[en] Huntington's disease (HD) causes selective degeneration of striatal and cortical neurons, resulting in cell mosaicism of coexisting still functional and dysfunctional cells. The impact of non-cell autonomous mechanisms between these cellular states is poorly understood. Here we generated telencephalic organoids with healthy or HD cells, grown separately or as mosaics of the two genotypes. Single-cell RNA sequencing revealed neurodevelopmental abnormalities in the ventral fate acquisition of HD organoids, confirmed by cytoarchitectural and transcriptional defects leading to fewer GABAergic neurons, while dorsal populations showed milder phenotypes mainly in maturation trajectory. Healthy cells in mosaic organoids restored HD cell identity, trajectories, synaptic density, and communication pathways upon cell-cell contact, while showing no significant alterations when grown with HD cells. These findings highlight cell-type-specific alterations in HD and beneficial non-cell autonomous effects of healthy cells, emphasizing the therapeutic potential of modulating cell-cell communication in disease progression and treatment.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Galimberti, Maura; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Nucera, Maria R ; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy ; Stem Cell Biology Department, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
Bocchi, Vittoria D; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy ; Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
Conforti, Paola; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Vezzoli, Elena; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy ; ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132, Milan, Italy
Cereda, Matteo ; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Maffezzini, Camilla ; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Iennaco, Raffaele; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Scolz, Andrea; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Falqui, Andrea ; Department of Physics "Aldo Pontremoli", University of Milan, Via Celoria 16, 20133, Milan, Italy
Cordiglieri, Chiara ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Cremona, Martina; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy ; Swiss Stem Cell Foundation, Via Petrini 2, 6900, Lugano, Switzerland
Espuny Camacho, Ira Mercedes ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Faedo, Andrea; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy ; Axxam, OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
Felsenfeld, Dan P; CHDI Management/CHDI Foundation, New York, NY, USA
Vogt, Thomas F; CHDI Management/CHDI Foundation, New York, NY, USA
Ranzani, Valeria; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Zuccato, Chiara; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Besusso, Dario; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
Cattaneo, Elena ; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy. elena.cattaneo@unimi.it ; INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy. elena.cattaneo@unimi.it
We thank A. Fasciani of the Imaging Facility and M. Crosti of the Cytofluorometry Facility from INGM for scientific and technical assistance. We acknowledge Ernest Arenas (Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden) for discussions and comments. This study was supported by the European Union\u2019s funded Consortia \u201CNeurostemcellRepair: European stem cell consortium for neural cell replacement, reprogramming and functional brain repair\u201D (FP7, GA No. 602278) and by JPND (EU) ModelPolyQ (Grant No. 643417) and, partially, by the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation programme (grant agreement No. 742436). Single cell RNA sequencing was partially supported by CHDI Foundation (No. JSC A11103). All the grants were referred to E.C.
P.C. Nopoulos et al. Smaller intracranial volume in prodromal Huntington’s disease: evidence for abnormal neurodevelopment Brain 2011 134 137 142 20923788
J.K. Lee et al. Measures of growth in children at risk for Huntington disease Neurology 2012 79 668 674 22815549 3414667
A.E. Molero et al. Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease Proc. Natl. Acad. Sci. 2016 113 5736 5741 2016PNAS.113.5736M 1:CAS:528:DC%2BC28XntVChtLw%3D 27140644 4878495
M. Barnat et al. Huntington’s Disease Alters Human Neurodevelopment Science 2020 369 787 793 2020Sci..369.787B 1:CAS:528:DC%2BB3cXhsF2qsrzL 32675289 7859879
R.A. Hickman et al. Developmental malformations in Huntington disease: neuropathologic evidence of focal neuronal migration defects in a subset of adult brains Acta Neuropathol. 2021 141 399 413 1:CAS:528:DC%2BB3MXjvVOhuro%3D 33517535 7882590
P.A. Desplats et al. Selective deficits in the expression of striatal-enriched mRNAs in Huntington’s disease J. Neurochem 2006 96 743 757 1:CAS:528:DC%2BD28XjsFCnurc%3D 16405510
H. Lee et al. Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial RNA Release and Neuronal Innate Immune Activation Neuron 2020 107 891 908 1:CAS:528:DC%2BB3cXhsVWqsrbL 32681824 7486278
X. Gu et al. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice Neuron 2022 110 1173 1192 1:CAS:528:DC%2BB38Xis1yitbw%3D 35114102 9462388
A.V. Goula et al. Transcription Elongation and Tissue-Specific Somatic CAG Instability PLoS Genet 2012 8 e1003051 1:CAS:528:DC%2BC38XhvVKjt77P 23209427 3510035
L.B. Menalled et al. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice J. Neurosci. 2002 22 8266 8276 1:CAS:528:DC%2BD38Xnt12rtbg%3D 12223581 6758087
X. Gu et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease Mol. Neurodegener. 2007 2 1 11
M.B. Veldman X.W. Yang Molecular insights into cortico-striatal miscommunications in Huntington’s disease Curr. Opin. Neurobiol. 2018 48 79 89 1:CAS:528:DC%2BC2sXhslelurnN 29125980
C. Zuccato E. Cattaneo Huntington’s disease Handb. Exp. Pharm. 2014 220 357 409 1:CAS:528:DC%2BC2MXntFOltrY%3D
A. Virlogeux et al. Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease Cell Rep. 2018 22 110 122 1:CAS:528:DC%2BC1cXjt1Cktg%3D%3D 29298414
M.D. Sepers L.A. Raymond Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease Drug Discov. Today 2014 19 990 996 1:CAS:528:DC%2BC2cXksFaitLg%3D 24603212
C. Cepeda K.P.S. Murphy M. Parent M.S. Levine The role of dopamine in Huntington’s disease. in Prog. Brain Res. 2014 211 235 254 1:CAS:528:DC%2BC2cXhs1SqtLzO 24968783 4409123
T.B. Brown A.I. Bogush M.E. Ehrlich Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse Hum. Mol. Genet 2008 17 3095 3104 1:CAS:528:DC%2BD1cXht1SitrvK 18632688 2722883
E.A. Thomas et al. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons Hum. Mol. Genet 2011 20 1049 1060 1:CAS:528:DC%2BC3MXisFagt74%3D 21177255
X. Gu et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant huntingtin contribute to cortical pathogenesis in HD mice Neuron 2005 46 433 444 1:CAS:528:DC%2BD2MXksFKmtbc%3D 15882643
J. Bradford et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms Proc. Natl. Acad. Sci. USA 2009 106 22480 22485 2009PNAS.10622480B 1:CAS:528:DC%2BC3cXmsVaisA%3D%3D 20018729 2799722
A. Benraiss et al. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease Nat. Commun. 2016 7 1 13
N. Gaspard et al. An intrinsic mechanism of corticogenesis from embryonic stem cells Nature 2008 455 351 357 2008Natur.455.351G 1:CAS:528:DC%2BD1cXhtFamsLzL 18716623
I. Muñoz-Sanjuán A.H. Brivanlou Neural induction, the default model and embryonic stem cells Nat. Rev. Neurosci. 2002 3 271 280 11967557
A. Ruzo et al. Chromosomal instability during neurogenesis in Huntington’s disease Development 2018 145 dev156844 29378824
A.A. Pollen et al. Molecular identity of human outer radial glia during cortical development Cell 2015 163 55 67 1:CAS:528:DC%2BC2MXhsFKqtr3F 26406371 4583716
Y. Yu et al. Interneuron origin and molecular diversity in the human fetal brain Nat. Neurosci. 2021 24 1745 1756 1:CAS:528:DC%2BB3MXisVahsbrE 34737447
J.S. Fleck et al. Inferring and perturbing cell fate regulomes in human brain organoids Nature 2023 621 365 372 2023Natur.621.365F 1:CAS:528:DC%2BB38XisFygur3M 36198796
E. Braun et al. Comprehensive cell atlas of the first-trimester developing human brain Science 2023 382 eadf1226 1:CAS:528:DC%2BB3sXitFygtbfF 37824650
He, Z. et al. An integrated transcriptomic cell atlas of human neural organoids. Biorxiv, 1–23 (2023).
M. Marangoni et al. Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington’s disease Neurobiol. Aging 2014 35 2382 2393 24906892
M. Molina-Calavita et al. Mutant Huntingtin Affects Cortical Progenitor Cell Division and Development of the Mouse Neocortex J. Neurosci. 2014 34 10034 10040 25057205 6608303
E. Di Lullo A.R. Kriegstein The use of brain organoids to investigate neural development and disease Nat. Rev. Neurosci. 2017 18 573 584 28878372 5667942
X. Chen et al. Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments PLoS Biol. 2022 20 e3001868 1:CAS:528:DC%2BB38XjtVGisbbP 36395338 9714809
B.W. Bisgrove H.J. Yost The roles of cilia in developmental disorders and disease Development 2006 133 4131 43 1:CAS:528:DC%2BD28XhtlSmt73N 17021045
H. Higginbotham et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation Nat. Neurosci. 2013 16 1000 1007 1:CAS:528:DC%2BC3sXhtVaku73O 23817546 3866024
G. Keryer et al. Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease J. Clin. Invest 2011 121 4372 4382 1:CAS:528:DC%2BC3MXhsVCksL3N 21985783 3223861
M. Onorati et al. Molecular and functional definition of the developing human striatum Nat. Neurosci. 2014 17 1804 1815 1:CAS:528:DC%2BC2cXhvFGltLbK 25383901
V.D. Bocchi et al. The coding and long noncoding single-cell atlas of the developing human fetal striatum Science 2021 372 eabf5759 1:CAS:528:DC%2BB3MXhtVGnu77E 33958447
Y. Shi et al. Mouse and human share conserved transcriptional programs for interneuron development Science 2021 374 eabj6641 1:CAS:528:DC%2BB3MXislKnsb3N 34882453
Y. Wang et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes Nat. Commun. 2022 13 2022NatCo.13.5688W 1:CAS:528:DC%2BB38XisFOks7fN 36202854 9537523
X. Qian et al. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure Cell 2016 165 1238 1254 1:CAS:528:DC%2BC28XmslSmsrc%3D 27118425 4900885
M.A. Lancaster et al. Cerebral organoids model human brain development and microcephaly Nature 2013 501 373 379 2013Natur.501.373L 1:CAS:528:DC%2BC3sXhtlCntb3F 23995685
R.M. Pinto et al. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington’s disease and in spinocerebellar ataxia type 1 Hum. Mol. Genet 2020 29 2551 2567 1:CAS:528:DC%2BB3MXktFWltb4%3D
D. Besusso et al. Stem Cell-Derived Human Striatal Progenitors Innervate Striatal Targets and Alleviate Sensorimotor Deficit in a Rat Model of Huntington Disease Stem Cell Rep. 2020 14 876 891 1:CAS:528:DC%2BB3cXntlensbw%3D
A.E. Rosser et al. Translating cell therapies for neurodegenerative diseases: Huntington’s disease as a model disorder Brain 2022 145 1584 1597 35262656 9166564
E.J. Wild S.J. Tabrizi Therapies targeting DNA and RNA in Huntington’s disease Lancet Neurol. 2017 16 837 847 1:CAS:528:DC%2BC2sXhsFSmtLnL 28920889 5604739
M. Garret Z. Du M. Chazalon Y.H. Cho J. Baufreton Alteration of GABAergic neurotransmission in Huntington’s disease CNS Neurosci. Therapeutics 2018 24 292 300 1:CAS:528:DC%2BC1cXmsVansrc%3D
P. Verstraelen et al. Systematic Quantification of Synapses in Primary Neuronal Culture iScience 2020 23 101542 2020iSci..23j1542V 1:CAS:528:DC%2BB3cXhvFSisbrN 33083769 7516133
J. Barry M.T.N. Bui M.S. Levine C. Cepeda Synaptic pathology in Huntington’s disease: Beyond the corticostriatal pathway Neurobiol. Dis. 2022 162 105574 1:CAS:528:DC%2BB38XmvVKqur8%3D 34848336
Y.P. Deng T. Wong C. Bricker-Anthony B. Deng A. Reiner Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington’s disease mice Neurobiol. Dis. 2013 60 89 107 1:CAS:528:DC%2BC3sXhs1Wmtr%2FI 23969239
R.P. Murmu W. Li Z. Szepesi J.Y. Li Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of huntington’s disease J. Neurosci. 2015 35 287 298 25568121 6605245
P. Conforti et al. RUES2 hESCs exhibit MGE-biased neuronal differentiation and muHTT-dependent defective specification hinting at SP1 Neurobiol. Dis. 2020 146 105140 1:CAS:528:DC%2BB3cXit1Onur%2FJ 33065279
G. La Manno et al. RNA velocity of single cells Nature 2018 560 494 498 2018Natur.560.494L 30089906 6130801
C. Trapnell et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells Nat. Biotechnol. 2014 32 381 386 1:CAS:528:DC%2BC2cXks12ku7c%3D 24658644 4122333
S. Jin et al. Inference and analysis of cell-cell communication using CellChat Nat. Commun. 2021 12 1 20
P. Conforti et al. In vitro-derived medium spiny neurons recapitulate human striatal development and complexity at single-cell resolution Cell Rep. Methods 2022 2 100367 1:CAS:528:DC%2BB38XjtFynurbO 36590694 9795363
E. Vezzoli et al. Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington’s disease J. Clin. Investig. 2019 129 2390 2403 31063986 6546448
C. Domínguez Conde et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans Science 2022 376 eabl5197 35549406 7612735
K. Mätlik et al. Cell-type-specific CAG repeat expansions and toxicity of mutant Huntingtin in human striatum and cerebellum Nat. Genet 2024 56 383 394 38291334 10937393
R. Kacher et al. CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease Brain 2019 142 2432 2450 31286142
D.K. Wilton et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease Nat. Med 2023 29 2866 2884 1:CAS:528:DC%2BB3sXitV2gtb7F 37814059 10667107
H.D. iPSC Consortium. Developmental alterations in Huntington’s disease neural cells and pharmacological rescue in cells and mice Nat. Neurosci. 2017 20 648 660
T. Haremaki et al. Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment Nat. Biotechnol. 2019 37 1198 1208 1:CAS:528:DC%2BC1MXhsleltLvE 31501559
S. Chen et al. Altered synaptic vesicle release and ca2+ influx at single presynaptic terminals of cortical neurons in a knock-in mouse model of huntington’s disease Front Mol. Neurosci. 2018 11 478 1:CAS:528:DC%2BC1MXitlymt7rJ 30618623 6311661
M. Arrasate S. Finkbeiner Protein aggregates in Huntington’s disease Exp. Neurol. 2012 238 1 11 1:CAS:528:DC%2BC38Xhtl2gu7fE 22200539
R.A. Hickman P.L. Faust K. Marder A. Yamamoto J.P. Vonsattel The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade Acta Neuropathol. Commun. 2022 10 55 1:CAS:528:DC%2BB38XhsVKiu7nK 35440014 9020040
C.-A. Gutekunst et al. Nuclear and Neuropil Aggregates in Huntington’s Disease: Relationship to Neuropathology J. Neurosci. 1999 19 2522 2534 1:CAS:528:DyaK1MXitFShtrs%3D 10087066 6786077
Di Figlia et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain Science 1997 277 1990 1993
E.J. Slow et al. Absence of Behavioral Abnormalities and Neurodegeneration in Vivo despite Widespread Neuronal Huntingtin Inclusions Proc. Natl. Acad. Sci. USA 2005 102 11402 11407 2005PNAS.10211402S 1:CAS:528:DC%2BD2MXoslKitb8%3D 16076956 1183566
J.C. Reidling et al. Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington’s Disease Mice Stem Cell Rep. 2018 10 58 72 1:CAS:528:DC%2BC2sXhvFCrt7fE
A.C.M. Paquola J.A. Erwin F.H. Gage Insights into the role of somatic mosaicism in the brain Curr. Opin. Syst. Biol. 2017 1 90 94 29226270
F. Pipicelli et al. Non-cell-autonomous regulation of interneuron specification mediated by extracellular vesicles Sci. Adv. 2023 9 eadd8164 4647340 1:CAS:528:DC%2BB3sXhtVyjsL3K 37205765 10198641
M.A. Lancaster J.A. Knoblich Organogenesis in a dish: Modeling development and disease using organoid technologies Science (1979) 2014 345 1247125 1247125
I. Espuny-Camacho et al. Pyramidal Neurons Derived from Human Pluripotent Stem Cells Integrate Efficiently into Mouse Brain Circuits In Vivo Neuron 2013 77 440 456 1:CAS:528:DC%2BC3sXitFChu7Y%3D 23395372
G.X.Y. Zheng et al. Massively parallel digital transcriptional profiling of single cells Nat. Commun. 2017 8 2017NatCo..814049Z 1:CAS:528:DC%2BC2sXht1WlsLo%3D 28091601 5241818
A. Dobin et al. STAR: Ultrafast universal RNA-seq aligner Bioinformatics 2013 29 15 21 1:CAS:528:DC%2BC38XhvV2gsbnF 23104886
F.A. Wolf et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells Genome Biol. 2019 20 1 9
Alexa, A. & Rahnenführer, J. Gene set enrichment analysis with topGO. Bioconductor Improvments 27, 1–26 (2007).
Sayols, S. rrvgo: a Bioconductor package to reduce and visualize Gene Ontology terms. MicroPubl Biol. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155054/ (2023).
D. Smedley et al. BioMart - Biological queries made easy BMC Genomics 2009 10 1 12
V. Bergen M. Lange S. Peidli F.A. Wolf F.J. Theis Generalizing RNA velocity to transient cell states through dynamical modeling Nat. Biotechnol. 2020 38 1408 1414 1:CAS:528:DC%2BB3cXhsFait7%2FE 32747759
G. Della Chiara et al. Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ Nat. Commun. 2021 12 2021NatCo.12.2340D 33879786 8058065
C. Xu et al. Automatic cell-type harmonization and integration across Human Cell Atlas datasets Cell 2023 186 5876 5891 1:CAS:528:DC%2BB3sXis1yjsbvJ 38134877