[en] Ring-closing enyne metathesis (RCEYM) is a powerful synthetic strategy to build complex molecular architectures, including carbocycles and heterocycles, which are crucial for natural product synthesis. In this review, we delve into the mechanistic nuances of RCEYM, with a focus on the role of the well-defined Grubbs and Hoveyda-Grubbs ruthenium-alkylidene catalysts. Notably, integrating computational and experimental findings, we highlight how the sophisticated interplay of catalytic and substrate variables orchestrate the RCEYM process thus dictating reaction pathways and selectivity.
Disciplines :
Chemistry
Author, co-author :
Mitan, Carmen-Irena; Institute of Organic and Supramolecular Chemistry “C. D. Nenitescu”, Romanian Academy, Bucharest, Romania
Filip, Petru; Institute of Organic and Supramolecular Chemistry “C. D. Nenitescu”, Romanian Academy, Bucharest, Romania
Delaude, Lionel ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organométallique et catalyse homogène
Dragutan, Valerian; Institute of Organic and Supramolecular Chemistry “C. D. Nenitescu”, Romanian Academy, Bucharest, Romania
Language :
English
Title :
Mechanistic aspects of the ring-closing enyne metathesis catalyzed by ruthenium-alkylidene complexes
Financial support from the Romanian Academy and Wallonie-Bruxelles International is gratefully acknowledged. C.-I. M. would like to thank the \u201CCarol I\u201D Central University Library of Bucharest and the University of Illinois at Chicago for providing access to the literature cited in this review.
Mori, M., Synthesis of natural products and related compounds using enyne metathesis. Adv. Synth. Catal., 349, 2007, 121, 10.1002/adsc.200600484.
Dragutan, I., Dragutan, V., Demonceau, A., Delaude, L., Enabling Access to diverse bioactive molecules through enyne metathesis concepts. Curr. Org. Chem., 17, 2013, 2678, 10.2174/13852728113179990113.
Astruc, D., The metathesis reactions: from a historical perspective to recent developments. New J. Chem., 29, 2005, 42, 10.1039/B412198H.
Mitan, C.I., Dragutan, V., Dragutan, I., New insights into the mechanism of alkene metathesis. Rev. Roum. Chim., 56, 2011, 299 http://web.icf.ro/rrch.
Lin, Y.A., Davis, B.G., The allylic calcogen effect in olefin metathesis. Beilstein J. Org. Chem., 6, 2010, 1219, 10.3762/bjoc.6.140.
Iin, D., Sullivan, A., Circeie, M., Chiericoni, V., Karpov, J., Kluza, K., O'Neil, N., Risse, W., Evans, P., An intramolecular enyne metathesis approach for the synthesis of cyclic 3-substituted unsaturated sulfones. Eur. J. Org. Chem., 2023, e202300840, 10.1002/ejoc.202300840.
de Souza, W.C., Correia, J.T.M., Matson, P.M., Kisukuri, C.M., Carneiro, P.S., Paixão, M.W., Organophotocatalytic intramolecular formal enyne-metathesis – an alternative to transition-metal catalysis. Eur. J. Org. Chem., 2022, e202101376, 10.1002/ejoc.202101376.
Mori, M., Ruthenium catalyzed ROM, RCM and CM of enyne. J. Mol. Cat. A.: Chem., 213, 2004, 73, 10.1016/molcata.2003.10.051.
Gao, M., Gao, Q., Hao, X., Wu, Y., Zhang, Q., Liu, G., Liu, R., Ruthenium carbene-mediated constryction of strained allenes via the enyne cross metathesis cyclopropanation of 1,6 enynes. Org. Lett., 22, 2020, 1139, 10.1021/acs.orglett9b04662.
Sashuk, V., Grela, K., Synthetic and mechanistic studies on enyne metathesis: a catalyst influence. J. Mol. Cat. A.: Chem., 257, 2006, 59, 10.1016/j.molcata.2006.05.033.
Renaud, J., Graf, C.-D., Oberer, L., Ruthenium catalyzed enyne metathesis of acetylenic boranates: a concise route for the construction of cyclic 1,3-dienylbenzenic esters. Angew. Chem. Int. Ed., 39, 2000, 3101, 10.1002/1521-3773(20000901)39:17<3101::AID-ANIE3.101>3.0CO;2-I.
Rosillo, M., Domínquez, G., Casarrubios, L., Amador, U., Pérez-Castells, J., J. Org. Chem., 69, 2004, 2084, 10.1021/jo0356311.
Patra, S.G., Das, N.K., Recent advancement on the mechanism of olefin metathesis by Grubbs catalysts: a computational perspective. Polyhedron, 200, 2021, 115096, 10.1016/j.poly.2021.115096.
Perutz, R.N., Sabo-Etienne, S., The σ-CAM mechanism: σ Complexes as the basis of σ-bond metathesis of late-transition-metal centers. Angew. Chem. Int. Ed., 46, 2007, 2578, 10.1002/anie.200603224.
Suresh, C.-H., Frenking, G., Direct 1-3 metal carbon bonding and planar tetracoordinated carbon in group 6 metallacyclobutadienes. Organometallics, 29, 2010, 4766, 10.1021/om100260p.
Romero, P.E., Piers, W.E., Direct observation of a 14-electron ruthenacyclobutane relevant to olefin metathesis. J. Am. Chem. Soc., 127, 2005, 5032, 10.1021/ja042259d.
Katz, T.J., Olefin metatheses and related reactions initiated by carbene derivatives of metals in low oxidative states. Angew. Chem. Int. Ed., 44, 2005, 3010, 10.1002/anie.200462442.
Diver, S.T., Metal carbene in enyne metathesis: Syntesis and mechanistic studies. J. Mol. Cat. A, 29, 2006, 254, 10.1016/j.molcata.2006.01.073.
O'Connor, J.M., Ji, H., Iranpour, M., Rheingold, A.L., Formation of a stable metallacyclobutane complex from-alpha.-diazocarbonyl and alkyne substrates. J. Am. Chem. Soc., 115, 1993, 1586, 10.1021/ja00057a060.
Lippstreu, J.J., Straub, B.F., Mechanism of enyne metathesis catalyzed by Grubbs Ruthenium-carbene complexs: a DFT study. J. Am. Chem. Soc., 127, 2005, 7444, 10.1021/ja042622g.
García-Fandiño, R., Castedo, L., Granja, J.R., Cárdenas, D.J., feasibility of associative mechanism in enyne metathesis catalyzed by Grubbs complexes. Dalton Trans, 2007, 2925, 10.1039/B702680C.
Katz, T.J., Hacker, S.M., Kendrick, R.D., Yannani, C.S., Mechanism of phenylacetylene polymerization by molybdenum and titanium initiators. J. Am. Chem. Soc., 107, 1985, 2182, 10.1021/ja00293a065.
Kirmse, W., Rondan, N.G., Houk, K.N., Stereoselective substituents effects on conrotatory electrocyclic reactions of cyclobutenes. J. Am. Chem. Soc., 106, 1984, 7989, 10.1021/ja00337a67.
Rondan, N.G., Houk, K.N., Theory of stereoselection in conrotatory electrocyclic reactions of substituted cyclobutenes. J. Am. Chem. Soc., 107, 1985, 2099, 10.1021/ja00293a046.
Lee, P.S., Zhang, X., Kouk, K.N., Origins of Inward Torqueselectivity by silyl groups and other σ-acceptors in electrocyclic reactions of cyclobutanes. J. Am. Chem. Soc., 125, 2003, 5072, 10.1021/ja0287635.
Murakami, M., Miyamoto, Y., Ito, Y., A Silyl substituent can dictate a concerted electrocyclic pathway: inward torqueselectivity in the ring opening of 3-sily l-cyclobutene. Angew. Chem. Int. Ed. 40 (2001), 189–190, 10.1002/1521-3773(20010105)40:1<189::AID-ANIE189>3.0.CO; 2-L.
Kallel, A.E., Wang, Y., Spellmeyer, D.C., Houk, K.N., Stereoselectivities of conrotatory electrocyclic reactions of cyclobutenes: a theoretical study. J. Am. Chem. Soc., 112, 1990, 6759, 10.1021/jo950884i.
Frey, H.M., Solly, R.K., Thermal isomerization of cyclobutenes Part 12. -3,3-diethylcyclobutene and 3-ethyl-3-methylcyclobutene. Trans. Faraday Soc., 65, 1969, 448, 10.1039/TF9696500448.
Buda, A.B., Wang, Y., Houk, K.N., Acid-base controlled torquoselectivity: theoretical predictions of the stereochemical course of the electrocyclic reactions of cyclobutene-3-carboxylic acid and the conjugate base and acid. J. Org. Chem., 54, 1989, 2264, 10.1021/jo00271a003.
Niwayama, S., Houk, K.N., Lewis acid reversal of the torquoselectivity of the electrocyclic ring opening of 3-acetylcyclobutene. Tetrahedron Lett., 34, 1993, 1251, 10.1016/S0040-4039(00)91766-0.
Tantillo, D.J., Hoffmann, R., Demoniac intervention in the thermal electrocyclic ring opening of cyclobutenes: Fe(CO)3 complexation pf pericyclic transition structures. Helv. Chim. Acta, 84, 2001, 1396, 10.1002/1522-2675(20010613)84:6<1396::AID-HLCA1396>3.0.CO:2-Z.
Herndon, J.W., The chemistry of the carbon-transition metal double and triple bond: annual survey covering the year 2008. Coord. Chem. Rev., 254, 2010, 103, 10.1016/j.2009.07.018 (a. ind. 238; b. ind. 920, 921).
O'Connor, J.M., Pu, L., Woolard, S., Chadha, R.K., Carbene ligand insertion into a metallacycle ring: a mtalacyclopentadiene to metallacyclobutane conversion. J. Am. Chem. Soc., 112, 1990, 6731, 10.1021/jo00174a054.
Casey, C.P., Yi, C.S., Nucleophilic attack at the central carbon of a cationic .eta.3-propargyl) ruthenium complex. J. Am. Chem. Soc., 1992, 6597, 10.1021/ja00042a072.
McKinney, R.J., Tulip, T.H., Thorn, D.L., Coolbaugh, T.S., Tebbe, F.N., Substituent effect in metallacyclobutenes. Contributions from a metal-methylene-acetylene adduct form. J. Am. Chem. Soc., 103, 1981, 5585, 10.1021/ja00408a058.
Eisentein, O., Hoffmann, R., Rossi, A.R., Some geometric and electronic features of the intermediate stages of olefin metathesis. J. Am. Chem. Soc., 103, 1981, 5582, 10.1021/ja00408a057.
Śliwa, P., Handzlik, J., Czeluśniak, I., Alkynol polymerization catalyzed by Grubbs-type and Hveyda-Grubbs ruthenium alkylidene complexes: a computational study. J. Organomet. Chem., 767, 2014, 6, 10.1016/j.jorganchem.2014.05.019.
Czelusniak, I., Handzlik, J., Polymerization of hydroxyacetylenes by ruthenium alkylidene complexes. J. Organomet. Chem., 694, 2009, 1427, 10.1016/j.jorganchem.2008.12.037.
Krause, J.O., Nuyken, O., Buchmeiser, M.R., Factors relevant for the ruthenium-benzyledene-catayzed cyclopropanation of 1,6-heptadynes. Chem. Eur. J. 10 (2004), 2029–2035, 10.1002/chem.200305747.
Krause, J.O., Zarka, T.M., Anders, U., Weberskirch, R., Nuyken, O., Buchmeiser, M.R., Simple synthesis of polyacetylene latex particles in aqueous media. Angew. Chem. Int. Ed. 42 (2003), 5965–5969, 10.1002/anie.200352637.
Griffiths, J.R., Keister, J.B., Diver, S.T., From resting state to the steady state: mechanistic studies od ene-yne metathesis promoted by the Hoveyda Complex. J. Am. Chem. Soc., 138, 2016, 5380, 10.1021/jacs.6b01887.
Sohn, J.-H., Kim, K.H., Lee, H.–Y., No, Z.S., Ihee, H., Initial catalyst substrate association step in enyne metathesis catalyzed by Grubbs ruthenium complex probed by time dependent fluorescence quenching. J. Am. Chem. Soc., 130, 2008, 16506, 10.1021/ja807717s.
Chang, K.T., Ihee, H., Sohn, J.-H., Quantitative catalyst-substrate association relationships between metathesis molybdenum or ruthenium carbene complexes and their substrates. J. Am. Chem. Soc., 132, 2010, 12027, 10.1021/ja104193s.
Strozier, R.W., Caramella, P., Houk, K.N., Influence of molecular distortion upon reactivity and stereoselectivity in nucleophilic additions to acetylenes. J. Am. Chem. Soc., 101, 1979, 1340, 10.1021/ja00499a078.
O'Connor, J.M., Pu, L., Woolard, S., Chadha, R.K., Carbene ligand insertion into a metallacycle ring: a metallacyclopentadiene to metallacyclobutane conversion. J. Am. Chem. Soc., 112, 1990, 6731, 10.10121/ja00174a054.
Diver, S.T., Kulkarni, A.A., Clark, D.A., Peppers, B.P., Cyclodimerization of alkynes with phosphine free ruthenium carbene complexes: Carbene consumption by a shunted alkyne oligomerization. J. Am. Chem. Soc., 129, 2007, 5832, 10.1021/ja0705689.
Giessert, A.J., Diver, S.T., Equilibrium control in enyne metathesis: Crossover studies and the kinetic reactivity of (E, Z) –1,3-disubstituted-1,3-dienes. J. Org. Chem., 70, 2005, 1046, 10.1021/jo0482209.
Diver, S.T., Clark, D.A., Kulkarni, A.A., Selective enyne metathesis for the synthesis of functionalized cycloheptadienes. Tetrahedron, 64, 2008, 6909, 10.1016/j.tet2008.03.027.
Murelli, R.P., Catalán, S., Gannon, M.P., Snapper, M.L., Ruthenium catalyzed tandem enyne-cross metathesis – cyclopropanation: three components access to vinyl cyclopropanes. Tetrahedron Lett., 49, 2008, 5714, 10.10161/j.tetlet.2008.07119.
Gierada, M., Czeluśniak, I., Hamdzlik, J., Dimerization and cyclotrimerization of terminal arylalkynes initiated by a phosphine-free ruthenium alkylidene complex. Mol. Catal., 469, 2019, 18, 10.1016/j.mcat.2019.02.026.
Gievada, M., Czeluśniak, I., Handzlik, J., Terminal – alkyne – induced decomposition of a phosphine free ruthenium alkylidene catalyst. ChemCatChem, 9, 2017, 2284, 10.1002/cctc.201601647.
Gupta, S., Sabbasani, V.R., Sa, S., Wink, D.J., Lee, D., Alkene-chelated ruthenium alkylidenes: a missing link to new catalysts. ACS Catal., 11, 2021, 1977, 10.1021/acscatal.Oc04972.
Kitamura, T., Sato, Y., Mori, M., Effects of substituents on the multiple bonds on ring closing metathesis of enynes. Adv. Synth. Catal., 344, 2002, 678, 10.1002/1615-4169(200208)344:617<687::AID-ADSC678>3.0.CO;2P.
Hansen, E.C., Lee, D., Enyne metathesis for the formation of macrocyclic 1,3-dienes. J. Am. Chem. Soc., 125, 2003, 9582, 10.1021/ja0363744.
Hansen, E.C., Lee, D., Ring closingemetathesis: control over ring closing enyne metathesis: control over mode selectivity and stereoselectivity. J. Am. Chem. Soc., 126, 2004, 15074, 10.1021/ja.o45422d.
Nicolaou, K.C., Bulger, P.G., Sarlah, D., Metathesis reactions in total synthesis. Angew. Chem. Int. Ed., 44, 2005, 4490, 10.1002/anie.200500369.
Kinoshita, A., Mori, M., Ruthenium catalyzed enyne metathesis. Synlett, 1994, 1020, 10.1055/s-1994-34973.
Kitamura, T., Sato, Y., Mori, M., Unexpected results of enyne metathesis using a ruthenium complex containing an N-heterocyclic carbene ligands. Chem. Commun., 1258, 2001, 10.1039/B101453F.
Bernardi, F., Bottoni, A., Miscione, P.G., DFT study of the olefin metathesis catalyzed by ruthenium complexes. Organometallics, 22, 2003, 940, 10.1021/om020536o.
Cavallo, L., Mechanism of ruthenium catalyzed olefin metathesis reactions from a practical perspective. J. Am. Chem. Soc., 124, 2002, 8965, 10.1021/ja016772s.
Nuñez, F., Poater, J., Rodríguez-Santiago, L., Solans-Monfort, X., Solà, M., Sodupe, M., On the electronic structure of second generation Hoveyda–Grubbs alkene metathesis precursors. Comp. Theor. Chem., 996, 2012, 57, 10.1016/j.comptc.2012.07.015.
Sanford, M.S., Ulman, M., Grubbs, R.H., New insights into the mechanism of ruthenium catalyzed olefin metathesis reactions. J. Am. Chem. Soc., 123, 2001, 749, 10.1021/ja003582t.
Sanford, M.S., Love, J.A., Grubbs, R.H., Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc., 123, 2001, 6543, 10.1021/ja010624k.
Vorfalt, T., Wannowius, K.-J., Plenio, H., Probing the mechanism of olefin metathesis in Grubbs-Hoveyda and Grela Type complexes. Angew. Chem. Int. Ed., 49, 2010, 5533, 10.1002/anie.201000581.
Ashworth, I.W., Hiller, I.H., Nelson, D.J., Percy, J.M., Vincent, M.A., On the relationship between structure and reaction rate in olefin ring-closing metathesis. Chem. Commun., 2011, 5428, 10.1039/C0CC02440F.
Anslyn, E.V., Grubbs, R.H., Mechanism of titanocene metallacyclobutane cleavage and the nature of the reactive intermediate. J. Am. Chem. Soc., 109, 1987, 4880, 10.1021/ja00250a021.
Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Sodupe, M., Differences in the activation processes of phosphine-containing and Grubbs-Hoveyda type alkene metathesis catalysts. Organometallics, 31, 2012, 4203, 10.1021/om300150d.
Dang, Y., Wang, Z.-X., Wang, X., A thorough DFT study of the mechanism of homodimerization of terminal olefins through metathesis with a chelated ruthenium catalyst: from initiation to Z selectivity to regeneration. Organometallics, 31, 2012, 7222, 10.1021/om300784k.
Solans-Monfort, X., Pleixats, R., Sodupe, M., DFT Mechanistic study on diene metathesis catalyzed by Ru-based Grubbs-Hoveyda type carbenes: the key role of π electron density delocalization in the Hoveyda ligand. Chem. Eur. J., 16, 2010, 7331, 10.1002/chem.200903525.
Schwab, P., Grubbs, R.H., Ziller, J.W., Synthesis and Applications of RuCl2(=CHR')(PR3)2: the influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc., 118, 1996, 100, 10.1021/ja952676d.
Ulman, M., Grubbs, R.H., Relative reaction rates of olefin substrates with ruthenium(II) carbene metathesis initiators. Organometallics, 17, 1998, 2484, 10.1021/om9710172.
Lord, R.L., Wang, H., Vieweger, M., Baik, M.-H., What difference one double bond makes electronic structure of saturated and unsaturated N-heterocyclic carbene ligands in Grubbs 2nd generation type catalysts. J. Organomet. Chem., 691, 2006, 5505, 10.1016/j.jorganchem.2006.09.036.
Vyboishchikov, S.F., Thiel, W., Ring-closing olefin metathesis on ruthenium carbene complexes: model DFT study of stereochemistry. Chem. Eur. J., 11, 2005, 3921, 10.1002/chem.200400994.
Banerjee, S., Nayek, A., Sinha, S., Bhaumik, T., Ghosh, S., Alkoxy group facilitated ring closing metathesis (RCM) of acyclic 1,6-dienes: Facile synthesis of noneacemic highly substituted cyclopentanols. J. Mol. Cat. A.: Chem., 254, 2006, 85, 10.1016/j.malcata.2006.03.023.
Mitchell, L., Parkinson, J.A., Percy, J.M., Singh, K., Selected substituent effects on the rate and efficiency of formation of an eight membered ring by RCM. J. Org. Chem., 73, 2008, 2389, 10.1021/jo702726b.
Schmidt, B., Straude, L., Ring-size-selective enyne metathesis as a tool for desymmetrization of an enantiopure C2-symmetric building block. J. Org. Chem., 74, 2009, 9237, 10.1021/jo9018649.
Imahori, T., Ojima, H., Tateyama, H., Mihara, Y., Takahata, H., Acceleration effect on allylic hydroxy group on ring-closing enyne metathesis of terminal alkynes: scope and application to the synthesis of isofagomine. Tetrahedron Lett., 49, 2008, 265, 10.1016/jtetlet.2007.11.098.
Imahori, T., Ojima, H., Yoshimura, Y., Takahata, H., Acceleration effect of an allylic hydroxy group on ring-closing enyne metathesis of terminal alkenes: scope, application, and mechanistic insights. Chem. Eur. J., 14, 2008, 10762, 10.1002/chem.200801439.
Mori, M., Sakakibara, N., Kinoshita, A., Remarkable effect of ethylene gas in the intramolecular enyne metathesis of terminal alkynes. J. Org. Chem., 63, 1998, 6082, 10.1021/jo980896e.
Arimitsu, S., Hammond, G.B., Synthesis of florinated δ-lactams via cycloisomerization of gem-difluoropropargyl amides. Beilstein J. Org. Chem., 6, 2010, 1219, 10.37621/bjoc.6.48.
Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Pleixats, R., Sodupe, M., Mechanistic insights into ring-closing enyne metathesis with the second-generation Grubbs-Hoveyda catalyst: a DFT study. Chem. Eur. J., 17, 2011, 7506, 10.1002/chem.201003410.
Nuñez-Zarur, F., Solans-Monfort, X., Pleixats, R., Rodríguez-Santiago, L., Sodupe, M., DFT Study on the recovery of Hoveyda-Grubbs-type catalyst precursors in enyne and diene ring closing metathesis. Chem. Eur. J., 19, 2013, 14553, 10.1002/chem.201301898.
Loyd-Jones, G.C., Margue, R.G., de Vries, J.G., Rate enhancement by ethylene in the Ru-catalyzed ring closing metathesis of enynes evidence for an “ene-then-yne” pathway that diverts through a second catalytic cycle. Angew. Chem. Int. Ed., 44, 2005, 7442, 10.1002/anie.200502243.
Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Sodupe, M., Exo/endo selectivity of the ring closing enyne metathesis catalyzed by second generation Ru-based catalyst. Influence of reactant substituents. ACS Catal., 3, 2013, 206, 10.1021/cs300580g.
Hoveyda, A.H., Liu, Z., Qin, C., Koengeler, T., Mu, Y., Impact of ethylene on efficiency and stereocontrol in olefin metathesis: when to add it. When to remove it, and when to avoid it. Angew. Chem. Int. Ed., 132, 2020, 22509, 10.1002/anie.202010205.
Brittain, D.E.A., Gray, L.A., Schreiber, S.L., From solution-phase to solid phase enyne metathesis. Crossover in the relative performances of two commonly used ruthenium pre-catalysts. Chem. Eur. J., 11, 2005, 5086, 10.1002/chem.200500279.
Lysenko, Z., Maughon, B.R., Mokhtar-Zadeh, T., Tulchinsky, M.L., Stability of the first generation Grubbs metathesis catalysts in a continuous flow reactor. J. Organomet. Chem., 691, 2006, 5197, 10.1016/j.jorganchem.2006.08.031.
Lanfranchi, D.A., Bour, C., Boff, B., Hanquet, G., Enantioselective access to key intermediates for Salvinarin A and Analogues. Eur. J. Org. Chem., 2010, 5232, 10.1002/ejoc.201100207.
Lloyd-Jones, G.C., Muñoz, M.P., Isotopic labelling in the study of organic and organometallic mechanism and structure on account. J. Lab. Compd. Radiopharm., 50, 2007, 1072, 10.10021/jlcr.1382.
Sunderhaus, J.D., Dockendorff, C., Martin, S.F., Synthesis of diverse heterocyclic scaffolds via tandem additions to imine derivatives and ring forming reactions. Tetrahedron, 65, 2009, 6454, 10.1016/j.tet.2009.05.009.
Kummer, D.A., Brenneman, J.B., Martin, S.F., Application of a domino intramolecular enyne metathesis cross metathesis reaction to the total Synthesis of (+)-8-epi-Xanthatin. Org. Lett., 7, 2005, 4621, 10.1021/ol051711a.
Yang, Q., Lai, Y.-Y., Xiao, W.-J., Alper, H., Efficient synthesis of 4-vinyl α,β-unsaturated γ-lactams by ring closing enyne metathesis. Tetrahedron Lett., 49, 2008, 7334, 10.1016/j.tet.let.2008.10.051.
Krishna, P.R., Narsingam, M., Studies directed towards the stereoselectivity total synthesis of ilexlactone via tandem ring-closing enyne metathesis protocol. Tetrahedron Lett., 48, 2007, 8721, 10.10161/j.tet.let.2007.10.021.
Dieltins, N., Moaren, K., Sterens, C.V., Enyne metathesis – oxidation sequence for the synthesis of 2-phosphono pyrroles: proof of the “yne-then-ene” pathway. Chem. Eur. J., 13, 2007, 203, 10.1002/chem.200600789.
Trillo, B., Gulias, M., López, F., Casledo, L., Mascareñas, J.L., Divergent reactivity of alk-5-ynylidenecyclopropanes in the presence of the 1st or the 2nd generation Grubbs’ catalysts. J. Organomet. Chem., 690, 2005, 5609, 10.1016/j.jorganchem.2005.07.009.
Kin, M., Miller, R.L., Lee, D., Cross and ring closing metathesis of 1,3-diynes: metallotropic [1,3]-shift of ruthenium carbenes. J. Am. Chem. Soc., 127, 2005, 12818, 10.1021/ja054875v.
Li, J., Lee, D., Enyne metathesis based tandem processes. Eur. J. Org. Chem., 2011, 4269, 10.1002/ejoc.201100438.
Kim, M., Lee, D., Advances in the metallotropic [1,3]-shift of alkynyl carbenoids. Org. Biomol. Chem., 5, 2007, 3418, 10.1039/B710379D.
Yun, S.Y., Kim, M., Lee, D., Wink, D.J., Structure and reactivity of alkynyl ruthenium alkylidenes. J. Am. Chem. Soc., 131, 2009, 24, 10.1021/ja806218x.
Wang, K.-P., Yun, S.Y., Lee, D., Wink, D.J., Structure and reactivity of alkynyl-chelated ruthenium alkylidene complexes. J. Am. Chem. Soc., 131, 2009, 15114, 10.1021/ja907155r.
Rix, D., Caijo, F., Laurent, I., Boeda, F., Clavier, H., Nolan, S.P., Mauduit, M., J.Org. Chem., 73, 2008, 4226, 10.10211/jo800203d.
Boeda, F., Clavier, H., Jordan, M., Meyer, W.H., Nolam, S.P., Phosphabicyclononane containing Ru complexes: efficient pre catalysts for olefin metatesis reactions. J. Org. Chem., 73, 2008, 259, 10.1021/jo702169p.
Samojtowicz, C., Bienik, M., Pazio, A., Makal, A., Wozniak, K., Poater, A., Cavallo, L., Wojcik, J., Zdanowski, K., Grela, K., Chem. Eur. J., 17, 2011, 12981, 10.1002/chem.201100160.