditory and visual differences in time perception? An investigation from a developmental perspective with neuropsychological tests. J. Exp. Child Psychol. 112 (2012), 296–311.
Zheng, Q., Wang, X., Chiu, K.Y., Shum, K.K.-M., Time perception deficits in children and adolescents with ADHD: a meta-analysis. J. Atten. Disord. 26 (2022), 267–281.
Zhou, H., et al. Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 86 (2018), 66–76.
Zimbardo, P.G., Boyd, J.N., Putting time in perspective: A valid, reliable individual-differences metric. J. Personal. Soc. Psychol. 77 (1999), 1271–1288.
Zlomuzica, A., et al. Deficits in episodic memory and mental time travel in patients with post-traumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 83 (2018), 42–54.