Article (Scientific journals)
Prediction of depressive symptoms severity based on sleep quality, anxiety, and gray matter volume: a generalizable machine learning approach across three datasets
Olfati, Mahnaz; Samea, Fateme; Faghihroohi, Shahrooz et al.
2024In EBioMedicine, 108, p. 105313
Peer Reviewed verified by ORBi
 

Files


Full Text
Olfati_et_al_2024.pdf
Publisher postprint (1.42 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Disciplines :
Neurosciences & behavior
Author, co-author :
Olfati, Mahnaz
Samea, Fateme
Faghihroohi, Shahrooz
Balajoo, Somayeh Maleki
Küppers, Vincent
Genon, Sarah ;  Université de Liège - ULiège > Département des sciences cliniques
Patil, Kaustubh
Eickhoff, Simon B.
Tahmasian, Masoud 
Language :
English
Title :
Prediction of depressive symptoms severity based on sleep quality, anxiety, and gray matter volume: a generalizable machine learning approach across three datasets
Publication date :
October 2024
Journal title :
EBioMedicine
eISSN :
2352-3964
Publisher :
Elsevier BV
Volume :
108
Pages :
105313
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 10 September 2024

Statistics


Number of views
14 (0 by ULiège)
Number of downloads
9 (0 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBi