[en] Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.
Disciplines :
Neurosciences & behavior
Author, co-author :
Jiang, Lin ; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
Eickhoff, Simon B ; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany ; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
Genon, Sarah ; Université de Liège - ULiège > Département des sciences cliniques ; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany ; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
Wang, Guangying ; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
Yi, Chanlin ; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
He, Runyang ; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
Huang, Xunan ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China ; School of Foreign Languages, University of Electronic Science and Technology of China, Sichuan, Chengdu 611731, P. R. China
Yao, Dezhong ; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China ; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China ; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
Dong, Debo ; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany ; Faculty of Psychology, Southwest University, Chongqing 400715, P. R. China
Li, Fali ; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China ; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China ; Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, P. R. China
Xu, Peng ; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China ; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China ; Radiation Oncology Key Laboratory of Sichuan Province, ChengDu 610041, P. R. China ; Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
NSCF - National Natural Science Foundation of China
Funding text :
This work was supported by the National Natural Science Foundation of China (Nos. 62103085, 62076209, and U19A2082), the Key R&D projects of Science and Technology Department of Sichuan Province (No. 2023YFS0324), and the STI 2030 - Major Projects (Nos. 2022ZD0208500 and 2022ZD0211400).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
R. Spiro, P. J. Feltovich, M. Jacobson and R. Coulson, Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ILL-structured domains, Educ. Technol. Soc. 31(5) (1991) 24-33.
R. L. Coulson, P. J. Feltovich and R. J. Spiro, Cognitive flexibility in medicine: An application to the recognition and understanding of hypertension, Adv. Health Sci. Educ. 2(2) (1997) 141-161.
R. Spiro, P. J. Feltovich, M. Jacobson and R. Coulson, Constructivism and the Technology of Instruction (Routledge, New York, 2013).
S. Braem and T. Egner, Getting a grip on cognitive flexibility, Curr. Dir. Psychol. 27(6) (2018) 470-476.
F. Roshani, R. Piri, A. Malek, T. M. Michel and M. S. Vafaee, Comparison of cognitive flexibility, appropriate risk-taking and reaction time in individuals with and without adult ADHD, Psychiatry Res. 284 (2020) 112494.
F. Lange, C. Seer, S. Loens, F. Wegner, C. Schrader, D. Dressler, R. Dengler and B. Kopp, Neural mechanisms underlying cognitive inflexibility in Parkinson's disease, Neuropsychologia 93 (2016) 142-150.
H. M. Geurts, B. Corbett and M. Solomon, The paradox of cognitive flexibility in autism, Trends Cogn. Sci. 13(2) (2009) 74-82.
Z. Ben-Zion, N. B. Fine, N. J. Keynan, R. Admon, N. Green, M. Halevi, G. A. Fonzo, M. Achituv, O. Merin, H. Sharon, P. Halpern, I. Liberzon, A. Etkin, T. Hendler and A. Y. Shalev, Cognitive flexibility predicts PTSD symptoms: Observational and interventional studies, Front. Psychiatry 9 (2018) 477.
B. Lee, W. Cai, C. B. Young, R. Yuan, S. Ryman, J. Kim, V. Santini, V. W. Henderson, K. L. Poston and V. Menon, Latent brain state dynamics and cognitive flexibility in older adults, Prog. Neurobiol. 208 (2022) 102180.
C. Porcaro, F. Vecchio, F. Miraglia, G. Zito and P. M. Rossini, Dynamics of the "cognitive" brain wave P3b at rest for Alzheimer dementia prediction in mild cognitive impairment, Int. J. Neural Syst. 32(05) (2022) 2250022.
C. Jimenez-Mesa, J. E. Arco, M. Valentí-Soler, B. Frades-Payo, M. A. Zea-Sevilla, A. Ortiz, M. Avila-Villanueva, D. Castillo-Barnes, J. Ramírez, T. D. Ser-Quijano, C. Carnero-Pardo and J. M. Górriz, Using explainable artificial intelligence in the clock drawing test to reveal the cognitive impairment pattern, Int. J. Neural Syst. 33(04) (2023) 2350015.
P. Singh, M. Wtorek, A. Ceglarek, M. Ffrowicz, K. Lewandowska, T. Marek, B. Sikora-Wachowicz and P. Owicimka, Analysis of fMRI signals from working memory tasks and resting-state of brain: Neutrosophic-entropy-based clustering algorithm, Int. J. Neural Syst. 32(04) (2022) 2250012.
C. R. Bowie and P. D. Harvey, Administration and interpretation of the trail making test, Nat. Protoc. 1(5) (2006) 2277-2281.
A. Varjacic, D. Mantini, N. Demeyere and C. R. Gillebert, Neural signatures of Trail Making Test performance: Evidence from lesion-mapping and neuroimaging studies, Neuropsychologia 115 (2018) 78-87.
I. Sanchez-Cubillo, J. A. Periañez, D. Adrover-Roig, J. M. Rodríguez-Sanchez, M. Ríos-Lago, J. Tirapu and F. Barceló, Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/ interference control, and visuomotor abilities, J. Int. Neuropsychol. Soc. 15(3) (2009) 438-450.
M. R. van Schouwenburg, J. O'Shea, R. B. Mars, M. F. S. Rushworth and R. Cools, Controlling human striatal cognitive function via the frontal cortex, J. Neurosci. 32(16) (2012) 5631-5637.
J. Zhu, D. Zhu, C. Zhang, Y. Wang, Y. Yang and Y. Yu, Quantitative prediction of individual cognitive flexibility using structural MRI, Brain Imaging Behav. 13 (2019) 781-788.
A. K. Barbey, R. Colom and J. Grafman, Architecture of cognitive flexibility revealed by lesion mapping, Neuroimage 82 (2013) 547-554.
L. Q. Uddin, Cognitive and behavioural flexibility: Neural mechanisms and clinical considerations, Nat. Rev. Neurosci. 22(3) (2021) 167-179.
D. R. Dajani and L. Q. Uddin, Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience, Trends Neurosci. 38(9) (2015) 571-578.
N. G. Harnett, J. S. Stevens, N. Fani, S. J. H. van Rooij, T. D. Ely, V. Michopoulos, L. Hudak, A. O. Rothbaum, R. Hinrichs, S. J. Winters, T. Jovanovic, B. O. Rothbaum, L. D. Nickerson and K. J. Ressler, Acute posttraumatic symptoms are associated with multimodal neuroimaging structural covariance patterns: A possible role for the neural substrates of visual processing in posttraumatic stress disorder, Biol. Psychiatry:Cogn. Neurosci. Neuroimaging 7(2) (2022) 129-138.
G. Deco, M. L. Kringelbach, A. Arnatkeviciute, S. Oldham, K. Sabaroedin, N. C. Rogasch, K. M. Aquino and A. Fornito, Dynamical consequences of regional heterogeneity in the brain's transcriptional landscape, Sci. Adv. 7(29) (2021) eabf4752.
L. Jiang, F. Li, B. Chen, C. Yi, Y. Peng, T. Zhang, D. Yao and P. Xu, The task-dependent modular covariance networks unveiled by multiple-way fusion-based analysis, Int. J. Neural Syst. 32(07) (2022) 2250035.
L. Jiang, Y. Peng, R. He, Q. Yang, C. Yi, Y. Li, B. Zhu, Y. Si, T. Zhang, B. B. Biswal, D. Yao, L. Xiong, F. Li and P. Xu, Transcriptomic and macroscopic architectures of multimodal covariance network reveal molecular-structural-functional co-alterations, Research 6 (2023) 0171.
C. Chang and J. E. Chen, Multimodal EEG-fMRI: Advancing insight into large-scale human brain dynamics, Curr. Opin. Biomed. Eng. 18 (2021) 100279.
R. Yuvaraj, M. Murugappan, U. R. Acharya, H. Adeli, N. M. Ibrahim and E. Mesquita, Brain functional connectivity patterns for emotional state classification in Parkinson's disease patients without dementia, Behav. Brain Res. 298 (2016) 248-260.
J. D. Medaglia, W. Huang, E. A. Karuza, A. Kelkar, S. L. Thompson-Schill, A. Ribeiro and D. S. Bassett, Functional alignment with anatomical networks is associated with cognitive flexibility, Nat. Hum. Behav. 2(2) (2018) 156-164.
A. Babayan, M. Erbey, D. Kumral, J. D. Reinelt, A. M. F. Reiter, J. R€obbig, H. L. Schaare, M. Uhlig, A. Anwander and P.-L. Bazin, A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults, Sci. Data 6(1) (2019) 1-21.
T. N. Tombaugh, Trail making test A and B: Normative data stratified by age and education, Arch. Clin. Neuropsychol. 19(2) (2004) 203-214.
M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich and S. M. Smith, FSL, Neuroimage 62(2) (2012) 782-790.
N. Mendes, S. Oligschl€ager, M. E. Lauckner, J. Golchert, J. M. Huntenburg, M. Falkiewicz, M. Ellamil, S. Krause, B. M. Baczkowski, R. Cozatl, A. Osoianu, D. Kumral, J. Pool, L. Golz, M. Dreyer, P. Haueis, R. Jost, Y. Kramarenko, H. Engen, K. Ohrnberger, K. J. Gorgolewski, N. Farrugia, A. Babayan, A. Reiter, H. L. Schaare, J. Reinelt, J. R€obbig, M. Uhlig, M. Erbey, M. Gaebler, J. Smallwood, A. Villringer and D. S. Margulies, A functional connectome phenotyping dataset including cognitive state and personality measures, Sci. Data 6(1) (2019) 180307.
P. L. Bazin, M. Weiss, J. Dinse, A. Sch€afer, R. Trampel and R. Turner, A computational framework for ultra-high resolution cortical segmentation at 7 Tesla, Neuroimage 93 (2014) 201-209.
A. M. Dale, B. Fischl and M. I. Sereno, Cortical surface-based analysis: I. Segmentation and surface reconstruction, Neuroimage 9(2) (1999) 179-194.
G. Mirzaei and H. Adeli, Segmentation and clustering in brain MRI imaging, Rev. Neurosci. 30(1) (2018) 31-44.
B. B. Avants, C. L. Epstein, M. Grossman and J. C. Gee, Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain, Med. Image Anal. 12(1) (2008) 26-41.
B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein and J. C. Gee, A reproducible evaluation of ANTs similarity metric performance in brain image registration, Neuroimage 54(3) (2011) 2033-2044.
D. Yao, A method to standardize a reference of scalp EEG recordings to a point at infinity, Physiol. Meas. 22(4) (2001) 693.
T. He, G. Clifford and L. Tarassenko, Application of independent component analysis in removing artefacts from the electrocardiogram, Neural Comput. Appl. 15(2) (2006) 105-116.
S. E. Morgan, J. Seidlitz, K. J. Whitaker, R. Romero-Garcia, N. E. Clifton, C. Scarpazza, T. van Amelsvoort, M. Marcelis, J. van Os and G. Donohoe, Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes, Proc. Natl. Acad. Sci. USA 116(19) (2019) 9604-9609.
S. N. Vandekar, R. T. Shinohara, A. Raznahan, R. D. Hopson, D. R. Roalf, K. Ruparel, R. C. Gur, R. E. Gur and T. D. Satterthwaite, Subject-level measurement of local cortical coupling, Neuroimage 133 (2016) 88-97.
K. J. Whitaker, P. E. Vertes, R. Romero, F. Vaŝa, M. Moutoussis, G. Prabhu, N. Weiskopf, M. F. Callaghan, K. Wagstyl and T. Rittman, Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome, Proc. Natl. Acad. Sci. USA 113(32) (2016) 9105-9110.
M. R. Sabuncu, T. Ge, A. J. Holmes, J. W. Smoller, R. L. Buckner, B. Fischl and I. Alzheimer's, Disease Neuroimaging, Morphometricity as a measure of the neuroanatomical signature of a trait, Proc. Natl. Acad. Sci. USA 113(39) (2016) E5749-E5756.
K. A. Clark, K. H. Nuechterlein, R. F. Asarnow, L. S. Hamilton, O. R. Phillips, N. S. Hageman, R. P. Woods, J. R. Alger, A. W. Toga and K. L. Narr, Mean diffusivity and fractional anisotropy as indicators of disease and genetic liability to schizophrenia, J. Psychiatr. Res. 45(7) (2011) 980-988.
X. Long, W. Liao, C. Jiang, D. Liang, B. Qiu and L. Zhang, Healthy aging: An automatic analysis of global and regional morphological alterations of human brain, Acad. Radiol. 19(7) (2012) 785-793.
J. S. Shimony, C. D. Smyser, G. Wideman, D. Alexopoulos, J. Hill, J. Harwell, D. Dierker, D. C. Van Essen, T. E. Inder and J. J. Neil, Comparison of cortical folding measures for evaluation of developing human brain, Neuroimage 125 (2016) 780-790.
Y. F. Zang, Y. He, C. Z. Zhu, Q. J. Cao, M. Q. Sui, M. Liang, L. X. Tian, T. Z. Jiang and Y. F. Wang, Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI, Brain Dev. 29(2) (2007) 83-91.
A. P. A. Bueno, W. H. L. Pinaya, K. Rebello, L. C. de Souza, M. Hornberger and J. R. Sato, Regional dynamics of the resting brain in amyotrophic lateral sclerosis using fractional amplitude of low-frequency fluctuations and regional homogeneity analyses, Brain Connect. 9(4) (2019) 356-364.
S. Wainio-Theberge, A. Wolff and G. Northoff, Dynamic relationships between spontaneous and evoked electrophysiological activity, Commun. Biol. 4(1) (2021) 741.
M. Rubinov and O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, Neuroimage 52(3) (2010) 1059-1069.
M. Ahmadlou and H. Adeli, Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism, Neurosci. Lett. 650 (2017) 103-108.
J. delEtoile and H. Adeli, Graph theory and brain connectivity in Alzheimer's disease, Neuroscientist 23(6) (2017) 616-626.
L. Jiang, Y. Liang, S. Genon, R. He, Q. Yang, C. Yi, L. Yu, D. Yao, S. B. Eickhoff and D. Dong, Spatial-rhythmic network as a biomarker of familial risk for psychotic bipolar disorder, Nat. Mental Health 1 (2023) 1-13.
F. Li, Q. Tao, W. Peng, T. Zhang, Y. Si, Y. Zhang, C. Yi, B. Biswal, D. Yao and P. Xu, Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting-to task-state: Evidence from a simultaneous event-related EEG-fMRI study, Neuroimage 205 (2020) 116285.
S. Goyal, V. V. Patage and S. Tiwari, Gender and age group predictions from speech features using multilayer perceptron model, in 2020 IEEE 17th India Council Int. Conf. (INDICON) (IEEE, New Delhi, India, 2020), pp. 1-6.
L. Jiang, F. Li, Z. Chen, B. Zhu, C. Yi, Y. Li, T. Zhang, Y. Peng, Y. Si and Z. Cao, Information transmission velocity-based dynamic hierarchical brain networks, Neuroimage 270 (2023) 119997.
D. Chicco, M. J. Warrens and G. Jurman, The coef-ficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Comput. Sci. 7 (2021) e623.
T. Ionescu, Exploring the nature of cognitive flexibility, New Ideas Psychol. 30(2) (2012) 190-200.
B. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Z€ollei and J. R. Polimeni, The organization of the human cerebral cortex estimated by intrinsic functional connectivity, J. Neurophysiol. 106(3) (2011) 1125-1165.
J. M. Schear and S. D. Sato, Effects of visual acuity and visual motor speed and dexterity on cognitive test performance, Arch. Clin. Neuropsychol. 4(1) (1989) 25-32.
J. C. Culham, C. Cavina-Pratesi and A. Singhal, The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia 44(13) (2006) 2668-2684.
M. Husain and P. Nachev, Space and the parietal cortex, Trends Cogn. Sci. 11(1) (2007) 30-36.
K. Hagen, A.-C. Ehlis, F. B. Haeussinger, S. Heinzel, T. Dresler, L. D. Mueller, M. J. Herrmann, A. J. Fallgatter and F. G. Metzger, Activation during the trail making test measured with functional near-infrared spectroscopy in healthy elderly subjects, Neuroimage 85 (2014) 583-591.
L. D. Müller, A. Guhn, J. B. M. Zeller, S. C. Biehl, T. Dresler, T. Hahn, A. J. Fallgatter, T. Polak, J. Deckert and M. J. Herrmann, Neural correlates of a standardized version of the trail making test in young and elderly adults: A functional near-infrared spectroscopy study, Neuropsychologia 56 (2014) 271-279.
Y. Si, L. Jiang, Q. Tao, C. Chen, F. Li, Y. Jiang, T. Zhang, X. Cao, F. Wan, D. Yao and P. Xu, Predicting individual decision-making responses based on the functional connectivity of resting-state EEG, J. Neural Eng. 16(6) (2019) 066025.
A. H. C. Fong, K. Yoo, M. D. Rosenberg, S. Zhang, C. R. Li, D. Scheinost, R. T. Constable and M. M. Chun, Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies, Neuroimage 188 (2019) 14-25.
G. Zhou, P. Liu, J. He, M. Dong, X. Yang, B. Hou, K. Von Deneen, W. Qin and J. Tian, Interindividual reaction time variability is related to resting-state network topology: An electroencephalogram study, Neuroscience 202 (2012) 276-282.
F. Li, T. Liu, F. Wang, H. Li, D. Gong, R. Zhang, Y. Jiang, Y. Tian, D. Guo and D. Yao, Relationships between the resting-state network and the P3: Evidence from a scalp EEG study, Sci. Rep. 5 (2015) 15129.
T. A. Salthouse, What cognitive abilities are involved in trail-making performance? Intelligence 39(4) (2011) 222-232.
M. A. Goodale, Transforming vision into action, Vision Res. 51(13) (2011) 1567-1587.
Q. Zou, T. J. Ross, H. Gu, X. Geng, X. N. Zuo, L. E. Hong, J. H. Gao, E. A. Stein, Y. F. Zang and Y. Yang, Intrinsic resting-state activity predicts working memory brain activation and behavioral performance, Hum. Brain Mapp. 34(12) (2013) 3204-3215.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.