DIDACTIfen - Unité de Recherche en Didactique et Formation des Enseignants - ULiège
Disciplines :
Chemistry Education & instruction
Author, co-author :
Natalis, Vincent ; Université de Liège - ULiège > Unités de recherche interfacultaires > Unité de recherche en didactique et formation des enseignants (DIDACTIfen)
Leyh, Bernard ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de dynamique moléculaire
Language :
English
Title :
Improving the teaching of entropy and the second law of thermodynamics : a systematic review with meta-analysis
Alternative titles :
[fr] Améliorer l'enseignement de l'entropie et de la deuxième loi de la thermodynamique : une revue systématique avec méta-analyse
Akbulut F. and Altun Y., (2020). A Holistic Approach to Entropy in Science Education, Int. Online J. Sci. Educ., 7(4), 1913-1932
Aledo J. C., (2007), Coupled reactions versus connected reactions: coupling concepts with terms, Biochem. Mol. Biol. Educ., 35(2), 85-88 https://dx.doi.org/10.1002/bmb.5
Ashbaugh H. S., (2010), Ehrenfest's Lottery—Time and Entropy Maximization, Chem. Eng. Educ., 44(3), 229-235
Atares L., Canet M. J., Trujillo M., Benlloch-Dualde J. V., Paricio Royo J. and Fernandez-March A., (2021), Helping Pregraduate Students Reach Deep Understanding of the Second Law of Thermodynamics, Educ. Sci., 11(9), 539 https://dx.doi.org/10.3390/educsci11090539
Bachelard G., (1938), La formation de l'esprit scientifique [The formation of the scientific mind], Vrin
Baierlein R., (1994), Entropy and the second law: a pedagogical alternative, Am. J. Phys., 62(1), 15-26 https://dx.doi.org/10.1119/1.17732
Bain K., Moon A., Mack M. R. and Towns M. H., (2014), A review of research on the teaching and learning of thermodynamics at the university level, Chem. Educ. Res. Pract., 15(3), 320-335 https://dx.doi.org/10.1039/C4RP00011K
Ben-Naim A., (2011), Entropy: Order or Information, J. Chem. Educ., 88(5), 594-596 https://dx.doi.org/10.1021/ed100922x
Ben-Naim A., (2012), Entropy and the Second Law: Interpretation and Misss-Interpretationsss, World Scientific Publishing
Bennett J. M. and Sözbilir M., (2007), A Study of Turkish Chemistry Undergraduates’ Understanding of Entropy, J. Chem. Educ., 84(7), 1204-1208 https://dx.doi.org/10.1021/ed084p1204
Ben-Zvi R., (1999), Non-science oriented students and the second law of thermodynamics, Int. J. Sci. Educ., 21(12), 1251-1267 https://dx.doi.org/10.1080/095006999290057
Bhattacharyya D. and Dawlaty J. M., (2019a), Teaching Entropy from Phase Space Perspective: Connecting the Statistical and Thermodynamic Views Using a Simple One-Dimensional Model, J. Chem. Educ., 96(10), 2208-2216 https://dx.doi.org/10.1021/acs.jchemed.9b00134
Bhattacharyya D. and Dawlaty J. M., (2019b), Teaching Entropy from Phase Space Perspective: Connecting the Statistical and Thermodynamic Views Using a Simple One-Dimensional Model, J. Chem. Educ., 96(10), 2208-2216 https://dx.doi.org/10.1021/acs.jchemed.9b00134
Bindel T. H., (1995), Solution-Phase Thermodynamics: A “Spontaneity” Activity, J. Chem. Educ., 72(1), 34-35 https://dx.doi.org/10.1021/ed072p34
Bindel T. H., (2004), Teaching Entropy Analysis in the First-Year High School Course and Beyond, J. Chem. Educ., 81(11), 1585-1594 https://dx.doi.org/10.1021/ed081p1585
Bindel T. H., (2007), Discovering the Thermodynamics of Simultaneous Equilibria. An Entropy Analysis Activity Involving Consecutive Equilibria, J. Chem. Educ., 84(3), 449-452 https://dx.doi.org/10.1021/ed084p449
Bindel T. H., (2010), Understanding Chemical Equilibrium Using Entropy Analysis: The Relationship Between ΔStot (sys°) and the Equilibrium Constant, J. Chem. Educ., 87(7), 694-699 https://dx.doi.org/10.1021/ed100192q
Black P. J., Davies P. and Ogborn J. M., (1971), A Quantum Shuffling Game for Teaching Statistical Mechanics, Am. J. Phys., 39(10), 1154-1159 https://dx.doi.org/10.1119/1.1976594
Brady K. T., (1989), Shine some light on entropy of mixing, J. Chem. Educ., 66(4), 339-341 https://dx.doi.org/10.1021/ed066p339
Brosnan T., (1989), Teaching chemistry using spreadsheets—I: Equilibrium Thermodynamics, School Sci. Rev., 70(252), 39-47
Canagaratna S. G., (2008), Zeroth Law, Entropy, Equilibrium, and All That, J. Chem. Educ., 85(5), 732-736 https://dx.doi.org/10.1021/ed085p732
Carson E. M. and Watson J. R., (2002), Undergraduate Students’ Understandings of Entropy and Gibbs Free Energy, Univ. Chem. Educ., 6, 4-12
Cartier S. F., (2009), An Integrated, Statistical Molecular Approach to the Physical Chemistry Curriculum, J. Chem. Educ., 86(12), 1397-1402 https://dx.doi.org/10.1021/ed086p1397
Castellón E., (2014), Application of the Second Law of Thermodynamics To Explain the Working of Toys, J. Chem. Educ., 91(5), 687-691 https://dx.doi.org/10.1021/ed400085z
Chinaka T. W., (2021), Introducing the second law of thermodynamics using Legitimation Code Theory among first year chemistry students, Cypriot J. Educ. Sci., 16(3), 981-994 https://dx.doi.org/10.18844/cjes.v16i3.5772
Christensen W. M., Meltzer D. E. and Ogilvie C. A., (2009), Student ideas regarding entropy and the second law of thermodynamics in an introductory physics course, Am. J. Phys., 77(10), 907-917 https://dx.doi.org/10.1119/1.3167357
Cochran M. J. and Heron P. R. L., (2006), Development and assessment of research-based tutorials on heat engines and the second law of thermodynamics, Am. J. Phys., 74(8), 734-741 https://dx.doi.org/10.1119/1.2198889
Cohen J., (1988), Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates
Craig N. C., (1988), Entropy analyses of four familiar processes, J. Chem. Educ., 65(9), 760-764 https://dx.doi.org/10.1021/ed065p760
Dachet D., (2024), Umbrella Review: De sa methodologie aux considerations methodologiques relatives à son application dans le champ des sciences de l’Éducation [Umbrella Review: From its methodology to methodological considerations relating to its application in the field of educational sciences] [Doctoral dissertation, University of Liege (Belgium)]
De Abreu R. and Guerra V., (2012), Introducing thermodynamics through energy and entropy, Am. J. Phys., 80(7), 627-637 https://dx.doi.org/10.1119/1.3698160
Donnelly J. and Hernández F. E., (2018), Fusing a reversed and informal learning scheme and space: student perceptions of active learning in physical chemistry, Chem. Educ. Res. Practice, 19(2), 520-532 https://dx.doi.org/10.1039/C7RP00186J
Dreyfus B. W., Geller B. D., Meltzer D. E. and Sawtelle V., (2015), Resource Letter TTSM-1: Teaching Thermodynamics and Statistical Mechanics in Introductory Physics, Chemistry, and Biology, Am. J. Phys., 83(1), 5-21 https://dx.doi.org/10.1119/1.4891673
Eisen L., Marano N. and Glazier S., (2014), Activity-Based Approach For Teaching Aqueous Solubility, Energy, and Entropy, J. Chem. Educ., 91(4), 484-491 https://dx.doi.org/10.1021/ed4005563
Ellis F. B. and Ellis D. C., (2008), An Experimental Approach to Teaching and Learning Elementary Statistical Mechanics, J. Chem. Educ., 85(1), 78-82 https://dx.doi.org/10.1021/ed085p78
Firetto C. M., Van Meter P. N., Kottmeyer A. M., Turns S. R. and Litzinger T. A., (2021), An extension of the Thermodynamics Conceptual Reasoning Inventory (TCRI): measuring undergraduate students’ understanding of introductory thermodynamics concepts, Int. J. Sci. Educ., 43(15), 2555-2576 https://dx.doi.org/10.1080/09500693.2021.1975847
Fuchs H. U., (1987), Entropy in the teaching of introductory thermodynamics, Am. J. Phys., 55(3), 215-219 https://dx.doi.org/10.1119/1.15216
Gary R. K., (2004), The Concentration Dependence of the ΔS Term in the Gibbs Free Energy Function: Application to Reversible Reactions in Biochemistry, J. Chem. Educ., 81(11), 1599-1604 https://dx.doi.org/10.1021/ed081p1599
Geller B. D., Dreyfus B. W., Gouvea J., Sawtelle V., Turpen C. and Redish E. F., (2014), Entropy and spontaneity in an introductory physics course for life science students, Am. J. Phys., 82(5), 394-402 https://dx.doi.org/10.1119/1.4870389
Gislason E. A. and Craig N. C., (2013), Criteria for Spontaneous Processes Derived from the Global Point of View, J. Chem. Educ., 90(5), 584-590 https://dx.doi.org/10.1021/ed300570u
Grassian V. H., Meyer G., Abruña H., Coates G. W., Achenie L. E., Allison T., Brunschwig B., Ferry J. and Garcia-Garibay M., (2007), Viewpoint: Chemistry for a Sustainable Future, Environ. Sci. Technol., 41(14), 4840-4846 https://dx.doi.org/10.1021/es0725798
Gwet K., (2002), Kappa Statistic is not Satisfactory for Assessing the Extent of Agreement Between Raters, https://api.semanticscholar.org/CorpusID:140400911
Haber-Schaim U., (1983), The role of the second law of thermodynamics in energy education, Phys. Teacher, 21(17), 17-20 https://dx.doi.org/10.1119/1.2341180
Haglund J., (2017), Good Use of a ‘Bad’ Metaphor: Entropy as Disorder, Sci. Educ., 26(3-4), 205-214 https://dx.doi.org/10.1007/s11191-017-9892-4
Haglund J. and Jeppsson F., (2012), Using self-generated analogies in teaching of thermodynamics, J. Res. Sci. Teach., 49(7), 898-921 https://dx.doi.org/10.1002/tea.21025
Haglund J. and Jeppsson F., (2014), Confronting Conceptual Challenges in Thermodynamics by Use of Self-Generated Analogies, Sci. Educ., 23(7), 1505-1529 https://dx.doi.org/10.1007/s11191-013-9630-5
Hattie J., (2008), Visible Learning. A Synthesis of Over 800 Meta-Analyses Relating to Achievement, Routledge
Hayes J. C. and Kraemer D. J. M., (2017), Grounded understanding of abstract concepts: the case of STEM learning, Cogn. Res.: Princ. Implic., 2(1), 7 https://dx.doi.org/10.1186/s41235-016-0046-z
Hazelhurst T. A., (1931), Exorcising a Spectre: Entropy. J. Chem. Educ., 8(3), 498-503
Hill C. J., Bloom H. S., Black A. R. and Lipsey M. W., (2008), Empirical Benchmarks for Interpreting Effect Sizes in Research, Child Dev. Perspectives, 2(3), 172-177 https://dx.doi.org/10.1111/j.1750-8606.2008.00061.x
Iyengar S. S. and deSouza R. T., (2014), Teaching Thermodynamics and Kinetics to Advanced General Chemistry Students and to Upper-Level Undergraduate Students Using PV Diagrams, J. Chem. Educ., 91(1), 74-83 https://dx.doi.org/10.1021/ed400480t
Jadrich J. and Bruxvoort C., (2010), Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons, Phys. Teacher, 48(6), 388-390 https://dx.doi.org/10.1119/1.3479716
Jameson G. and Bruschweiler R., (2020), Active Learning Approach for an Intuitive Understanding of the Boltzmann Distribution by Basic Computer Simulations, J. Chem. Educ., 97(10), 3910-3913 https://dx.doi.org/10.1021/acs.jchemed.0c00559
Jeppsson, F., Haglund, J., Amin, T. G. and Strömdahl, H., (2013), Exploring the Use of Conceptual Metaphors in Solving Problems on Entropy, J. Learn. Sci., 22(1), 70-120 https://dx.doi.org/10.1080/10508406.2012.691926
Johnstone A. H., (1991), Why is science difficult to learn? Things are seldom what they seem, J. Comput. Assisted Learn., 7(2), 75-83 https://dx.doi.org/10.1111/j.1365-2729.1991.tb00230.x
Jungermann A. H., (2006), Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property, J. Chem. Educ., 83(11), 1686 https://dx.doi.org/10.1021/ed083p1686
Kang D.-Y., Liou K.-H. and Chang W.-L., (2015), Investigating Friction as a Main Source of Entropy Generation in the Expansion of Confined Gas in a Piston-and-Cylinder Device, J. Chem. Educ., 92(10), 1667-1671 https://dx.doi.org/10.1021/acs.jchemed.5b00361
Kattmann U., (2018), A biologist's musing on teaching about entropy and energy: towards a better understanding of life processes, School Sci. Rev., 99(368), 61-68
Kaufman R. and Leff H., (2022), Interdependence of the First and Second Laws of Thermodynamics, Phys. Teacher, 60(6), 501-503 https://dx.doi.org/10.1119/5.0074493
Keifer D., (2019), Enthalpy and the Second Law of Thermodynamics, J. Chem. Educ., 96(7), 1407-1411 https://dx.doi.org/10.1021/acs.jchemed.9b00326
Kiatgamolchai S., (2015), A Graphical Proof of the Positive Entropy Change in Heat Transfer Between Two Objects, Phys. Teacher, 53(2), 95-96 https://dx.doi.org/10.1119/1.4905807
Kincanon E., (2013), How I teach the second law of thermodynamics, Phys. Educ., 48(4), 491-496 https://dx.doi.org/10.1088/0031-9120/48/4/491
Kozliak E. I., (2004), Introduction of Entropy via the Boltzmann Distribution in Undergraduate Physical Chemistry: A Molecular Approach, J. Chem. Educ., 81(11), 1595-1598 https://dx.doi.org/10.1021/ed081p1595
Kozliak E. I., (2009), Overcoming Misconceptions about Configurational Entropy in Condensed Phases, J. Chem. Educ., 86(9), 1063-1068 https://dx.doi.org/10.1021/ed086p1063
Kozliak E. I., (2014), Entropy of Mixing of Distinguishable Particles, J. Chem. Educ., 91(6), 834-838 https://dx.doi.org/10.1021/ed4007666
Kozliak E. I. and Lambert F. L., (2005), “Order-to-Disorder” for Entropy Change? Consider the Numbers! Chem. Educ., 10, 24-25 https://dx.doi.org/10.1333/s00897050864a
Laird B. B., (1999), Entropy, Disorder, and Freezing, J. Chem. Educ., 76(10), 1388-1390 https://dx.doi.org/10.1021/ed076p1388
Lambert F. L., (1999), Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense! J. Chem. Educ., 76(10), 1385-1387 https://dx.doi.org/10.1021/ed076p1385
Lambert F. L., (2002), Entropy Is Simple, Qualitatively, J. Chem. Educ., 79(10), 1241-1246 https://dx.doi.org/10.1021/ed079p1241
Lambert F. L., (2007), Configurational Entropy Revisited, J. Chem. Educ., 84(9), 1548-1550 https://dx.doi.org/10.1021/ed084p1548
Lambert F. L., (2011), The Conceptual Meaning of Thermodynamic Entropy in the 21st Century, Int. Res. J. Pure Appl. Chem., 1(3), 65-68 https://dx.doi.org/10.9734/IRJPAC/2011/679
Lambert F. L. and Leff H. S., (2009), The Correlation of Standard Entropy with Enthalpy Supplied from 0 to 298.15 K, J. Chem. Educ., 86(1), 94-98 https://dx.doi.org/10.1021/ed086p94
Landis J. R. and Koch G. G., (1977), The Measurement of Observer Agreement for Categorical Data, Biometrics, 33(1), 159-174 https://dx.doi.org/10.2307/2529310
Langbeheim E., Abrashkin A., Steiner A., Edri H., Safran S. and Yerushalmi E., (2020), Shifting the learning gears: redesigning a project-based course on soft matter through the perspective of constructionism, Phys. Rev. Phys. Educ. Res., 16(2), 020147 https://dx.doi.org/10.1103/PhysRevPhysEducRes.16.020147
Langbeheim E., Safran S. A. and Yerushalmi E., (2014), Visualizing the Entropy Change of a Thermal Reservoir, J. Chem. Educ., 91(3), 380-385 https://dx.doi.org/10.1021/ed400180w
Lechner J. H., (1999), Visualizing Entropy, J. Chem. Educ., 76(10), 1382-1385 https://dx.doi.org/10.1021/ed076p1382
Leff H. S., (1996), Thermodynamic entropy: The spreading and sharing of energy, Am. J. Phys., 64, 1261-1271 https://dx.doi.org/10.1119/1.18389
Leff H. S., (2007), Entropy, Its Language, and Interpretation, Found. Phys., 37(12), 1744-1766 https://dx.doi.org/10.1007/s10701-007-9163-3
Leff H. S., (2012), Removing the Mystery of Entropy and Thermodynamics—Part I, Phys. Teacher, 50(1), 28-31 https://dx.doi.org/10.1119/1.3670080
Leff H. S., (2020), Energy and Entropy: A Dynamic Duo, CRC Press
Leinonen R., Asikainen M. A. and Hirvonen P. E., (2015), Grasping the second law of thermodynamics at university: the consistency of macroscopic and microscopic explanations, Phys. Rev. Spec. Top.-Phys. Educ. Res., 11(2), 020122 https://dx.doi.org/10.1103/PhysRevSTPER.11.020122
Makahinda T. and Mawuntu V. J., (2023), Development of Thermodynamics Learning With Empirical Approach and Portfolio Assessment Techniques, Studies Learn. Teach., 4(2), 285-295 https://dx.doi.org/10.46627/silet.v4i2.263
Mayorga L. S., López M. J. and Becker W. M., (2012), Molecular Thermodynamics for Cell Biology as Taught with Boxes, CBE—Life Sci. Educ., 11(1), 31-38 https://dx.doi.org/10.1187/cbe.11-07-0053
Michalek B. and Hanson R. M., (2006), Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems, J. Chem. Educ., 83(4), 581-588 https://dx.doi.org/10.1021/ed083p581
Moore T., (2022), Connecting Energy Dispersal and the Classical Definition of Entropy, Chem. Eng. Educ., 56(3), 175-180
Moore T. A. and Schroeder D. V., (1997), A different approach to introducing statistical mechanics, Am. J. Phys., 65(1), 26-36 https://dx.doi.org/10.1119/1.18490
Morris, S. B., (2008), Estimating Effect Sizes From Pretest-Posttest-Control Group Designs, Org. Res. Methods, 11(2), 364-386 https://dx.doi.org/10.1177/1094428106291059
Muller E. A., (2012), What Carnot's Father Taught His Son About Thermodynamics, Chem. Eng. Educ., 46(3), 165-170
Munakata M., Vaidya A. and Vanderklein D., (2022), Interdisciplinary Lessons on Energy and Entropy, J. College Sci. Teach., 51(5), 10-15 https://dx.doi.org/10.1080/0047231X.2022.12290576
Novak I., (2003), The Microscopic Statement of the Second Law of Thermodynamics, J. Chem. Educ., 80(12), 1428-1431 https://dx.doi.org/10.1021/ed080p1428
Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., Shamseer L., Tetzlaff J. M., Akl E. A., Brennan S. E., Chou R., Glanville J., Grimshaw J. M., Hróbjartsson A., Lalu M. M., Li T., Loder E. W., Mayo-Wilson E., McDonald S., McGuinness L. A., Stewart L. A., Thomas J., Tricco A. C., Welch V. A., Whiting P. and Moher D., (2021), The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372(71) https://dx.doi.org/10.1136/bmj.n71
Partanen L., (2016), Student oriented approaches in the teaching of thermodynamics at universities - developing an effective course structure, Chem. Educ. Res. Practice, 17(4), 766-787 https://dx.doi.org/10.1039/C6RP00049E
Phillips J. A., (2016), The Macro and Micro of it Is that Entropy Is the Spread of Energy, Phys. Teacher, 54(6), 344-347 https://dx.doi.org/10.1119/1.4961175
Pirker J., Gutl C. and Astatke Y., (2015), Enhancing online and mobile experimentations using gamification strategies, 2015 3rd Experiment International Conference (Exp.at’15), 224-229 https://dx.doi.org/10.1109/EXPAT.2015.7463270
Plumb R. C., (1964), Teaching the entropy concept, J. Chem. Educ., 41(5), 254-256 https://dx.doi.org/10.1021/ed041p254
Poggi V., Miceli C. and Testa I., (2017), Teaching energy using an integrated science approach, Phys. Educ., 52(1), 015018 https://dx.doi.org/10.1088/1361-6552/52/1/015018
Read J. R. and Kable S. H., (2007), Educational analysis of the first year chemistry experiment ‘Thermodynamics Think-In’: An ACELL experiment, Chem. Educ. Res. Pract., 8(2), 255-273 https://dx.doi.org/10.1039/B6RP90034H
Rodriguez J.-M. G., Nardo J. E., Finkenstaedt-Quinn S. A. and Watts F. M., (2023), The use of frameworks in chemistry education research, Chem. Educ. Res. Practice, 24(4), 1109-1126 https://dx.doi.org/10.1039/D3RP00149K
Rogers B. A. and Zhang Y., (2020), Project-Based Experiment in a Physical Chemistry Teaching Laboratory: Ion Effects on Caffeine Partitioning Thermodynamics, J. Chem. Educ., 97(11), 4173-4178 https://dx.doi.org/10.1021/acs.jchemed.0c00961
Ross K., (1988), Matter scatter and energy anarchy. The Second Law of Thermodynamics is simply common experience, Sch. Sci. Rev., 69(248), 438-445
Salagaram T. and Chetty N., (2011), Enhancing the understanding of entropy through computation, Am. J. Phys., 79(11), 1127-1132 https://dx.doi.org/10.1119/1.3623416
Samuelsson C. R., Elmgren M., Xie C. and Haglund J., (2019), Going through a phase: infrared cameras in a teaching sequence on evaporation and condensation, Am. J. Phys., 87(7), 577-582 https://dx.doi.org/10.1119/1.5110665
Schoepf D. C., (2002), A statistical development of entropy for the introductory physics course, Am. J. Phys., 70(2), 128-136 https://dx.doi.org/10.1119/1.1419097
Schwedler S. and Kaldewey M., (2020), Linking the submicroscopic and symbolic level in physical chemistry: how voluntary simulation-based learning activities foster first-year university students’ conceptual understanding, Chem. Educ. Res. Practice, 21(4), 1132-1147 https://dx.doi.org/10.1039/C9RP00211A
Souza J. D., Passos C. G. and Netz P. A., (2023), Exploring Bachelard's Epistemological Obstacles in Physical Chemistry Textbooks: The Case of Thermodynamics Concepts, Acta Sci., 25(5), 30-58 https://dx.doi.org/10.17648/acta.scientiae.7781
Sözbilir M., (2004), What Makes Physical Chemistry Difficult? Perceptions of Turkish Chemistry Undergraduates and Lecturers, J. Chem. Educ., 81(4), 573-578 https://dx.doi.org/10.1021/ed081p573
Spencer J., Moog R. and Gillespie R., (1996), Demystifying Introductory Chemistry. Part 4. An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization, J. Chem. Educ., 73(7), 631-636 https://dx.doi.org/10.1021/ed073p631
Sreenivasulu B. and Subramaniam R., (2013), University Students’ Understanding of Chemical Thermodynamics, Int. J. Sci. Educ., 35(4), 601-635 https://dx.doi.org/10.1080/09500693.2012.683460
Strnad J., (1984), The second law of thermodynamics in a historical setting, Phys. Educ., 19, 94-100 https://dx.doi.org/10.1088/0031-9120/19/2/317
Strong L. E. and Halliwell H. F., (1970), An alternative to free energy for undergraduate instruction, J. Chem. Educ., 47(5), 347-352 https://dx.doi.org/10.1021/ed047p347
Styer D., (2019), Entropy as Disorder: History of a Misconception, Phys. Teacher, 57(7), 454-458 https://dx.doi.org/10.1119/1.5126822
Styer D. F., (2000), Insight into entropy, Am. J. Phys., 68(12), 1090-1096 https://dx.doi.org/10.1119/1.1287353
Taber K. S., (2013), Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education, Chem. Educ. Res. Practice, 14(2), 156-168 https://dx.doi.org/10.1039/C3RP00012E
Talanquer V., (2011), Macro, Submicro, and Symbolic: the many faces of the chemistry “triplet”, Int. J. Sci. Educ., 33(2), 179-195 https://dx.doi.org/10.1080/09500690903386435
Teichert M. A. and Stacy A. M., (2002), Promoting understanding of chemical bonding and spontaneity through student explanation and integration of ideas, J. Res. Sci. Teach., 39(6), 464-496 https://dx.doi.org/10.1002/tea.10033
Tro N., (2019), Chemistry: A Molecular Approach, Financial Times Prentice Hall
Tsaparlis G., (2007), Teaching and Learning Physical Chemistry: A Review of Educational Research, Advances in Teaching Physical Chemistry, American Chemical Society, vol. 973, pp. 75-112
Tsaparlis G., (2016), The logical and psychological structure of physical chemistry and its relevance to graduate students’ opinions about the difficulties of the major areas of the subject, Chem. Educ. Res. Practice, 17(2), 320-336 https://dx.doi.org/10.1039/C5RP00203F
Velasco J., Buteler L., Briozzo C. and Coleoni E., (2022), Learning entropy among peers through the lens of coordination class theory, Phys. Rev. Phys. Educ. Res., 18(1), 010127 https://dx.doi.org/10.1103/PhysRevPhysEducRes.18.010127
Volfson A., Eshach H. and Ben-Abu Y., (2019), Introducing the idea of entropy to the ontological category shift theory for conceptual change: the case of heat and sound, Phys. Rev. Phys. Educ. Res., 15(1), 010143 https://dx.doi.org/10.1103/PhysRevPhysEducRes.15.010143
software What Works Clearinghouse Procedures and Standards Handbook, Version 5.0., (2022), U.S. Department of Education
Williams D. and Glasser D., (1991), An Introduction to Equilibrium Thermodynamics. A Rational Approach to Its Teaching. Part 2: Internal Energy, Entropy, and Temperature, Chem. Eng. Educ., 25(2), 164-172
Wood A., (1975), Graphical Representation of Thermodynamic Functions, J. Coll. Sci. Teach., 5(2), 102-104
Wu G. and Wu A. Y., (2020), A new perspective of how to understand entropy in thermodynamics, Phys. Educ., 55(1), 015005 https://dx.doi.org/10.1088/1361-6552/ab4de6
Wu G. and Wu A. Y., (2021), Analogies between momentum current, electric current and entropy current, Phys. Educ., 56(3), 035019 https://dx.doi.org/10.1088/1361-6552/abe83f
Yu T. H., (2020), Teaching Thermodynamics with the Quantum Volume, J. Chem. Educ., 97(3), 736-740 https://dx.doi.org/10.1021/acs.jchemed.9b00742
Zhang K., (2020), Illustrating the Concepts of Entropy, Free Energy, and Thermodynamic Equilibrium with a Lattice Model, J. Chem. Educ., 97(7), 1903-1907 https://dx.doi.org/10.1021/acs.jchemed.0c00225
Zimmerman S., (2010), An instructive model of entropy, Int. J. Math. Educ. Sci. Technol., 41(6), 805-818 https://dx.doi.org/10.1080/0020739X.2010.486447
Zinman W. G., (1973), Demonstration of Entropy and of the Second Law of Thermodynamics, Am. J. Phys., 41(11), 1284-1285 https://dx.doi.org/10.1119/1.1987545