[en] Sea level rise (SLR) poses a significant threat to coastal regions worldwide, particularly affecting over 60 million people living below 10 m above sea level along the African coast. This study analyzes the spatio-temporal trends of sea level anomaly (SLA) and its components (thermosteric, halosteric and ocean mass) in the Eastern Tropical Atlantic Ocean (ETAO) from 1993 to 2022. The SLA trend for the ETAO, derived from satellite altimetry, is 3.52 ± 0.47 mm/year, similar to the global average of 3.56 ± 0.67 mm/year. Of the three upwelling regions, the Gulf of Guinea (GoG) shows the highest regional trend of 3.42 ± 0.12 mm/year. Using the ARMORD3D dataset, a positive thermosteric sea level trend of 0.88 ± 0.04 mm/year is observed, particularly in the equatorial and southern Atlantic regions. The steric component drives the interannual SLA variability, while the ocean mass component dominates the long-term trends, as confirmed by the GRACE and GRACE-FO missions for 2002-2022. For those two decades, the total SLR from altimetry amounts to 3.80 ± 0.8 mm/year, whilst the steric component is reduced to only 0.19 ± 0.05 mm/year, leaving a residual increase in the ETAO of 3.69 ± 0.5 mm/year. The independent mass change from GRACE amounts to 2.78 ± 0.6 mm/year for this region, which just closes the sea level budget within present uncertainty levels. Spatial analysis of the steric components indicates a warming along the equatorial African coast including the GoG and a freshening near Angola. Strong correlations with regional climate factors, particularly the Tropical South Atlantic Index, highlight the influence of persistent climate modes. These findings underscore the urgent need for mitigation and adaptation strategies to SLR in the ETAO, especially for densely populated coastal communities.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ghomsi, Franck Eitel Kemgang; Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM), Munich, Germany. franckeitel@gmail.com ; Nansen-Tutu Center for Marine Environmental Research, Department of Oceanography, University of Cape Town, Cape Town, South Africa. franckeitel@gmail.com ; Geodesy Research Laboratory, National Institute of Cartography, P.O. Box 157, Yaoundé, Cameroon. franckeitel@gmail.com
Mohamed, Bayoumy Abdelaziz ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
Raj, Roshin P; Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research, Bergen, Norway
Bonaduce, Antonio; Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research, Bergen, Norway
Abiodun, Babatunde J; Nansen-Tutu Center for Marine Environmental Research, Department of Oceanography, University of Cape Town, Cape Town, South Africa
Nagy, Hazem; Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt ; Marine Institute, Oranmore, Co.Galway, H91 R673, Ireland
Quartly, Graham D; Plymouth Marine Laboratory, Plymouth, UK
Johannessen, Ola M; Nansen Scientific Society, Bergen, Norway
Language :
English
Title :
Exploring steric sea level variability in the Eastern Tropical Atlantic Ocean: a three-decade study (1993-2022).
BCCR - Bjerknes Centre for Climate Research Nansen Scientific Society ESA - European Space Agency NCEO - National Centre for Earth Observation TUM - Technische Universität München
Funding text :
Franck Ghomsi is supported by the Nansen Scientific Society through the Nansen-Tutu Centre Fellowship Programme.
R. P. Raj and A. Bonaduce are supported by the Sea Level Predictions and Reconstructions (SeaPR) project funded by the Bjerknes Center for Climate Research (BCCR) Strategic Projects Initiative. G. D. Quartly was supported by funding from the National Centre for Earth Observation (NCEO). The DRAGON 5 project of the European Space Agency is also acknowledged by the authors. We thank the editor, Bogdan Onac, and the two anonymous reviewers for their help in improving the final version of the manuscript. All plots were generated: Generic Mapping Tools (GMT), Version 6.5.0. https:// www. gener ic- mappi ng- tools. org/.
D. Stammer A. Cazenave R.M. Ponte M.E. Tamisiea Causes for contemporary regional sea level changes Ann. Rev. Mar. Sci. 2013 5 21 46 10.1146/annurev-marine-121211-172406 22809188
B. Bhushan A. Sharma Sea-level rise due to climate change Flood Handb 2022 10.1201/9780429463938-16
S. Dangendorf et al. Probabilistic reconstruction of sea-level changes and their causes since Earth Syst. Sci. Data Discuss. 1900 2024 1 37 10.5194/essd-2024-46(2024)
D. Mu R. Huang T. Xu H. Yan Inferring global ocean mass increase from tide gauges network with climate models Geophys. Res. Lett. 2024 51 e2023GL108056 2024GeoRL.5108056M 10.1029/2023gl108056
T. Jeon et al. Sea level fingerprints and regional sea level change Earth Planet. Sci. Lett. 2021 567 116985 10.1016/j.epsl.2021.116985
A. Guérou et al. Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated uncertainty 2022 10.5194/os-19-431-2023 EGUsphere
R.S. Nerem D.P. Chambers C. Choe G.T. Mitchum Estimating mean sea level change from the TOPEX and Jason altimeter missions Mar. Geodesy 2010 33 435 446 2010MarGe.33S.435N 10.1080/01490419.2010.491031
Cazenave, A. et al. Global sea-level budget 1993-present. https://doi.org/10.5194/essd-10-1551-2018 (2018)
J.R. Shadrick D.H. Rood M.D. Hurst Reply to: Sea-level rise may not uniformly accelerate cliff erosion rates Nat. Commun. 2023 14 8486 2023NatCo.14.8486S 10.1038/s41467-023-44150-w 38129412 10739874
A. Cazenave G.L. Cozannet Sea level rise and its coastal impacts Earth's Future 2014 2 15 34 2014EaFut..2..15C 10.1002/2013ef000188
Arge, L., Shin, Y. & Tsirogiannis, C. Computing floods caused by non-uniform sea-level rise. In 2018 Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments (ALENEX) 97–108. https://doi.org/10.1137/1.9781611975055.9 (2018)
Kekeh, M., Akpinar-Elci, M. & Allen, M. J. Sea level rise and coastal communities. In Extreme Weather Events and Human Health: International Case Studies, 171–184 https://doi.org/10.1007/978-3-030-23773-8_12 (2020).
C. Saengsupavanich Elevated water level from wind along the Gulf of Thailand Thalassas Int. J. Mar. Sci. 2017 33 179 185 10.1007/s41208-017-0035-0
Nhantumbo, B. J., Dada, O. A. & Ghomsi, F. E. Sea level rise and climate change-impacts on African coastal systems and cities. https://doi.org/10.5772/intechopen.113083 (2023).
O.A. Dada R. Almar P. Morand Coastal vulnerability assessment of the West African coast to flooding and erosion Sci. Rep. 2024 14 890 2024NatSR.14.890D 10.1038/s41598-023-48612-5 38195778 10776606
H.B. Dieng et al. Sea level anomalies using altimetry, model and tide gauges along the African coasts in the Eastern Tropical Atlantic Ocean: Inter-comparison and temporal variability Adv. Space Res. 2021 68 534 552 2021AdSpR.68.534D 10.1016/j.asr.2019.10.019
A.S. Ayinde H. Yu K. Wu Sea level variability and modeling in the Gulf of Guinea using supervised machine learning Sci. Rep. 2023 13 21318 2023NatSR.1321318A 10.1038/s41598-023-48624-1 38044366 10694157
A. Dièye B.A. Sow H.B. Dieng P. Marchesiello L. Descroix Impact of climate variability modes on trend and interannual variability of sea level near the West African coast Afr. J. Environ. Sci. Technol. 2023 17 157 166 10.5897/ajest2022.3173
K.F.E. Ghomsi et al. Sea level variability in Gulf of Guinea from satellite altimetry Sci. Rep. 2024 14 4759 2024NatSR.14.4759K 10.1038/s41598-024-55170-x
B. Chen L. Zhang C. Wang Distinct impacts of the central and eastern Atlantic Niño on the European climate Geophys. Res. Lett. 2024 51 e2023GL107012 2024GeoRL.5107012C 10.1029/2023gl107012
T. Marshall et al. The Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean Commun. Earth Environ. 2022 3 151 2022ComEE..3.151M 10.1038/s43247-022-00474-x
R.J. Nicholls et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure Nat. Clim. Change 2021 11 338 342 2021NatCC.11.338N 10.1038/s41558-021-00993-z
W. Han et al. Impacts of basin-scale climate modes on coastal sea level: A review Surv. Geophys. 2019 40 1493 1541 2019SGeo..40.1493H 10.1007/s10712-019-09562-8 31708599 6822785
W. Zhang F. Jiang M.F. Stuecker F.-F. Jin A. Timmermann Spurious north tropical Atlantic precursors to El Niño Nat. Commun. 2021 12 3096 2021NatCo.12.3096Z 10.1038/s41467-021-23411-6 34035285 8149707
R. Crespo-Miguel I. Polo C.R. Mechoso B. Rodríguez-Fonseca F.J. Cao-García ENSO coupling to the equatorial Atlantic: Analysis with an extended improved recharge oscillator model Front. Mar. Sci. 2023 9 1001743 10.3389/fmars.2022.1001743
EarthSky. El Niño causes spike in 2023 global sea level. https://earthsky.org/earth/el-nino-causes-spike-in-2023-global-sea-level/ (2023).
D.B. Enfield A.M. Mestas-Nuñez P.J. Trimble The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US Geophys. Res. Lett. 2001 28 2077 2080 2001GeoRL.28.2077E 10.1029/2000gl012745
N. Saji B.N. Goswami P. Vinayachandran T. Yamagata A dipole mode in the tropical Indian Ocean Nature 1999 401 360 363 1999Natur.401.360S 10.1038/43854 16862108
A. Liu J. Zuo B. Tian B. Lu Impact of Indian Ocean dipole on Atlantic Nino predictive skill Environ. Res. Lett. 2023 18 074015 2023ERL..18g4015L 10.1088/1748-9326/acdc3c
Trenberth, K. E. ENSO in the global climate system. In El Niño Southern Oscillation in a Changing Climate, 21–37 https://doi.org/10.1002/9781119548164.ch2 (2020).
P. Chang L. Ji H. Li A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions Nature 1997 385 516 518 1997Natur.385.516C 10.1038/385516a0
Larnicol, G., Guinehut, S., Rio, M. H., Drevillon, M., Faugere, Y., & Nicolas, G. (2006). The global observed ocean products of the French Mercator project. In Proceedings of 15 Years of Progress in Radar Altimetry Symposium, Vol. 614 (2006).
A.P. Wong J. Gilson C. Cabanes Argo salinity: Bias and uncertainty evaluation Earth Syst. Sci. Data Discuss. 2022 2022 1 21
Reynaud, T., Thierry, V. & Kermabon, C. Using climatological salinities for estimating the oxygen content in ARGO floats (2024).
A.R. Longhurst A survey of the fish resources of the eastern Gulf of Guinea ICES J. Mar. Sci. 1965 29 302 334 10.1093/icesjms/29.3.302
P.L. Richardson D. Walsh Mapping climatological seasonal variations of surface currents in the tropical Atlantic using ship drifts J. Geophys. Res. Oceans 1986 91 10537 10550 1986JGR..9110537R 10.1029/jc091ic09p10537
N. Hardman-Mountford et al. Ocean climate of the South East Atlantic observed from satellite data and wind models Progress Oceanogr. 2003 59 181 221 2003PrOce.59.181H 10.1016/j.pocean.2003.10.001
P. Chang et al. Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon Nat. Geosci. 2008 1 444 448 2008NatGe..1.444C 10.1038/ngeo218
R.G. Peterson L. Stramma Upper-level circulation in the South Atlantic Ocean Progress Oceanogr. 1991 26 1 73 1991PrOce.26..1P 10.1016/0079-6611(91)90006-8
T. Doi T. Tozuka H. Sasaki Y. Masumoto T. Yamagata Seasonal and interannual variations of oceanic conditions in the Angola Dome J. Phys. Oceanogr. 2007 37 2698 2713 2007JPO..37.2698D 10.1175/2007jpo3552.1
A. Bakun Guinea current upwelling Nature 1978 271 147 150 1978Natur.271.147B 10.1038/271147a0
F.A. Schott J. Fischer L. Stramma Transports and pathways of the upper-layer circulation in the western tropical Atlantic J. Phys. Oceanogr. 1998 28 1904 1928 1998JPO..28.1904S 10.1175/1520-0485(1998)028<1904:TAPOTU>2.0.CO;2
W.E. Johns et al. Zonal structure and seasonal variability of the Atlantic Equatorial Undercurrent Clim. Dyn. 2014 43 3047 3069 10.1007/s00382-014-2136-2
F.P. Tuchen R.C. Perez G.R. Foltz P. Brandt R. Lumpkin Multidecadal intensification of Atlantic tropical instability waves Geophys. Res. Lett. 2022 49 e2022GL101073 2022GeoRL.4901073T 10.1029/2022gl101073
N. Kolodziejczyk F. Marin B. Bourlès Y. Gouriou H. Berger Seasonal variability of the equatorial undercurrent termination and associated salinity maximum in the Gulf of Guinea Clim. Dyn. 2014 43 3025 3046 10.1007/s00382-014-2107-7
R. Kopte et al. The Angola current: Flow and hydrographic characteristics as observed at 11°S J. Geophys. Res. Oceans 2017 122 1177 1189 2017JGRC.122.1177K 10.1002/2016jc012374
K.L. Drouin M.S. Lozier W.E. Johns Variability and trends of the South Atlantic subtropical gyre J. Geophys. Res. Oceans 2021 126 e2020JC016405 2021JGRC.12616405D 10.1029/2020jc016405
W.R. Peltier D. Argus R. Drummond Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model J. Geophys. Res. Solid Earth 2015 120 450 487 2015JGRB.120.450P 10.1002/2014jb011176
Antonov, J., Levitus, S. & Boyer, T. P. Thermosteric sea level rise, 1955–2003. Geophys. Res. Lett.32, 1–4 (2005).
L. Carrère F. Lyard Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations Geophys. Res. Lett. 2003 10.1029/2002gl016473
M.-I. Pujol G. Larnicol Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data J. Mar. Syst. 2005 58 121 142 10.1016/j.jmarsys.2005.07.005
F.W. Landerer D.L. Volkov The anatomy of recent large sea level fluctuations in the Mediterranean Sea Geophys. Res. Lett. 2013 40 553 557 2013GeoRL.40.553L 10.1002/grl.50140
Cardoso, I., Iglesias, I., Amorim, F. Lázaro, C. In 2023 Ocean Surface Topography Science Team Meeting, Vol. 102 https://doi.org/10.1002/fgc.30637 (2023).
V. Gouretski F. Reseghetti On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database Deep Sea Res. Part I 2010 57 812 833 10.1016/j.dsr.2010.03.011
S.A. Good M.J. Martin N.A. Rayner EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates J. Geophys. Res. Oceans 2013 118 6704 6716 2013JGRC.118.6704G 10.1002/2013JC009067
J.A. Church et al. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008 Geophys. Res. Lett. 2011 10.1029/2011GL048794
M. Santini L. Caporaso Evaluation of freshwater flow from rivers to the sea in CMIP5 simulations: Insights from the Congo River basin J. Geophys. Res. Atmospheres 2018 123 10,278 210,300 10.1029/2017jd027422
Y. Chen S. Speich R. Laxenaire Formation and transport of the South Atlantic subtropical mode water in Eddy-Permitting observations J. Geophys. Res. Oceans 2022 127 e2021JC017767 2022JGRC.12717767C 10.1029/2021jc017767
E.K. Vizy K.H. Cook X. Sun Decadal change of the south Atlantic ocean Angola–Benguela frontal zone since 1980 Clim. Dyn. 2018 51 3251 3273 10.1007/s00382-018-4077-7
S. Koseki H. Giordani K. Goubanova Frontogenesis of the Angola–Benguela frontal zone Ocean Sci. 2019 15 83 96 2019OcSci.15..83K 10.5194/os-15-83-2019
F. Nencioli G. Dall'Olmo G.D. Quartly Agulhas ring transport efficiency from combined satellite altimetry and Argo profiles J. Geophys. Res. Oceans 2018 123 5874 5888 2018JGRC.123.5874N 10.1029/2018JC013909
M. Roch P. Brandt S. Schmidtko F.P. Tuchen Impact of the North Atlantic Oscillation on the decadal variability of the upper subtropical-tropical Atlantic Ocean J. Geophys. Res. Oceans 2024 129 e2023JC020614 2024JGRC.12920614R 10.1029/2023jc020614
F.M. Awo et al. Seasonal cycle of sea surface salinity in the Angola upwelling system J. Geophys. Res. Oceans 2022 127 e2022JC018518 2022JGRC.12718518A 10.1029/2022jc018518
G. Alory et al. Coastal upwelling limitation by onshore geostrophic flow in the Gulf of Guinea around the Niger River plume Front. Mar. Sci. 2021 7 607216 10.3389/fmars.2020.607216
Nyadjro, E. S. et al. Enhancing satellite oceanography-driven research in West Africa: A case study of capacity development in an underserved region. In Remote Sensing in Earth Systems Sciences, 1–13 (2021).
I. Richter H. Tokinaga Y.M. Okumura The extraordinary equatorial Atlantic warming in late 2019 Geophys. Res. Lett. 2022 49 e2021GL095918 2022GeoRL.4995918R 10.1029/2021gl095918
S. Illig M.-L. Bachèlery The 2021 Atlantic Niño and Benguela Niño Events: External forcings and air–sea interactions Clim. Dyn. 2024 62 679 702 10.1007/s00382-023-06934-0
S.K. Lee et al. On the genesis of the 2021 Atlantic Niño Geophys. Res. Lett. 2023 50 e2023GL104452 2023GeoRL.5004452L 10.1029/2023gl104452
X. Li W. Tan Z.Z. Hu N.C. Johnson Evolution and prediction of two extremely strong Atlantic Niños in 2019–2021: Impact of Benguela warming Geophys. Res. Lett. 2023 50 e2023GL104215 2023GeoRL.5004215L 10.1029/2023gl104215
I. Vallès-Casanova S.K. Lee G.R. Foltz J.L. Pelegrí On the spatiotemporal diversity of Atlantic Niño and associated rainfall variability over West Africa and South America Geophys. Res. Lett. 2020 47 e2020GL087108 2020GeoRL.4787108V 10.1029/2020gl087108
Foltz, G. R. & McPhaden, M. J. Seasonal mixed layer salinity balance of the tropical North Atlantic Ocean. J. Geophys. Res. Oceans 113, 1–14 (2008).
L. Yu S.A. Josey F.M. Bingham T. Lee Intensification of the global water cycle and evidence from ocean salinity: A synthesis review Ann. N. Y. Acad. Sci. 2020 1472 76 94 2020NYASA1472..76Y 10.1111/nyas.14354 32386251
Pörtner, H.-O. et al. The ocean and cryosphere in a changing climate. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Vol. 1155 https://doi.org/10.1017/9781009157964.019 (2019).
Intergovernmental Panel on Climate Change (IPCC) (Ed.). Climate Change 2022—Mitigation of Climate Change https://doi.org/10.1017/9781009157926 (2023).
L. Zhang et al. Emergence of the central Atlantic Niño Sci. Adv. 2023 9 eadi5507 10.1126/sciadv.adi5507 37878709 10599612
Piecuch, C. & Ponte, R. Mechanisms of interannual steric sea level variability. Geophys. Res. Lett. 38, 1–6 (2014).
G. Forget R.M. Ponte The partition of regional sea level variability Prog. Oceanogr. 2015 137 173 195 2015PrOce.137.173F 10.1016/j.pocean.2015.06.002
A. Hochet W. Llovel F. Sévellec T. Huck Sources and sinks of interannual steric sea level variability J. Geophys. Res. Oceans 2023 128 e2022JC019335 2023JGRC.12819335H 10.1029/2022JC019335
H.B. Dieng A. Cazenave B. Meyssignac M. Ablain New estimate of the current rate of sea level rise from a sea level budget approach Geophys. Res. Lett. 2017 44 3744 3751 2017GeoRL.44.3744D 10.1002/2017GL073308
A. Blazquez et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: Implications for the global water and sea level budgets Geophys. J. Int. 2018 215 415 430 2018GeoJI.215.415B 10.1093/gji/ggy293
W. Llovel et al. Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015 Sci. Rep. 2019 9 17717 2019NatSR..917717L 10.1038/s41598-019-54239-2 31776427 6881399
J. Chen Satellite gravimetry and mass transport in the earth system Geodesy Geodyn. 2019 10 402 415 10.1016/j.geog.2018.07.001
C.M. Camargo R.E. Riva T.H. Hermans A.B. Slangen Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era Earth Syst. Dyn. 2022 13 1351 1375 2022ESD..13.1351C 10.5194/esd-13-1351-2022
G. Utida et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years Sci. Rep. 2019 9 1698 2019NatSR..9.1698U 10.1038/s41598-018-38003-6 30737460 6368536
C. Sheng S. Zhang Y. Liu G. Wu B. He Interannual impact of tropical southern Atlantic SST on surface air temperature over East Asia during boreal spring NPJ Clim. Atmos. Sci. 2023 6 186 10.1038/s41612-023-00515-y
H.N. Nana et al. Influence of strong South Atlantic Ocean Dipole on the Central African rainfall’s system Clim. Dyn. 2024 62 1 16 10.1007/s00382-023-06892-7
Nana, H. N. et al. Performance-based evaluation of NMME and C3S models in forecasting the June–August Central African rainfall under the influence of the South Atlantic Ocean Dipole. Int. J. Climatol. 44, 2462–2483 (2024).
S.-P. Xie J.A. Carton Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s climate: The Ocean-Atmosphere Interaction Geophys. Monogr 2004 147 121 142 2004GMS..147.121X 10.1029/147gm07
S. Nigam A. Ruiz-Barradas L. Chafik Gulf Stream excursions and sectional detachments generate the decadal pulses in the Atlantic multidecadal oscillation J. Clim. 2018 31 2853 2870 2018JCli..31.2853N 10.1175/jcli-d-17-0010.1
M.-I. Pujol et al. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years Ocean Sci. 2016 12 1067 1090 2016OcSci.12.1067P 10.5194/os-12-1067-2016
A. Storto et al. Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses Clim. Dyn. 2017 49 709 729 10.3390/w11101987
R. Droghei B. Buongiorno Nardelli R. Santoleri A new global sea surface salinity and density dataset from multivariate observations (1993–2016) Front. Mar. Sci. 2018 5 84 10.3389/fmars.2018.00084
C.M. Camargo R.E. Riva T.H. Hermans A.B. Slangen Exploring sources of uncertainty in steric sea-level change estimates J. Geophys. Res. Oceans 2020 125 e2020JC016551 2020JGRC.12516551C 10.1029/2020jc016551
Y. Yan Y. Zhou Y. Xu W. Gu Assessment of the spatiotemporal variability of seawater temperature and salinity in the Yellow and Bohai seas from multiple high-resolution reanalysis datasets Ocean Dyn. 2023 73 557 573 2023OcDyn.73.557Y 10.1007/s10236-023-01567-7
S.R. Jayne J.M. Wahr F.O. Bryan Observing ocean heat content using satellite gravity and altimetry J. Geophys. Res. Oceans 2003 10.1029/2002jc001619
G. Wang L. Cheng T. Boyer C. Li Halosteric sea level changes during the Argo era Water 2017 9 484 10.3390/w9070484
B. Mohamed N. Skliris Steric and atmospheric contributions to interannual sea level variability in the eastern mediterranean sea over 1993–2019 Oceanologia 2022 64 50 62 10.1016/j.oceano.2021.09.001
R. Pawlowicz R. Feistel Limnological applications of the Thermodynamic Equation of Seawater 2010 (TEOS-10) Limnol. Oceanogr. Methods 2012 10 853 867 10.4319/lom.2012.10.853
K.H. Hamed A.R. Rao A modified Mann–Kendall trend test for autocorrelated data J. Hydrol. 1998 204 182 196 1998JHyd.204.182H 10.1016/s0022-1694(97)00125-x
A. Cazenave et al. The rate of sea-level rise Nat. Clim. Change 2014 4 358 361 2014NatCC..4.358C 10.1038/nclimate2159
R.W. Peltier D.F. Argus R. Drummond Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al J. Geophys. Res. Solid Earth 2018 123 2019 2028 2018JGRB.123.2019R 10.1002/2016jb013844
B.D. Loomis K.E. Rachlin D.N. Wiese F.W. Landerer S.B. Luthcke Replacing GRACE/GRACE-FO with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change Geophys. Res. Lett. 2020 47 e2019GL085488 2020GeoRL.4785488L 10.1029/2019GL085488