Madeira Island; alpha diversity; beta diversity; community assembly; diversity facets; generalized dissimilarity model; life‐history traits; linear mixed‐effects model; Ecology
Abstract :
[en] Montane oceanic islands possess unique geographic and ecological attributes, rendering them valuable for assessing patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. Such comparisons of diversity facets can provide insights into the mechanisms governing community assembly on islands. Herein, we aimed to characterize taxonomic, functional, and phylogenetic bryophyte diversity on Madeira Island within and across areas at varying elevations. We also assessed how these diversity facets for the alpha and beta components relate to ecological and anthropogenic factors. We estimated and compared alpha and beta taxonomic, functional, and phylogenetic diversity using 80 plots of 0.5 m × 0.5 m across the whole elevational gradient of the island. We compiled trait databases and supplemented them with our own observations. Phylogenetic information was sourced from the Moss and Liverwort Tree of Life. To assess the impact of ecological and anthropogenic factors on the three facets, we applied linear mixed-effects models and generalized dissimilarity models to alpha- and beta-diversity matrices, respectively. All facets of diversity exhibited strong correlations within both mosses and liverworts, indicating a substantial congruence when alpha and beta are analyzed separately. The bryophyte groups categorized by the growth form demonstrated contrasting patterns, aligning with their distinctive ecological requirements. While a mid-elevation peak emerged as a common pattern across the three facets of alpha diversity, beta diversity often displayed the opposite trend. Although the relative influence of environmental factors varied depending on the diversity facet and bryophyte grouping considered, we found that alpha and beta diversity of bryophytes are more influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors. In the current context of global change, these results should be interpreted with caution, but they point to the resilience of bryophytes to survive in relatively well-preserved natural microhabitats within anthropogenic landscapes. In this study on Madeira Island, we investigated patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. We found that alpha and beta diversity of bryophytes are more strongly influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Martins, Anabela ; cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute/MUHNAC-Museu Nacional de História Natural e da Ciência Universidade de Lisboa Lisboa Portugal
Collart, Flavien ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée) ; Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
Sim-Sim, Manuela ; cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute/MUHNAC-Museu Nacional de História Natural e da Ciência Universidade de Lisboa Lisboa Portugal ; Departamento de Biologia Vegetal, Faculdade de Ciências, cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute Universidade de Lisboa Lisboa Portugal
Patiño, Jairo ; Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) La Laguna Spain ; Departamento de Botánica, Ecología y Fisiología Vegetal Universidad de La Laguna La Laguna Spain
Language :
English
Title :
Ecological drivers of taxonomic, functional, and phylogenetic diversity of bryophytes in an oceanic island.
MICINN - Ministerio de Ciencia e Innovacion FCT - Fundação para a Ciência e a Tecnologia SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung
Funding text :
We thank the Natural Park of Madeira Island for the permit to collect plant material (02/IFCN/2018-FLO MAD). We are also grateful to Carlos Lobo, F\u00E1bio Reis, and Susana Fontinha for providing fieldwork assistance. We thank Jacques van Rooy and Antoine Becker-Scarpitta for their helpful comments. A.M. was funded by FCT (Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia) through the individual research grant 2020.06119.BD. J.P. was funded by the Spanish Ministry of Science and Innovation (MICINN) through the Ram\u00F3n y Cajal program (RYC-2016-20506) and project (ASTERALIEN\u2014PID2019-110538GA-I00). FC was funded by the Swiss National Science Foundation (grant no. 197777).
Ackerly, D. (2009). Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences of the United States of America, 106(SUPPL. 2), 19699–19706. https://doi.org/10.1073/pnas.0901635106
Ah-Peng, C., Flores, O., Wilding, N., Bardat, J., Marline, L., Hedderson, T. A. J., & Strasberg, D. (2014). Functional diversity of subalpine bryophyte communities in an Oceanic Island (La Réunion). Arctic, Antarctic, and Alpine Research, 46(4), 841–851. https://doi.org/10.1657/1938-4246-46.4.841
Aranda, S. C., Gabriel, R., Borges, P. A. V., Santos, A. M. C., De Azevedo, E. B., Patiño, J., Hortal, J., & Lobo, J. M. (2014). Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian Islands. PLoS One, 9(7), e101786. https://doi.org/10.1371/journal.pone.0101786
Aranda, S. C., Gabriel, R., Borges, P. A. V., Santos, A. M. C., Hortal, J., Baselga, A., & Lobo, J. M. (2013). How do different dispersal modes shape the species-area relationship? Evidence for between-group coherence in the Macaronesian flora. Global Ecology and Biogeography, 22(4), 483–493. https://doi.org/10.1111/geb.12008
Araújo, F. M. S., Costa, L. E. N., Souza, J. P. S., Batista, W. V. S. M., & Silva, M. P. P. (2022). Altitudinal gradient drives regional and local diversity and composition patterns of epiphyllous bryophytes in ecological refuges. Plant Biology, 24(2), 292–301. https://doi.org/10.1111/plb.13365
Arnan, X., Arcoverde, G. B., Pie, M. R., Ribeiro-Neto, J. D., & Leal, I. R. (2018). Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in caatinga dry forest. Science of the Total Environment, 631, 429–438. https://doi.org/10.1016/j.scitotenv.2018.03.037
Arnan, X., Cerdá, X., & Retana, J. (2015). Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ, 2015(9), e1241. https://doi.org/10.7717/peerj.1241
Arnan, X., Cerdá, X., & Retana, J. (2016). Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography, 40(3), 448–457. https://doi.org/10.1111/ecog.01938
Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bates, J. W. (1998). Is “life-form” a useful concept in bryophyte ecology? Oikos, 82(2), 223. https://doi.org/10.2307/3546962
Bello, F., Lavorel, S., Lavergne, S., Albert, C. H., Boulangeat, I., Mazel, F., & Thuiller, W. (2012). Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography, 36(3), 393–402. https://doi.org/10.1111/j.1600-0587.2012.07438.x
Ben Saadi, C., Cayuela, L., Bañares de Dios, G., de Aledo, J. G., Matas-Granados, L., Salinas, N., La Torre Cuadros, M., & Macía, M. J. (2022). Latitudinal patterns and environmental drivers of taxonomic, functional, and phylogenetic diversity of woody plants in western Amazonian terra firme forests. Frontiers in Plant Science, 13, 1–15. https://doi.org/10.3389/fpls.2022.978299
Berdugo, M. B., & Dovciak, M. (2019). Bryophytes in fir waves: Forest canopy indicator species and functional diversity decline in canopy gaps. Journal of Vegetation Science, 30(2), 235–246. https://doi.org/10.1111/jvs.12718
Bergamini, A., Bisang, I., Hodgetts, N., Lockhart, N., van Rooy, J., & Hallingbäck, T. (2019). Recommendations for the use of critical terms when applying IUCN red-listing criteria to bryophytes. Lindbergia, 2019(1), 1–6. https://doi.org/10.25227/LINBG.01117
Bischler-Causse, H., Gradstein, S. R., Jovet-Ast, S., Long, D. G., & Allen, N. S. (2005). Marchantiidae. Flora neotropica monograph 97. New York Botanical Garden, 80, 482. https://doi.org/10.1086/501278
Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Boch, S., Martins, A., Ruas, S., Fontinha, S., Carvalho, P., Reis, F., Bergamini, A., & Sim-Sim, M. (2019). Bryophyte and macrolichen diversity show contrasting elevation relationships and are negatively affected by disturbances in laurel forests of Madeira Island. Journal of Vegetation Science, 30(6), 1122–1133. https://doi.org/10.1111/jvs.12802
Borges, P. A. V., Cardoso, P., Kreft, H., Whittaker, R. J., Fattorini, S., Emerson, B. C., Gil, A., Gillespie, R. G., Matthews, T. J., Santos, A. M. C., Steinbauer, M. J., Thébaud, C., Ah-Peng, C., Amorim, I. R., Aranda, S. C., Arroz, A. M., Azevedo, J. M. N., Boieiro, M., Borda-de-Água, L., & Gabriel, R. (2018). Global Island monitoring scheme (GIMS): A proposal for the long-term coordinated survey and monitoring of native Island forest biota. Biodiversity and Conservation, 27(10), 2567–2586. https://doi.org/10.1007/s10531-018-1553-7
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer.
Cabral, J. S., Weigelt, P., Kissling, W. D., & Kreft, H. (2014). Biogeographic, climatic and spatial drivers differentially affect α-, β- and γ-diversities on oceanic archipelagos. Proceedings of the Royal Society B: Biological Sciences, 281(1784), 20133246. https://doi.org/10.1098/rspb.2013.3246
Cadotte, M., Albert, C. H., & Walker, S. C. (2013). The ecology of differences: Assessing community assembly with trait and evolutionary distances. Ecology Letters, 16(10), 1234–1244. https://doi.org/10.1111/ele.12161
Cadotte, M. W., Carboni, M., Si, X., & Tatsumi, S. (2019). Do traits and phylogeny support congruent community diversity patterns and assembly inferences? Journal of Ecology, 107(5), 2065–2077. https://doi.org/10.1111/1365-2745.13247
Cadotte, M. W., Davies, T. J., & Peres-Neto, P. R. (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87, 535–551. https://doi.org/10.1111/ijlh.12426
Calcagno, V., & de Mazancourt, C. (2010). Glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34(12), 1–29. https://doi.org/10.18637/jss.v034.i12
Capelo, J., Sequeira, M., Jardim, R., Mesquita, S., & Costa, J. C. (2005). The vegetation of Madeira Island (Portugal). A brief overview and excursion guide. Quercetea, 7, 95–122.
Cardoso, P., Rigal, F., Borges, P. A. V., & Carvalho, J. C. (2014). A new frontier in biodiversity inventory: A proposal for estimators of phylogenetic and functional diversity. Methods in Ecology and Evolution, 5(5), 452–461. https://doi.org/10.1111/2041-210x.12173
Carlquist, S. (1965). Island life: A natural history of the islands of world. NNH Press.
Chen, Y., Niu, S., Li, P., Jia, H., Wang, H., Ye, Y., & Yuan, Z. (2017). Stand structure and substrate diversity as two major drivers for bryophyte distribution in a temperate montane ecosystem. Frontiers in Plant Science, 8, 1–11. https://doi.org/10.3389/fpls.2017.00874
Chun, J.-H., & Lee, C.-B. (2017). Disentangling the local-scale drivers of taxonomic, phylogenetic and functional diversity in woody plant assemblages along elevational gradients in South Korea. PLoS One, 12(10), e0185763. https://doi.org/10.1371/journal.pone.0185763
Collart, F., Kiebacher, T., Quetsch, M., Broennimann, O., Guisan, A., & Vanderpoorten, A. (2024). To what extent can we predict variation of bryophyte and tracheophyte community composition at fine spatial scale along an elevation gradient? Science of the Total Environment, 926, 171741. https://doi.org/10.1016/j.scitotenv.2024.171741
Collart, F., Wang, J., Patiño, J., Hagborg, A., Söderström, L., Goffinet, B., Magain, N., Hardy, O. J., & Vanderpoorten, A. (2021). Macroclimatic structuring of spatial phylogenetic turnover in liverworts. Ecography, 44(10), 1474–1485. https://doi.org/10.1111/ecog.05659
Colwell, R. K., & Hurtt, G. C. (1994). Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144(4), 570–595.
Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A., Jordan, G. J., McGlone, M. S., Weston, P. H., Westoby, M., Wilf, P., & Linder, H. P. (2009). Phylogenetic biome conservatism on a global scale. Nature, 458(7239), 754–756. https://doi.org/10.1038/nature07764
Cruz, M. J., Aguiar, R., Correia, A., Tavares, T., Pereira, J. S., & Santos, F. D. (2010). Impacts of climate change on the terrestrial ecosystems of Madeira. International Journal of Design & Nature and Ecodynamics, 4(4), 413–422. https://doi.org/10.2495/dne-v4-n4-413-422
Culmsee, H., & Leuschner, C. (2013). Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. Journal of Biogeography, 40(10), 1997–2010. https://doi.org/10.1111/jbi.12138
Currie, D. J., & Kerr, J. T. (2008). Tests of the mid-domain hypothesis: A review of the evidence. Ecological Monographs, 78(1), 3–18. https://doi.org/10.1890/06-1302.1
Dani, R. S., Divakar, P. K., & Baniya, C. B. (2023). Diversity and composition of plants species along elevational gradient: Research trends. Biodiversity and Conservation, 32(8–9), 2961–2980. https://doi.org/10.1007/s10531-023-02638-3
Darwin, C. R. (1859). On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray.
De Pauw, K., Meeussen, C., Govaert, S., Sanczuk, P., Vanneste, T., Bernhardt-Römermann, M., Bollmann, K., Brunet, J., Calders, K., Cousins, S. A. O., Diekmann, M., Hedwall, P. O., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., & De Frenne, P. (2021). Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. Journal of Ecology, 109(7), 2629–2648. https://doi.org/10.1111/1365-2745.13671
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., & Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13(8), 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x
Ding, Z., Hu, H., Cadotte, M. W., Liang, J., Hu, Y., & Si, X. (2021). Elevational patterns of bird functional and phylogenetic structure in the central Himalaya. Ecography, 44(9), 1403–1417. https://doi.org/10.1111/ecog.05660
do Nascimento, E. R., Correia, I., Ruiz-Esparza, J. M., & Gouveia, S. F. (2018). Disentangling phylogenetic from non-phylogenetic functional structure of bird assemblages in a tropical dry forest. Oikos, 127(8), 1177–1185. https://doi.org/10.1111/oik.04910
Donoghue, M. J. (2008). A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 11549–11555. https://doi.org/10.1073/pnas.0801962105
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
During, H. (1992). In J. Bates & A. Farmer (Eds.), Ecological classification of bryophytes and lichens. Clarendon Press.
Emerson, B. C., & Gillespie, R. G. (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution, 23(11), 619–630. https://doi.org/10.1016/j.tree.2008.07.005
Escobar-Luján, J., Castaño-Quintero, S. M., Villalobos, F., Lira-Noriega, A., Chiappa-Carrara, X., & Yañez-Arenas, C. (2022). Current and future geographic patterns of bird diversity dimensions of the Yucatan peninsula and their representativeness in natural protected areas. Neotropical Biodiversity, 8(1), 242–252. https://doi.org/10.1080/23766808.2022.2087282
ESRI. (2021). ArcGIS desktop: Release 10.7. Environmental Systems Research Institute.
Feng, G., Zhang, J., Girardello, M., Pellissier, V., & Svenning, J. C. (2020). Forest canopy height co-determines taxonomic and functional richness, but not functional dispersion of mammals and birds globally. Global Ecology and Biogeography, 29(8), 1350–1359. https://doi.org/10.1111/geb.13110
Fernández-Palacios, J. M., Schrader, J., de Nascimento, L., Irl, S. D. H., Sánchez-Pinto, L., & Otto, R. (2023). Are plant communities on the Canary Islands resistant to plant invasion? Diversity and Distributions, 29(1), 51–60. https://doi.org/10.1111/ddi.13650
Figueira, C., de Sequeira, M. M., Vasconcelos, R., & Prada, S. (2013). Cloud water interception in the temperate laurel forest of Madeira Island. Hydrological Sciences Journal, 58(1), 152–161. https://doi.org/10.1080/02626667.2012.742952
Fischer, A. G. (1960). Latitudinal variations in organic diversity. Evolution, 14(1), 64–81.
Fitzpatrick, M. C., Mokany, K., Manion, G., Lisk, M., Ferrier, S., & Nieto-Lugilde, D. (2021). Gdm: Generalized dissimilarity modeling. R Package Version 1.4.2.2.
Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., Bolker, B., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves, S., Heiberger, R., Krivitsky, P., Laboissiere, R., Maechler, M., Monette, G., Murdoch, D., Nilsson, H., & Zeileis, A. (2019). Car: Companion to applied regression. R Package. https://cran.r-project.org/web/packages/car/index.html
Gaston, K. J. (1996). Biodiversity—congruence. Progress in Physical Geography: Earth and Environment, 20(1), 105–112. https://doi.org/10.1177/030913339602000108
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., & Prinzing, A. (2015). Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29(5), 600–614. https://doi.org/10.1111/1365-2435.12425
González-Mancebo, J. M., Gabriel, R., Otto, R., Sim-Sim, M., Luis, L., Sérgio, C., Garzón-Machado, V., Aranda, S. C., Capelo, J., & Vanderpoorten, A. (2013). A comparison of bryophyte diversity in the Macaronesian Islands: Island versus habitat approach. Proceedings of the Amurga International Conferences on Island Biodiversity 2011, 2014, 52–67.
Grau, O., Grytnes, J. A., & Birks, H. J. B. (2007). A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, central Himalaya. Journal of Biogeography, 34(11), 1907–1915. https://doi.org/10.1111/j.1365-2699.2007.01745.x
Grytnes, J. A., & Vetaas, O. R. (2002). Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist, 159(3), 294–304.
Hanusch, M., Ortiz, E. M., Patiño, J., & Schaefer, H. (2020). Biogeography and integrative taxonomy of Epipterygium (Mniaceae, Bryophyta). Taxon, 69(6), 1150–1171. https://doi.org/10.1002/tax.12324
Harrell, F. E., & Dupont, C. (2023). Package ‘Hmisc’–Harrell miscellaneous. R Package Version. https://cran.r-project.org/web/packages/Hmisc/index.html
Hedenäs, L. (2001). Environmental factors potentially affecting character states in pleurocarpous mosses. Bryologist, 104(1), 72–91. https://doi.org/10.1639/0007-2745(2001)104[0072:EFPACS]2.0.CO;2
Henriques, D. S. G., Borges, P. A. V., Ah-Peng, C., & Gabriel, R. (2016). Mosses and liverworts show contrasting elevational distribution patterns in an oceanic Island (Terceira, Azores): The influence of climate and space. Journal of Bryology, 38(3), 183–194. https://doi.org/10.1080/03736687.2016.1156360
Henriques, D. S. G., Rigal, F., Borges, P. A. V., Ah-Peng, C., & Gabriel, R. (2017). Functional diversity and composition of bryophyte water-related traits in Azorean native vegetation. Plant Ecology and Diversity, 10(2–3), 127–137. https://doi.org/10.1080/17550874.2017.1315839
Hernández-Hernández, R., Borges, P. A. V., Gabriel, R., Rigal, F., Ah-Peng, C., & González-Mancebo, J. M. (2017). Scaling α- and β-diversity: Bryophytes along an elevational gradient on a subtropical oceanic Island (La Palma, Canary Islands). Journal of Vegetation Science, 28(6), 1209–1219. https://doi.org/10.1111/jvs.12573
Hill, M. O., Preston, C. D., Bosanquet, S. D. S., & Roy, D. B. (2007). BRYOATT: attributes of British and Irish mosses, liverworts and hornworts. NERC Centre for Ecology and Hydrology and Countryside Council for Wales.
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411
Hodgetts, N., Cálix, M., Englefield, E., Fettes, N., Criado, M. G., Patin, L., Nieto, A., Bergamini, A., Bisang, I., Baisheva, E., Campisi, P., Cogoni, A., Hallingbäck, T., Konstantinova, N., Lockhart, N., Sabovljevic, M., Schnyder, N., Schröck, C., Sérgio, C., & Żarnowiec, J. (2019). A miniature world in decline: European red list of mosses, liverworts and hornworts. IUCN, International Union for Conservation of Nature. https://doi.org/10.2305/iucn.ch.2019.erl.2.en
Hodgetts, N., & Lockhart, N. (2020). Checklist and country status of European bryophytes–update 2020. Irish Wildlife Manuals, No. 123. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht, Ireland.
Hodgetts, N., Söderström, L., Blockeel, T. L., Caspari, S., Ignatov, M. S., Konstantinova, N. A., Lockhart, N., Papp, B., Schröck, C., Sim-Sim, M., Bell, D., Bell, N. E., Blom, H. H., Bruggeman-Nannenga, M. A., Brugués, M., Enroth, J., Flatberg, K. I., Garilleti, R., Hedenäs, L., & Porley, R. D. (2020). An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology, 42(1), 1–116. https://doi.org/10.1080/03736687.2019.1694329
Hortal, J., Borges, P. A. V., & Gaspar, C. (2006). Evaluating the performance of species richness estimators: Sensitivity to sample grain size. Journal of Animal Ecology, 75(1), 274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x
Ilić, M., Igić, R., Ćuk, M., Veljić, M., Radulović, S., Orlović, S., & Vukov, D. (2023). Environmental drivers of ground-floor bryophytes diversity in temperate forests. Oecologia, 202(2), 275–285. https://doi.org/10.1007/s00442-023-05391-0
Iskandar, E. A. P., Stech, M., & De Oliveira, S. M. (2020). The two faces of Mt Gede, Java—Species richness, composition and zonation of epiphytic bryophyte. Cryptogamie, Bryologie, 41(6), 69–81.
Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427–2439. https://doi.org/10.1890/06-1736.1
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122
Kluge, J., & Kessler, M. (2010). Phylogenetic diversity, trait diversity and niches: Species assembly of ferns along a tropical elevational gradient. Journal of Biogeography, 38(2), 394–405. https://doi.org/10.1111/j.1365-2699.2010.02433.x
Kohli, B. A., Stevens, R. D., Rickart, E. A., & Rowe, R. J. (2021). Mammals on mountainsides revisited: Trait-based tests of assembly reveal the importance of abiotic filters. Journal of Biogeography, 48(7), 1606–1621. https://doi.org/10.1111/jbi.14099
König, C., Weigelt, P., Taylor, A., Stein, A., Dawson, W., Essl, F., Pergl, J., Pyšek, P., van Kleunen, M., Winter, M., Chatelain, C., Wieringa, J. J., Krestov, P., & Kreft, H. (2021). Source pools and disharmony of the world's Island floras. Ecography, 44(1), 44–55. https://doi.org/10.1111/ecog.05174
Körner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006
Kraft, N., & Ackerly, D. (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80(3), 100318220649095. https://doi.org/10.1890/09-1672
Kürschner, H., Frey, W., & Parolly, G. (1999). Patterns and adaptive trends of life forms, life strategies and ecomorphological structures in tropical epiphytic bryophytes a pantropical synopsis. Nova Hedwigia, 69(1–2), 73–99.
Kürschner, H., Tonguç, O., & Yayıntas, A. (1998). Life strategies in epiphytic bryophyte communities of the southwest Anatolian Liquidambar orientalis forest. Nova Hedwigia, 66(3–4), 435–450.
Laenen, B., Shaw, B., Schneider, H., Goffinet, B., Paradis, E., Désamoré, A., Heinrichs, J., Villarreal, J. C., Gradstein, S. R., McDaniel, S. F., Long, D. G., Forrest, L. L., Hollingsworth, M. L., Crandall-Stotler, B., Davis, E. C., Engel, J., Von Konrat, M., Cooper, E. D., Patiño, J., & Shaw, A. J. (2014). Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications, 5(1), 5134. https://doi.org/10.1038/ncomms6134
Laliberté, A. E., Legendre, P., Shipley, B., & Laliberté, M. E. (2014). Measuring functional diversity from multiple traits, and other tools for functional ecology. R Package FD.
Le Bagousse-Pinguet, Y., Soliveres, S., Gross, N., Torices, R., Berdugo, M., & Maestre, F. T. (2019). Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8419–8424. https://doi.org/10.1073/pnas.1815727116
Liang, H., Fu, T., Gao, H., Li, M., & Liu, J. (2023). Climatic and non-climatic drivers of plant diversity along an altitudinal gradient in the Taihang Mountains of northern China. Diversity, 15(1), 1–11. https://doi.org/10.3390/d15010066
Lloret, F., & González-Mancebo, J. M. (2011). Altitudinal distribution patterns of bryophytes in the Canary Islands and vulnerability to climate change. Flora – Morphology, Distribution, Functional Ecology of Plants, 206(9), 769–781. https://doi.org/10.1016/j.flora.2011.04.007
MacArthur, R. H., & Wilson, E. O. (1967). An equilibrium theory of Island biogeography. Princeton University Press.
Manish, K., Pandit, M. K., Telwala, Y., Nautiyal, D. C., Koh, L. P., & Tiwari, S. (2017). Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya. Journal of Plant Research, 130(5), 829–844. https://doi.org/10.1007/s10265-017-0946-0
Matthews, T. J., Rigal, F., Kougioumoutzis, K., Trigas, P., & Triantis, K. A. (2020). Unravelling the small-Island effect through phylogenetic community ecology. Journal of Biogeography, 47(11), 2341–2352. https://doi.org/10.1111/jbi.13940
Mazel, F., Pennell, M. W., Cadotte, M. W., Diaz, S., Dalla Riva, G. V., Grenyer, R., Leprieur, F., Mooers, A. O., Mouillot, D., Tucker, C. M., & Pearse, W. D. (2018). Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 9(1), 2888. https://doi.org/10.1038/s41467-018-05126-3
McCain, C. M., & Grytnes, J.-A. (2010). Elevational gradients in species richness. In Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0022548
Medina, N. G., Albertos, B., Lara, F., Mazimpaka, V., Garilleti, R., Draper, D., & Hortal, J. (2013). Species richness of epiphytic bryophytes: Drivers across scales on the edge of the Mediterranean. Ecography, 37(1), 80–93. https://doi.org/10.1111/j.1600-0587.2013.00095.x
Mežaka, A., Brūmelis, G., & Piterāns, A. (2012). Tree and stand-scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats. Biodiversity and Conservation, 21(12), 3221–3241. https://doi.org/10.1007/s10531-012-0361-8
Mokany, K., McCarthy, J. K., Falster, D. S., Gallagher, R. V., Harwood, T. D., Kooyman, R., & Westoby, M. (2022). Patterns and drivers of plant diversity across Australia. Ecography, 2022(11), 1–15. https://doi.org/10.1111/ecog.06426
Montaño-Centellas, F. A., McCain, C., & Loiselle, B. A. (2020). Using functional and phylogenetic diversity to infer avian community assembly along elevational gradients. Global Ecology and Biogeography, 29(2), 232–245. https://doi.org/10.1111/geb.13021
Mouton, L., Patiño, J., Carine, M., Rumsey, F., de Sequeira, M. M., González-Mancebo, J. M., Gabriel, R. M., Hardy, O. J., Sim-Sim, M., Reyes-Betancort, J. A., Collart, F., & Vanderpoorten, A. (2023). Patterns and drivers of beta diversity across geographic scales and lineages in the Macaronesian flora. Journal of Biogeography, 50(5), 858–869. https://doi.org/10.1111/jbi.14580
Nogués-Bravo, D., Araújo, M. B., Romdal, T., & Rahbek, C. (2008). Scale effects and human impact on the elevational species richness gradients. Nature, 453(7192), 216–219. https://doi.org/10.1038/nature06812
Oksanen, J., Simpson, G. L., Kindt, F. G. B. R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Henry, M., Stevens, H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., & Weedon, J. (2022). Vegan: Community ecology package. R Package. https://cran.r-project.org/web/packages/vegan/index.html
Ottaviani, G., Keppel, G., Götzenberger, L., Harrison, S., Opedal, Ø. H., Conti, L., Liancourt, P., Klimešová, J., Silveira, F. A. O., Jiménez-Alfaro, B., Negoita, L., Doležal, J., Hájek, M., Ibanez, T., Méndez-Castro, F. E., & Chytrý, M. (2020). Linking plant functional ecology to Island biogeography. Trends in Plant Science, 25(4), 329–339. https://doi.org/10.1016/j.tplants.2019.12.022
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290. https://doi.org/10.1093/bioinformatics/btg412
Patiño, J., Bisang, I., Goffinet, B., Hedenäs, L., McDaniel, S., Pressel, S., Stech, M., Ah-Peng, C., Bergamini, A., Caners, R. T., Christine Cargill, D., Cronberg, N., Duckett, J., Eppley, S., Fenton, N. J., Fisher, K., González-Mancebo, J., Hasebe, M., Heinrichs, J., & Vanderpoorten, A. (2022). Unveiling the nature of a miniature world: A horizon scan of fundamental questions in bryology. Journal of Bryology, 44(1), 1–34. https://doi.org/10.1080/03736687.2022.2054615
Patiño, J., Collart, F., Vanderpoorten, A., Martin-Esquivel, J. L., Naranjo-Cigala, A., Mirolo, S., & Karger, D. N. (2023). Spatial resolution impacts projected plant responses to climate change on topographically complex islands. Diversity and Distributions, 29(10), 1245–1262. https://doi.org/10.1111/ddi.13757
Patiño, J., Gómez-Rodríguez, C., Pupo-Correia, A., Sequeira, M., & Vanderpoorten, A. (2018). Trees as habitat islands: Temporal variation in alpha and beta diversity in epiphytic laurel forest bryophyte communities. Journal of Biogeography, 45(8), 1727–1738. https://doi.org/10.1111/jbi.13359
Patiño, J., González-Mancebo, J. M., & Fernéndez-Palacios, J. M. (2009). Epiphytic bryophytes in Canarian subtropical montane cloud forests: The importance of the time since disturbance and host identity. Canadian Journal of Forest Research, 39(1), 48–63. https://doi.org/10.1139/X08-155
Patiño, J., Hedenäs, L., Dirkse, G., Ignatov, M., Papp, B., Müller, F., González-Mancebo, J., & Vanderpoorten, A. (2017). Species delimitation in the recalcitrant moss genus Rhynchostegiella (Brachytheciaceae). Taxon, 66(2), 293–308. https://doi.org/10.12705/662.1
Patiño, J., Hylander, K., & González-Mancebo, J. M. (2010). Effect of forest clear-cutting on subtropical bryophyte communities in waterfalls, on dripping walls, and along streams. Ecological Applications, 20(6), 1648–1663. https://doi.org/10.1890/09-1086.1
Patiño, J., & Vanderpoorten, A. (2021). Island biogeography: An avenue for research in bryology. Bryophyte Diversity and Evolution, 43(1), 206–220. https://doi.org/10.11646/bde.43.1.15
Patiño, J., Whittaker, R. J., Borges, P. A. V., Fernández-Palacios, J. M., Ah-Peng, C., Araújo, M. B., Ávila, S. P., Cardoso, P., Cornuault, J., de Boer, E. J., de Nascimento, L., Gil, A., González-Castro, A., Gruner, D. S., Heleno, R., Hortal, J., Illera, J. C., Kaiser-Bunbury, C. N., Matthews, T. J., & Emerson, B. C. (2017). A roadmap for Island biology: 50 fundamental questions after 50 years of the theory of Island biogeography. Journal of Biogeography, 44(5), 963–983. https://doi.org/10.1111/jbi.12986
Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86(4), 792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x
Penjor, U., Jamtsho, R., & Sherub, S. (2021). Anthropogenic land-use change shapes bird diversity along the eastern Himalayan altitudinal gradient. Journal of Applied Ecology, 59(3), 847–859. https://doi.org/10.1111/1365-2664.14101
Perronne, R., Munoz, F., Borgy, B., Reboud, X., & Gaba, S. (2017). How to design trait-based analyses of community assembly mechanisms: Insights and guidelines from a literature review. Perspectives in Plant Ecology, Evolution and Systematics, 25, 29–44. https://doi.org/10.1016/j.ppees.2017.01.004
Prada, S., Menezes de Sequeira, M., Figueira, C., & da Silva, M. O. (2009). Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agricultural and Forest Meteorology, 149(6–7), 1179–1187. https://doi.org/10.1016/j.agrformet.2009.02.010
Prescott, G. W., Gilroy, J. J., Haugaasen, T., Medina Uribe, C. A., Foster, W. A., & Edwards, D. P. (2016). Managing neotropical oil palm expansion to retain phylogenetic diversity. Journal of Applied Ecology, 53(1), 150–158. https://doi.org/10.1111/1365-2664.12571
Proctor, M. C. F., Oliver, M. J., Wood, A. J., Alpert, P., Stark, L. R., Cleavitt, N. L., & Mishler, B. D. (2007). Desiccation-tolerance in bryophytes: A review. Bryologist, 110(4), 595–621. https://doi.org/10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rahbek, C. (1995). The elevational gradient of species richness: A uniform pattern? Ecography, 18(2), 200–205.
Rahbek, C. (1997). The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149(5), 875–902.
Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8(2), 224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x
Rurangwa, M. L., Aguirre-Gutiérrez, J., Matthews, T. J., Niyigaba, P., Wayman, J. P., Tobias, J. A., & Whittaker, R. J. (2021). Effects of land-use change on avian taxonomic, functional and phylogenetic diversity in a tropical montane rainforest. Diversity and Distributions, 27(9), 1732–1746. https://doi.org/10.1111/ddi.13364
Sabatini, F. M., Jiménez-Alfaro, B., Jandt, U., Chytrý, M., Field, R., Kessler, M., Lenoir, J., Schrodt, F., Wiser, S. K., Arfin Khan, M. A. S., Attorre, F., Cayuela, L., DeSanctis, M., Dengler, J., Haider, S., Hatim, M. Z., Indreica, A., Jansen, F., Pauchard, A., … Bruelheide, H. (2022). Global patterns of vascular plant alphadiversity. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32063-z
Safi, K., Cianciaruso, M. V., Loyola, R. D., Brito, D., Armour-Marshall, K., & Diniz-Filho, J. A. F. (2011). Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1577), 2536–2544. https://doi.org/10.1098/rstb.2011.0024
Sanbonmatsu, K. K., & Spalink, D. (2022). A global analysis of mosses reveals low phylogenetic endemism and highlights the importance of long-distance dispersal. Journal of Biogeography, 49(4), 654–667. https://doi.org/10.1111/jbi.14333
Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.
Schmucki, R., Reimark, J., Lindborg, R., & Cousins, S. A. O. (2012). Landscape context and management regime structure plant diversity in grassland communities. Journal of Ecology, 100(5), 1164–1173. https://doi.org/10.1111/j.1365-2745.2012.01988.x
Schrader, J., Wright, I. J., Kreft, H., & Westoby, M. (2021). A roadmap to plant functional Island biogeography. Biological Reviews, 96(6), 2851–2870. https://doi.org/10.1111/brv.12782
Sérgio, C., Sim, M., Fontinha, S., & Figueira, R. (2008). A list of the terrestrial fungi, Flora and Fauna of Madeira and Selvagens archipelagos. In P. Borges, C. Abreu, A. M. F. Aguiar, P. Carvalho, R. Jardim, I. Melo, P. Oliveira, C. Sérgio, & A. R. M. Serrano (Eds.), Current (pp. 123–142). Direcção Regional do Ambiente da Madeira and Universidade dos Açores.
Shaw, A. J., Cox, C. J., & Goffinet, B. (2005). Global patterns of moss diversity: Taxonomic and molecular inferences. Taxon, 54(2), 337–352. https://doi.org/10.2307/25065362
Shaw, A. J., & Goffinet, B. (2000). Bryophyte biology. Cambridge University Press.
Shen, T., Corlett, R. T., Collart, F., Kasprzyk, T., Guo, X. L., Patiño, J., Su, Y., Hardy, O. J., Ma, W. Z., Wang, J., Wei, Y. M., Mouton, L., Li, Y., Song, L., & Vanderpoorten, A. (2022). Microclimatic variation in tropical canopies: A glimpse into the processes of community assembly in epiphytic bryophyte communities. Journal of Ecology, 110(12), 3023–3038. https://doi.org/10.1111/1365-2745.14011
Shen, T., Song, L., Corlett, R. T., Guisan, A., Wang, J., Ma, W. Z., Mouton, L., Vanderpoorten, A., & Collart, F. (2023). Disentangling the roles of chance, abiotic factors and biotic interactions among epiphytic bryophyte communities in a tropical rainforest (Yunnan, China). Plant Biology, 25(6), 880–891. https://doi.org/10.1111/plb.13570
Shooner, S., Davies, T. J., Saikia, P., Deka, J., Bharali, S., Tripathi, O. P., Singha, L., Latif Khan, M., & Dayanandan, S. (2018). Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages. Ecosphere, 9(5), e02157. https://doi.org/10.1002/ecs2.2157
Si, X., Cadotte, M. W., Zeng, D., Baselga, A., Zhao, Y., Li, J., Wu, Y., Wang, S., & Ding, P. (2017). Functional and phylogenetic structure of Island bird communities. Journal of Animal Ecology, 86(3), 532–542. https://doi.org/10.1111/1365-2656.12650
Sim-Sim, M., Bergamini, A., Luís, L., Fontinha, S., Martins, S., Lobo, C., & Stech, M. (2011). Epiphytic bryophyte diversity on Madeira Island: Effects of tree species on bryophyte species richness and composition. Bryologist, 114(1), 142–154. https://doi.org/10.1639/0007-2745-114.1.142
Sim-Sim, M., Ruas, S., Fontinha, S., Hedenäs, L., Sérgio, C., & Lobo, C. (2014). Bryophyte conservation on a North Atlantic hotspot: Threatened bryophytes in Madeira and Selvagens archipelagos (Portugal). Systematics and Biodiversity, 12(3), 315–330. https://doi.org/10.1080/14772000.2014.918063
Spitale, D. (2016). The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. Journal of Vegetation Science, 27(4), 844–853. https://doi.org/10.1111/jvs.12403
Steinbauer, M. J., Field, R., Grytnes, J. A., Trigas, P., Ah-Peng, C., Attorre, F., Birks, H. J. B., Borges, P. A. V., Cardoso, P., Chou, C. H., De Sanctis, M., de Sequeira, M. M., Duarte, M. C., Elias, R. B., Fernández-Palacios, J. M., Gabriel, R., Gereau, R. E., Gillespie, R. G., Greimler, J., & Beierkuhnlein, C. (2016). Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 25(9), 1097–1107. https://doi.org/10.1111/geb.12469
Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2021). partR2: Partitioning R(2) in generalized linear mixed models. PeerJ, 9, e11414. https://doi.org/10.7717/peerj.11414
Swenson, N. G. (2011). The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. American Journal of Botany, 98(3), 472–480. https://doi.org/10.3732/ajb.1000289
Swenson, N. G. (2013). The assembly of tropical tree communities—The advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36(3), 264–276. https://doi.org/10.1111/j.1600-0587.2012.00121.x
Teichert, N., Lepage, M., Chevillot, X., & Lobry, J. (2018). Environmental drivers of taxonomic, functional and phylogenetic diversity (alpha, beta and gamma components) in estuarine fish communities. Journal of Biogeography, 45(2), 406–417. https://doi.org/10.1111/jbi.13133
Tuba, Z., Slack, N. G., & Stark, L. R. (2011). Bryophyte ecology and climate change. Cambridge University Press.
Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Jonathan Davies, T., Ferrier, S., Fritz, S. A., Grenyer, R., Helmus, M. R., Jin, L. S., Mooers, A. O., Pavoine, S., Purschke, O., Redding, D. W., Rosauer, D. F., Winter, M., & Mazel, F. (2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92(2), 698–715. https://doi.org/10.1111/brv.12252
van Zuijlen, K., Nobis, M. P., Hedenäs, L., Hodgetts, N., Calleja Alarcón, J. A., Albertos, B., Bernhardt-Römermann, M., Gabriel, R., Garilleti, R., Lara, F., Preston, C. D., Simmel, J., Urmi, E., Bisang, I., & Bergamini, A. (2023). Bryophytes of Europe traits (BET) data set: A fundamental tool for ecological studies. Journal of Vegetation Science, 34(2), 1–7. https://doi.org/10.1111/jvs.13179
Vasconcelos, T. (2023). A trait-based approach to determining principles of plant biogeography. American Journal of Botany, 110(2), 1–8. https://doi.org/10.1002/ajb2.16127
Wang, J., Chen, C., Li, J., Feng, Y., & Lu, Q. (2019). Different ecological processes determined the alpha and beta components of taxonomic, functional, and phylogenetic diversity for plant communities in dryland regions of Northwest China. PeerJ, 2019(1), e6220. https://doi.org/10.7717/peerj.6220
Weigelt, P., Daniel Kissling, W., Kisel, Y., Fritz, S. A., Karger, D. N., Kessler, M., Lehtonen, S., Svenning, J. C., & Kreft, H. (2015). Global patterns and drivers of phylogenetic structure in Island floras. Scientific Reports, 5(1), 12213. https://doi.org/10.1038/srep12213
Wesuls, D., Oldeland, J., & Dray, S. (2011). Disentangling plant trait responses to livestock grazing from spatio-temporal variation: The partial RLQ approach. Journal of Vegetation Science, 23(1), 98–113. https://doi.org/10.1111/j.1654-1103.2011.01342.x
Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30(3), 279–338.
Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: Ecology, evolution, and conservation. Oxford University Press.
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K. A. (2017). Island biogeography: Taking the long view of nature's laboratories. Science, 357(6354), eaam8326. https://doi.org/10.1126/science.aam8326
Whittaker, R. J., Rigal, F., Borges, P. A. V., Cardoso, P., Terzopoulou, S., Casanoves, F., Pla, L., Guilhaumon, F., Ladle, R. J., & Triantis, K. A. (2014). Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13709–13714. https://doi.org/10.1073/pnas.1218036111
Whittaker, R. J., Triantis, K. A., & Ladle, R. J. (2008). A general dynamic theory of oceanic Island biogeography. Journal of Biogeography, 35(6), 977–994. https://doi.org/10.1111/j.1365-2699.2008.01892.x
Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431