[en] Brief introduction: What are microclimates and why are they important?: Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next. Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles. Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity. Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field. What's next?: We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Kemppinen, Julia ; Geography Research Unit, University of Oulu, Oulu, Finland
Lembrechts, Jonas J. ; Research Group Plants and Ecoystems (PLECO), University of Antwerp, Wilrijk, Belgium
Van Meerbeek, Koenraad ; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Carnicer, Jofre ; Department of Evolutionary Biology, Environmental Sciences and Ecology, University of Barcelona/CREAF/IRBIO, Barcelona, Spain
Chardon, Nathalie Isabelle ; Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
Kardol, Paul ; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
Lenoir, Jonathan ; UMR CNRS 7058 Ecologie et Dynamique Des systèmes anthropisés (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Liu, Daijun ; Department of Botany and Biodiversity Research, University of Vienna, Wien, Austria
Maclean, Ilya ; Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom
Pergl, Jan ; Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
Saccone, Patrick ; GLORIA Coordination Team, OeAW, IGF and BOKU, DIBB, Wien, Austria
Senior, Rebecca A. ; Conservation Ecology Group, Department of Biosciences, Durham University, Durham, United Kingdom
Shen, Ting ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
Słowińska, Sandra ; Climate Research Department, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
Vandvik, Vigdis ; Department of Biological Sciences and Bjerknes Centre of Climate Research, University of Bergen, Bergen, Norway
von Oppen, Jonathan ; Section for Ecoinformatics and Biodiversity & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
Aalto, Juha ; No departments at the Finnish Meteorological Institute, Finnish Meteorological Institute, Helsinki, Finland
Ayalew, Biruk ; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
Bates, Olivia; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
Bertelsmeier, Cleo ; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
Bertrand, Romain ; Centre de Recherche sur la Biodiversité et l’Environnement (CRBE UMR5300), Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse Cedex 9, France
Beugnon, Rémy ; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany ; Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany ; CNRS, EPHE, IRD, CEFE, University of Montpellier, Montpellier Cedex 5, France
Borderieux, Jeremy ; AgroParisTech, INRAE, UMR Silva, Université de Lorraine, Nancy, France
Brůna, Josef ; Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
Buckley, Lauren ; Department of Biology, University of Washington, Seattle, United States
Bujan, Jelena ; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
Casanova-Katny, Angelica ; Laboratorio de Ecofisiología Vegetal y Cambio Climático, Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
Christiansen, Ditte Marie ; Department of Plant and Environmental Sciences, University of Copenhagen, Denmark, Sweden
Collart, Flavien ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée) ; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
De Lombaerde, Emiel ; Forest & Nature Lab, Department of Environment, Ghent University, Gontrode-Melle, Belgium
De Pauw, Karen ; Forest & Nature Lab, Department of Environment, Ghent University, Gontrode-Melle, Belgium
Depauw, Leen ; Forest & Nature Lab, Department of Environment, Ghent University, Gontrode-Melle, Belgium
Di Musciano, Michele ; Department of Life Health and Environmental Science, University of L'Aquila, L'Aquila, Italy
Díaz Borrego, Raquel ; CREAF, Barcelona, Spain
Díaz-Calafat, Joan ; Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
Ellis-Soto, Diego ; Department of Ecology and Evolutionary Biology, Yale University, New Haven, United States
Esteban, Raquel ; Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
de Jong, Geerte Fälthammar ; Department of Biology and Environmental Science, University of Gothenburg, Göteborg, Sweden
Gallois, Elise ; School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
Garcia, Maria Begoña ; Pyrenean Institute of Ecology (CSIC), Zaragoza, Spain
Gillerot, Loïc ; Forest & Nature Lab, Department of Environment, Ghent University, Gontrode-Melle, Belgium
Greiser, Caroline ; Department of Physical Geography, Stockholm University, Stockholm, Sweden
Gril, Eva ; UMR CNRS 7058 “Ecologie et Dynamique Des Systèmes Anthropisés” (EDYSAN), Amiens, France
Haesen, Stef ; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Hampe, Arndt ; INRAE, University of Bordeaux, BIOGECO, Cestas, France
Hedwall, Per-Ola ; Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
Hes, Gabriel ; Centre de Recherche sur la Biodiversité et l’Environnement (CRBE UMR5300), Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse Cedex 9, France
Hespanhol, Helena ; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
Hoffrén, Raúl ; Department of Geography and Land Management, University of Zaragoza (Spain), Zaragoza, Spain
Hylander, Kristoffer ; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
Jiménez-Alfaro, Borja ; Biodiversity Research Institute, University of Oviedo, Mieres, Spain
Jucker, Tommaso ; School of Biological Sciences, University of Bristol, Bristol, United Kingdom
Klinges, David ; School of Natural Resources and Environment, University of Florida, Gainesville, United States
Kolstela, Joonas ; No departments at the Finnish Meteorological Institute, Finnish Meteorological Institute, Helsinki, Finland
Kopecký, Martin ; Institute of Botany of the Czech Academy of Sciences, University of Life Sciences Prague, Prague, Czech Republic
Kovács, Bence ; Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary ; Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
Maeda, Eduardo Eiji ; Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
Máliš, František ; Technical University in Zvolen, Zvolen, Slovakia
Man, Matěj ; Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
Mathiak, Corrie ; Chair of Soil Science, Geography Institute, Friedrich-Schiller-Universität Jena, Jena, Germany
Meineri, Eric ; Aix-Marseille University, Marseille, France
Naujokaitis-Lewis, Ilona ; National Wildlife Research Centre, Environment and Climate Change Canada, Carleton University, Ottawa, Canada
Nijs, Ivan ; Plants and Ecosystems, Department of Biology, University of Antwerp, Wilrijk, Belgium
Normand, Signe ; Department of Biology, Aarhus University, Aarhus C, Denmark
Nuñez, Martin ; Department of Biology and Biochemistry, University of Houston, Houston, United States
Orczewska, Anna ; Faculty of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
Peña-Aguilera, Pablo ; Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
Pincebourde, Sylvain ; Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, Tours, France
Plichta, Roman ; Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
Quick, Susan ; Birmingham Institute of Forest Research, University of Birmingham, Birmingham, United Kingdom
Renault, David ; CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, University of Rennes, Rennes, France
Ricci, Lorenzo ; Department of Life Health and Environmental Science, University of L'Aquila, L'Aquila, Italy
Rissanen, Tuuli ; Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
Segura-Hernández, Laura ; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, United States
Selvi, Federico ; Department of Agriculture, Food, Environment and Forestry, University of Firenze, Palermo, Italy
Serra-Diaz, Josep M. ; AgroParisTech, Silva, Université de Lorraine, Nancy, France
Soifer, Lydia ; School of Natural Resources and Environment, University of Florida, Gainesville, United States
Spicher, Fabien ; UMR CNRS 7058, Écologie et Dynamique Des Systèmes Anthropisés (EDYSAN), Amiens, France
Svenning, Jens-Christian ; Department of Biology, Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
Tamian, Anouch ; IPHC CNRS UMR 7178, University of Strasbourg, Strasbourg, France
Thomaes, Arno ; Research Institute for Nature and Forest (INBO), Brussels, Belgium
Thoonen, Marijke ; Research Institute for Nature and Forest (INBO), Brussels, Belgium
Trew, Brittany ; Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom
Van de Vondel, Stijn ; Department of Biology, University of Antwerp, Antwerp, Belgium
van den Brink, Liesbeth ; ECOBIOSIS, University of Concepcion, Chile, Germany ; Plant Ecology Group, University of Tübingen, Chile, Germany
Vangansbeke, Pieter ; Forest & Nature Lab, Department of Environment, Ghent University, Gontrode-Melle, Belgium ; Earth and Life Institute, Environmental Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Verdonck, Sanne ; Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
Vitkova, Michaela ; Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
Vives-Ingla, Maria ; CREAF, Barcelona, Spain ; Universitat Autònoma de Barcelona, Catalonia, Spain
von Schmalensee, Loke ; Department of Zoology, Stockholm University, Stockholm, Sweden
Wang, Runxi ; School of Biological Sciences, The University of Hong Kong, Hong Kong
Wild, Jan ; Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
Williamson, Joseph ; Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
Zellweger, Florian ; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Zhou, Xiaqu ; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Zuza, Emmanuel Junior ; School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
De Frenne, Pieter ; Forest & Nature Lab, Department of Environment, Ghent University, Gontrode-Melle, Belgium
SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen Academy of Finland MICINN - Ministerio de Ciencia e Innovacion GAČR - Grantová Agentura České Republiky NERC - Natural Environment Research Council AVČR - Akademie Ved České Republiky Forskningsrådet Formas ANR - Agence Nationale de la Recherche ERC - European Research Council IPEV - Institut Polaire Français Paul Émile Victor Villum Fonden DFF - Danmarks Frie Forskningsfond Danmarks Grundforskningsfond
Funding text :
We thank our reviewers Janet Franklin and Michael Kearney and our editor Brian Enquist for their valuable comments. We thank Pekka Niittynen for providing a script for automating the management of author information and contributions. The Microclimate Ecology & Biogeography conference in Antwerp, Belgium in 2022 was supported by the Research Foundation Flanders (project W001919N). JK acknowledges funding from the Academy of Finland (grant no. 349606). JJL and IN acknowledge funding from the Research Foundation Flanders (project 12P1819N) and from BiodivERsA (ASICS project (ANR\u201020\u2010EBI5\u20100004, BiodivERsA, BiodivClim call 2019\u20132020)). JC acknowledges the funding from PID2020\u2010117636GB\u2010C21 and TED2021\u2010132007B\u2010I00. NIC was funded by a Swiss National Science Foundation Postdoc Mobility Fellowship (Grant ID: 194331). PK acknowledges funding from European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 864287 \u2014THRESHOLD\u2014ERC\u20102019\u2010COG). JL acknowledges funding from the Agence Nationale de la Recherche (ANR), under the framework of the young investigators' funding scheme (JCJC Grant N\u00B0ANR\u201019\u2010CE32\u20100005\u201001: IMPRINT project). DL is financially supported by the FWF Austrian Science Foundation (Lise Meitner Programme M2714\u2010B29). JP and MV were supported by BiodivClim Call 2019 (TACR SS70010001; Technology Agency of the Czech Republic), the project DivLand (TACR SS02030018) and long\u2010term research development project RVO 67985939 (Czech Academy of Sciences). SS is supported by the project no. 2022/45/B/ST10/03423 funded by the National Science Centre in Poland. VV acknowledges funding from the Research Council of Norway (grant no. 315249, 274712, 244525). SN and JvO acknowledge funding from the Independent Research Fund of Denmark (grant no. 7027\u201000133B to SN). JA acknowledges the Academy of Finland Flagship funding (grant no. 337552). RB acknowledges funding from the Saxon State Ministry for Science, Culture and Tourism (SMWK)\u2014[3\u20107304/35/6\u20102021/48880]. JeBo acknowledges the funding from the AgroParisTech/ R\u00E9gion Grand\u2010Est joint grant 19_GE8_01020p05035. JoBr was supported by the Czech Science Foundation (project 20\u201028119S) and the long\u2010term research development project RVO 67985939 (Czech Academy of Sciences). ACK acknowledges funding from FOVI 210043 and ANILLO ACONCAGUA ANID ACT 210021. KDP acknowledges funding from the Research Foundation Flanders (FWO) (K.D.P. ASP035\u201019). LD acknowledges funding from the Research Foundation Flanders (FWO) (1221523\u2009N). DES acknowledges funding from NASA FINESST (80NSSC22K1535). RE acknowledges funding: UPV/EHU\u2010GV IT\u20101648\u201322 and PID2020\u2013113244GA\u2010C22 (funded by MCIN/ AEI /10.13039/501100011033). EG is funded by the Natural Environment Research Council (NERC) NE/S007407/1. MBG acknowledges the support of the REFUGIA project (PID2021\u2010129056OB\u2010I00). CG received funding from FORMAS [project nr. 2021\u2010 01993]. EG's PhD was funded by the Agence Nationale de la Recherche (ANR), under the framework of the young investigators' funding scheme (JCJC Grant N\u00B0ANR\u201019\u2010CE32\u20100005\u201001: IMPRINT project). SH received funding from a FLOF fellowship of the KU Leuven (project nr. 3E190655). HH research is funded by national funds by FCT, under the transitional rule of Decree Law 57/2016\u2014DL57/2016/CP 1334 CT0005. RH acknowledges funding from the Spanish Association of Terrestrial Ecology (AEET) through the programme \u2018Grants for research projects led by young researchers 2019\u2019. The research was supported by a grant from Formas to KH [2021\u201000816]. BJA is funded by grant MCI\u201020\u2010PID2019\u2010108636GA\u2010I00 of the Spanish Research Agency. TJ was supported by a NERC Independent Research Fellowship (grant code: NE/S01537X/1). MK was supported by the Czech Science Foundation (project 20\u201028119S) and the Czech Academy of Sciences (project RVO 67985939). BK was supported by the \u00DANKP\u201022\u20104 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund (\u00DANKP\u201022\u20104\u2010II\u2010ELTE\u2010318). FM was supported by Slovak Research and Development Agency project APVV\u201019\u20100319. MM was supported by the Czech Science Foundation (project 20\u201028119S) and the Czech Academy of Sciences (project RVO 67985939). CM acknowledges the IntegSaatprojekt and its funders (FKZ: 2220WK65X4), as well as the Honours Programme for Future Researchers at the Friedrich\u2010Schiller\u2010University. EM acknowledges the funding from the R\u00E9gion Sud Provence\u2010Alpes\u2010C\u00F4te d'Azur (AAP 2020 n\u00B002697 MICROMED project). JJL and IN acknowledge funding from the Research Foundation Flanders (project 12P1819N) and from BiodivERsA (ASICS project (ANR\u201020\u2010EBI5\u20100004, BiodivERsA, BiodivClim call 2019\u20132020)). DR is supported by the ASICS project (ANR\u201020\u2010EBI5\u20100004, BiodivERsA, BiodivClim call 2019\u20132020), the French Polar Institute (Project 136\u2010SUBANTECO), Zone Atelier CNRS Antarctique et Terres Australes (ZATA \u2018Antarctic\u2019) and CNRS (IRP PRICES). TR acknowledges funding from the Doctoral Programme in Geosciences. JMSD was supported by the ANR\u2010JCJC (Agence Nationale de la Recherche, jeunes chercheuses et jeunes chercheurs) SEEDFOR (ANR\u201021\u2010CE32\u20100003). JMSD acknowledges the support from NASA for UConn's Ecological Modelling Institute (#80NSSC 22\u2009K0883). JCS considers this work a contribution to the Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by the Danish National Research Foundation (grant DNRF173) and his VILLUM Investigator project \u2018Biodiversity Dynamics in a Changing World\u2019, funded by VILLUM FONDEN (grant 16549). SVDV is a PhD fellow supported by the Research Foundation Flanders (FWO; 1S90923N). LvdB acknowledges Conaf, and Comunidad agricola Quebrada de Talca, Chile. MV was supported by a research grant from the BiodivClim Call 2019 (grant nr. TACR SS70010001) and long\u2010term research development project RVO 67985939 from the Czech Academy of Sciences. can have the same acknowledgement as Jan Pergl. MV\u2010I was supported by the Spanish Ministry of Science and Innovation through a doctoral grant (FPU17/05869). JW was supported by the Czech Science Foundation (project 20\u201028119S) and the Czech Academy of Sciences (project RVO 67985939). F.Z. was funded by the Swiss National Science Foundation (project number 193645). E.Z. was funded by the Global Challenges Research Fund through the Open University and the EarthWatch Community Science Camp (NERC\u2010UKRI Grant no. NE/S017437/1).
Aalto, J., Tyystjärvi, V., Niittynen, P., Kemppinen, J., Rissanen, T., Gregow, H., & Luoto, M. (2022). Microclimate temperature variations from boreal forests to the tundra. Agricultural and Forest Meteorology, 323, 109037.
Ackerly, D. D., Kling, M. M., Clark, M. L., Papper, P., Oldfather, M. F., Flint, A. L., & Flint, L. E. (2020). Topoclimates, refugia, and biotic responses to climate change. Frontiers in Ecology and the Environment, 18, 288–297.
Alison, J., Payne, S., Alexander, J. M., Bjorkman, A. D., Clark, V. R., Gwate, O., Huntsaar, M., Iseli, E., Lenoir, J., Mann, H. M. R., Steenhuisen, S.-L., & Høye, T. T. (2023). Deep learning to extract the meteorological by-catch of wildlife cameras. bioRxiv.
Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., Macgregor-Fors, I., McDonnell, M., Mörtberg, U., … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings. Biological Sciences/The Royal Society, 281, 20133330.
Ashcroft, M. B. (2010). Identifying refugia from climate change. Journal of Biogeography, 37, 1413.
Ashcroft, M. B., Chisholm, L. A., & French, K. O. (2009). Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15, 656–667.
Ashcroft, M. B., Gollan, J. R., Warton, D. I., & Ramp, D. (2012). A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. Global Change Biology, 18, 1866–1879.
Baker, E., Harper, A. B., Williamson, D., & Challenor, P. (2022). Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES. Geoscientific Model Development, 15, 1913–1929.
Båserud, L., Reuder, J., Jonassen, M. O., Bonin, T. A., Chilson, P. B., Jiménez, M. A., & Durand, P. (2020). Potential and limitations in estimating sensible-heat-flux profiles from consecutive temperature profiles using remotely-piloted aircraft systems. Boundary—Layer Meteorology, 174, 145–177.
Basham, E. W., Baecher, J. A., Klinges, D. H., & Scheffers, B. R. (2023). Vertical stratification patterns of tropical forest vertebrates: A meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 98, 99–114.
Baum, W. A., & Court, A. (1949). Research status and needs in microclimatology. Transactions of the American Geophysical Union, 30, 488–493.
Beer, J., Muschler, R., Kass, D., & Somarriba, E. (1998). Shade management in coffee and cacao plantations. Directions in Tropical Agroforestry Research, 38, 139–164.
Begg, G. S., Cook, S. M., Dye, R., Ferrante, M., Franck, P., Lavigne, C., Lövei, G. L., Mansion-Vaquie, A., Pell, J. K., Petit, S., Quesada, N., Ricci, B., Wratten, S. D., & Birch, A. N. E. (2017). A functional overview of conservation biological control. Crop Protection, 97, 145–158.
Bennie, J., Wilson, R. J., MacLean, I. M. D., & Suggitt, A. J. (2014). Seeing the woods for the trees—When is microclimate important in species distribution models? Global Change Biology, 20, 2699–2700.
Bentley, B. P., Kearney, M. R., Whiting, S. D., & Mitchell, N. J. (2020). Microclimate modelling of beach sand temperatures reveals high spatial and temporal variation at sea turtle rookeries. Journal of Thermal Biology, 88, 102522.
Bert, D., Lebourgeois, F., Adib, O., Ducousso, A., Ogée, J., & Hampe, A. (2022). Past and future radial growth and water-use efficiency of Fagus sylvatica and Quercus robur in a long-term climate refugium. Dendrochronologia, 72, 125939.
Bertrand, R., Riofrío-Dillon, G., Lenoir, J., Drapier, J., de Ruffray, P., Gégout, J.-C., & Loreau, M. (2016). Ecological constraints increase the climatic debt in forests. Nature Communications, 7, 12643.
Besard, T., Foket, C., & De Sutter, B. (2019). Effective extensible programming: Unleashing Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems, 30, 827–841.
Bezanson, J., Chen, J., Chung, B., Karpinski, S., Shah, V. B., Vitek, J., & Zoubritzky, L. (2018). Julia: Dynamism and performance reconciled by design. Proceedings of the ACM on Programming Languages, 2, 1–23.
Blonder, B., Both, S., Coomes, D. A., Elias, D., Jucker, T., Kvasnica, J., Majalap, N., Malhi, Y. S., Milodowski, D., Riutta, T., & Svátek, M. (2018). Extreme and highly heterogeneous microclimates in selectively logged tropical forests. Frontiers in Forests and Global Change, 1.
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D., & Harman, I. N. (2021). Moving beyond the incorrect but useful paradigm: Reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes—A review. Agricultural and Forest Meteorology, 306, 108435.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97, 147–155.
Bramer, I., Anderson, B. J., Bennie, J., Bladon, A. J., De Frenne, P., Hemming, D., Hill, R. A., Kearney, M. R., Körner, C., Korstjens, A. H., Lenoir, J., Maclean, I. M. D., Marsh, C. D., Morecroft, M. D., Ohlemüller, R., Slater, H. D., Suggitt, A. J., Zellweger, F., & Gillingham, P. K. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. In Next generation biomonitoring: Part 1 advances in ecological research (pp. 101–161). Elsevier.
Brang, P., Spathelf, P., Larsen, J. B., Bauhus, J., Bonc ina, A., Chauvin, C., Drossler, L., Garcia-Guemes, C., Heiri, C., Kerr, G., Lexer, M. J., Mason, B., Mohren, F., Muhlethaler, U., Nocentini, S., & Svoboda, M. (2014). Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry, 87, 492–503.
Briscoe, N. J., McGregor, H., Roshier, D., Carter, A., Wintle, B. A., & Kearney, M. R. (2022). Too hot to hunt: Mechanistic predictions of thermal refuge from cat predation risk. Conservation Letters, 15, e12906.
Briscoe, N. J., Morris, S. D., Mathewson, P. D., Buckley, L. B., Jusup, M., Levy, O., Maclean, I. M. D., Pincebourde, S., Riddell, E. A., Roberts, J. A., Schouten, R., Sears, M. W., & Kearney, M. R. (2023). Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. Global Change Biology, 29, 1451–1470.
Brower, L. P., Williams, E. H., Fink, L. S., Slayback, D. A., Ramírez, M. I., García, M. V. L., Zubieta, R. R., Weiss, S. B., Calvert, W. H., & Zuchowski, W. (2011). Overwintering clusters of the monarch butterfly coincide with the least hazardous vertical temperatures in the oyamel forest. Journal of the Lepidopterists' Society, 65, 27–46.
Bujan, J., Yanoviak, S. P., & Kaspari, M. (2016). Desiccation resistance in tropical insects: Causes and mechanisms underlying variability in a Panama ant community. Ecology and Evolution, 6, 6282–6291.
Bütikofer, L., Anderson, K., Bebber, D. P., Bennie, J. J., Early, R. I., & Maclean, I. M. D. (2020). The problem of scale in predicting biological responses to climate. Global Change Biology, 26, 6657–6666.
Cahoon, S. M. P., Sullivan, P. F., Shaver, G. R., Welker, J. M., Post, E., & Holyoak, M. (2012). Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecology Letters, 15, 1415–1422.
Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley, L. P., Chave, J., Danson, F. M., Demol, M., Disney, M., Gaulton, R., Krishna Moorthy, S. M., Levick, S. R., Saarinen, N., Schaaf, C., Stovall, A., Terryn, L., Wilkes, P., & Verbeeck, H. (2020). Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing of Environment, 251, 112102.
Carnicer, J., Stefanescu, C., Vives-Ingla, M., López, C., Cortizas, S., Wheat, C., Vila, R., Llusià, J., & Peñuelas, J. (2019). Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics. The Journal of Animal Ecology, 88, 376–391.
Caron, M. M., Zellweger, F., Verheyen, K., Baeten, L., Hédl, R., Bernhardt-Römermann, M., Berki, I., Brunet, J., Decocq, G., Díaz, S., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Lenoir, J., Macek, M., Malicki, M., Máliš, F., … De Frenne, P. (2021). Thermal differences between juveniles and adults increased over time in European forest trees. The Journal of Ecology, 109, 3944–3957.
Carter, A. L., & Janzen, F. J. (2021). Predicting the effects of climate change on incubation in reptiles: Methodological advances and new directions. The Journal of Experimental Biology, 224.
Cavieres, L. A., Brooker, R. W., Butterfield, B. J., Cook, B. J., Kikvidze, Z., Lortie, C. J., Michalet, R., Pugnaire, F. I., Schöb, C., Xiao, S., Anthelme, F., Björk, R. G., Dickinson, K. J. M., Cranston, B. H., Gavilán, R., Gutiérrez-Girón, A., Kanka, R., Maalouf, J.-P., Mark, A. F., … Callaway, R. M. (2014). Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 17, 193–202.
Checa, M. F., Rodriguez, J., Willmott, K. R., & Liger, B. (2014). Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened Neotropical dry Forest. Florida Entomologist, 97, 1–13.
Chen, J., Franklin, J. F., & Spies, T. A. (1993). Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 63, 219–237.
Chen, Y., Liu, Y., Zhang, J., Yang, W., He, R., & Deng, C. (2018). Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Scientific Reports, 8, 14998.
Christiansen, D.M., Iversen, L.L., Ehrlén, J, Hylander, K. (2022). Changes in forest structure drive temperature preferences of boreal understorey plant communities. Journal of Ecology, 110, 631-643. https://doi.org/10.1111/1365-2745.13825
Curtis, R. J., & Isaac, N. J. B. (2015). The effect of temperature and habitat quality on abundance of the Glanville fritillary on the Isle of Wight: Implications for conservation management in a warming climate. Journal of Insect Conservation, 19, 217–225.
Davis, F. W., Sweet, L. C., Serra-Diaz, J. M., Franklin, J., McCullough, I., Flint, A., Flint, L., Dingman, J. R., Regan, H. M., Syphard, A. D., Hannah, L., Redmond, K., & Moritz, M. A. (2016). Shrinking windows of opportunity for oak seedling establishment in southern California mountains. Ecosphere, 7, e01573.
Davis, F. W., Synes, N. W., Fricker, G. A., McCullough, I. M., Serra-Diaz, J. M., Franklin, J., & Flint, A. L. (2019). LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes. Agricultural and Forest Meteorology, 269, 192–202.
Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E., & Abatzoglou, J. T. (2019). Microclimatic buffering in forests of the future: The role of local water balance. Ecography, 42, 1–11.
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27, 2279–2297.
de Souza, D. O., dos Santos Alvalá, R. C., & do Nascimento, M. G. (2016). Urbanization effects on the microclimate of Manaus: A modeling study. Atmospheric Research, 167, 237–248.
de Tranaltes, C., Dunn, J., Martin, J. M., & Johnson, J. C. (2022). Siblicide in the city: The urban heat Island accelerates sibling cannibalism in the black widow spider (Latrodectus hesperus). Urban Ecosystems, 25, 305–312.
Dietze, M.C., Thomas, R.Q., Peters, J., Boettiger, C., Shiklomanov, A.N. & Ashander, J. (2021) A community convention for ecological forecasting: Output files and metadata.
Disney, M. (2019). Terrestrial LiDAR: A three-dimensional revolution in how we look at trees. The New Phytologist, 222, 1736–1741.
Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biology, 17, 1022–1035.
Dobrowski, S. Z., Swanson, A. K., Abatzoglou, J. T., Holden, Z. A., Safford, H. D., Schwartz, M. K., & Gavin, D. G. (2015). Forest structure and species traits mediate projected recruitment declines in western US tree species. Global Ecology and Biogeography: A Journal of Macroecology, 24, 917–927.
Duffy, J. P., Anderson, K., Fawcett, D., Curtis, R. J., & Maclean, I. M. D. (2021). Drones provide spatial and volumetric data to deliver new insights into microclimate modelling. Landscape Ecology, 36, 685–702.
Eisenhauer, N., Bender, S. F., Calderón-Sanou, I., de Vries, F. T., Lembrechts, J. J., Thuiller, W., Wall, D. H., Zeiss, R., Bahram, M., Beugnon, R., Burton, V. J., Crowther, T. W., Delgado-Baquerizo, M., Geisen, S., Kardol, P., Krashevska, V., Martínez-Muñoz, C. A., Patoine, G., Seeber, J., … Potapov, A. (2022). Frontiers in soil ecology—Insights from the world biodiversity forum 2022. Journal of Sustainable Agriculture and Environment, 1, 245–261.
Ellis, C. J. (2020). Microclimatic refugia in riparian woodland: A climate change adaptation strategy. Forest Ecology and Management, 462, 118006.
Ellis, C. J., & Eaton, S. (2021). Climate change refugia: Landscape, stand and tree-scale microclimates in epiphyte community composition. The Lichenologist, 53, 135–148.
Ellis-Soto, D., Wikelski, M., & Jetz, W. (2023). Animal-borne sensors as a biologically informed lens on a changing climate. Nature Climate Change, 13, 1042–1054.
Enriquez-Urzelai, U., Kearney, M. R., Nicieza, A. G., & Tingley, R. (2019). Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Global Change Biology, 25, 2633–2647.
Faye, E., Rebaudo, F., Yánez-Cajo, D., Cauvy-Fraunié, S., & Dangles, O. (2016). A toolbox for studying thermal heterogeneity across spatial scales: From unmanned aerial vehicle imagery to landscape metrics. Methods in Ecology and Evolution/British Ecological Society, 7, 437–446.
Fernández-Alonso, M. J., Díaz-Pinés, E., Ortiz, C., & Rubio, A. (2018). Disentangling the effects of tree species and microclimate on heterotrophic and autotrophic soil respiration in a Mediterranean ecotone forest. Forest Ecology and Management, 430, 533–544.
Filazzola, A., Shrestha, N., & MacIvor, J. S. (2019). The contribution of constructed green infrastructure to urban biodiversity: A synthesis and meta-analysis. The Journal of Applied Ecology, 56, 2131–2143.
Finocchiaro, M., Médail, F., Saatkamp, A., Diadema, K., Pavon, D., & Meineri, E. (2023). Bridging the gap between microclimate and microrefugia: A bottom-up approach reveals strong climatic and biological offsets. Global Change Biology, 29, 1024–1036.
Frey, S. J. K., Hadley, A. S., & Betts, M. G. (2016). Microclimate predicts within-season distribution dynamics of montane forest birds. Diversity & Distributions, 22, 944–959.
Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., & Betts, M. G. (2016). Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances, 2, e1501392.
Gardner, A. S., Maclean, I. M. D., Gaston, K. J., & Bütikofer, L. (2021). Forecasting future crop suitability with microclimate data. Agricultural Systems, 190, 103084.
Geiger, R. (1942). Das Klima der bodennahen Luftschicht. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-663-06924-9
Geiger, R., Aron, R., H., & Todhunter, P. (1995). The climate near the ground. Friedr Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden. https://doi.org/10.1007/978-3-322-86582-3
Ghosh, S., Sathish Kumar, C. R., Gumber, S., Dobbie, S., & Yang, H. (2022). How Asian slum emissions impact local microclimates in polluted air masses. Atmospheric Science Letters, 23, e1124.
Gillerot, L., Landuyt, D., Oh, R., Chow, W., Haluza, D., Ponette, Q., Jactel, H., Bruelheide, H., Jaroszewicz, B., Scherer-Lorenzen, M., De Frenne, P., Muys, B., & Verheyen, K. (2022). Forest structure and composition alleviate human thermal stress. Global Change Biology, 28, 7340–7352.
Goodwin, K. J. A., & Brown, C. D. (2023). Integrating demographic niches and black spruce range expansion at subarctic treelines. Oecologia, 201, 19–29.
Gora, E. M., Lucas, J. M., & Yanoviak, S. P. (2019). Microbial composition and wood decomposition rates vary with microclimate from the ground to the canopy in a tropical forest. Ecosystems, 22, 1206–1219.
Gordon, C. E., Greve, M., Henley, M., Bedetti, A., Allin, P., & Svenning, J.-C. (2023). Elephant rewilding affects landscape openness and fauna habitat across a 92-year period. Ecological Applications: A Publication of the Ecological Society of America, 33, e2810.
Graae, B. J., Nystuen, K. O., Vandvik, V., & Eycott, A. E. (2022). Effects of climate change on regeneration of plants from seeds in boreal, subarctic, and subalpine regions. In Plant regeneration from seeds (pp. 19–32). Elsevier.
Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J., & Maclean, I. M. D. (2016). Using management to conserve biodiversity under climate change. The Journal of Applied Ecology, 53, 885–894.
Greiser, C., Ehrlén, J., Luoto, M., Meineri, E., Merinero, S., Willman, B., & Hylander, K. (2021). Warm range margin of boreal bryophytes and lichens not directly limited by temperatures. Journal of Ecology, 109, 3724–3736.
Greiser, C., von Schmalensee, L., Lindestad, O., Gotthard, K., & Lehmann, P. (2022). Microclimatic variation affects developmental phenology, synchrony and voltinism in an insect population. Functional Ecology, 36, 3036–3048.
Haesen, S., Lembrechts, J. J., De Frenne, P., Lenoir, J., Aalto, J., Ashcroft, M. B., Kopecký, M., Luoto, M., Maclean, I., Nijs, I., Niittynen, P., van den Hoogen, J., Arriga, N., Brůna, J., Buchmann, N., Čiliak, M., Collalti, A., De Lombaerde, E., Descombes, P., … Van Meerbeek, K. (2021). ForestTemp—Sub-canopy microclimate temperatures of European forests. Global Change Biology, 27, 6307–6319.
Haesen, S., Lembrechts, J. J., De Frenne, P., Lenoir, J., Aalto, J., Ashcroft, M. B., Kopecký, M., Luoto, M., Maclean, I., Nijs, I., Niittynen, P., van den Hoogen, J., Arriga, N., Brůna, J., Buchmann, N., Čiliak, M., Collalti, A., De Lombaerde, E., Descombes, P., … Van Meerbeek, K. (2023). ForestClim—Bioclimatic variables for microclimate temperatures of European forests. Global Change Biology, 29, 2886–2892.
Haesen, S., Lenoir, J., Gril, E., De Frenne, P., Lembrechts, J. J., Kopecký, M., Macek, M., Man, M., Wild, J., & Van Meerbeek, K. (2023). Microclimate reveals the true thermal niche of forest plant species. Ecology Letters, 26, 2043–2055.
Halffman, R., Lembrechts, J., Radujković, D., De Gruyter, J., Nijs, I., & De Jonge, C. (2022). Soil chemistry, temperature and bacterial community composition drive brGDGT distributions along a subarctic elevation gradient. Organic Geochemistry, 163, 104346.
Hartig, T., & Kahn, P. H., Jr. (2016). Living in cities, naturally. Science, 352, 938–940.
Heinonen, M., Anagnostou, M., Bartolo, J., Bell, S., Benyon, R., Bergerud, R. A., Bojkovski, J., Böse, N., Dinu, C., Smorgon, D., Flakiewicz, K., Martin, M. J., Nedialkov, S., Nielsen, M. B., Oğuz Aytekin, S., Otych, J., Pedersen, M., Rujan, M., Testa, N., … White, M. (2014). Comparison of air temperature calibrations. International Journal of Thermophysics, 35, 1251–1272.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
Hoffrén, R., & García, M. B. (2023). Thermal unmanned aerial vehicles for the identification of microclimatic refugia in topographically complex areas. Remote Sensing of Environment, 286, 113427.
Hylander, K., Ehrlén, J., Luoto, M., & Meineri, E. (2015). Microrefugia: Not for everyone. Ambio, 44(Suppl. 1), S60–S68.
Hylander, K., Greiser, C., Christiansen, D. M., & Koelemeijer, I. A. (2022). Climate adaptation of biodiversity conservation in managed forest landscapes. Conservation Biology: The Journal of the Society for Conservation Biology, 36, e13847.
Jenerette, G. D., Harlan, S. L., Buyantuev, A., Stefanov, W. L., Declet-Barreto, J., Ruddell, B. L., Myint, S. W., Kaplan, S., & Li, X. (2016). Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landscape Ecology, 31, 745–760.
Jonas, T., Webster, C., Mazzotti, G., & Malle, J. (2020). HPEval: A canopy shortwave radiation transmission model using high-resolution hemispherical images. Agricultural and Forest Meteorology, 284, 107903.
Jones, J. C., & Oldroyd, B. P. (2006). Nest thermoregulation in social insects. In Advances in insect physiology advances in insect physiology (pp. 153–191). Elsevier.
Joseph, G. S., Seymour, C. L., Coetzee, B. W. T., Ndlovu, M., De La Torre, A., Suttle, R., Hicks, N., Oxley, S., & Foord, S. H. (2016). Microclimates mitigate against hot temperatures in dryland ecosystems: Termite mounds as an example. Ecosphere, 7, e01509.
Judge, R., Choi, F., & Helmuth, B. (2018). Recent advances in data logging for intertidal ecology. Frontiers in Ecology and Evolution, 6.
Kakoulaki, G., Martinez, A., & Florio, P. (2021, ISBN 978-92-76-41150-5). Non-commercial light detection and ranging (LiDAR) data in Europe, EUR 30817 EN. Publications Office of the European Union. https://doi.org/10.2760/212427, JRC126223 https://publications.jrc.ec.europa.eu/repository/bitstream/JRC126223/jrc126223_jrc126223_lidaropensourcedata.pdf
Kankaanpää, T., Skov, K., Abrego, N., Lund, M., Schmidt, N. M., & Roslin, T. (2018). Spatiotemporal snowmelt patterns within a high Arctic landscape, with implications for flora and fauna. Arctic, Antarctic, and Alpine Research, 50, e1415624.
Kankaanpää, T., Vesterinen, E., Hardwick, B., Schmidt, N. M., Andersson, T., Aspholm, P. E., Barrio, I. C., Beckers, N., Bêty, J., Birkemoe, T., DeSiervo, M., Drotos, K. H. I., Ehrich, D., Gilg, O., Gilg, V., Hein, N., Høye, T. T., Jakobsen, K. M., Jodouin, C., … Roslin, T. (2020). Parasitoids indicate major climate-induced shifts in arctic communities. Global Change Biology, 26, 6276–6295.
Kašpar, V., Hederová, L., Macek, M., Müllerová, J., Prošek, J., Surový, P., Wild, J., & Kopecký, M. (2021). Temperature buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive remote sensing. Remote Sensing of Environment, 263, 112522.
Kaspari, M., Clay, N. A., Lucas, J., Revzen, S., Kay, A., & Yanoviak, S. P. (2016). Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants. Ecology, 97, 1038–1047.
Kautz, M., Schopf, R., & Ohser, J. (2013). The ‘sun-effect’: Microclimatic alterations predispose forest edges to bark beetle infestations. European Journal of Forest Research, 132, 453–465.
Kearney, M. R. (2019). microclimUS: Hourly estimates of historical microclimates for The United States of America with example applications. Ecology, 100, e02829.
Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P., & Maclean, I. M. D. (2020). A method for computing hourly, historical, terrain-corrected microclimate anywhere on earth. Methods in Ecology and Evolution, 11, 38–43.
Keitt, T. H., & Abelson, E. S. (2021). Ecology in the age of automation. Science, 373, 858–859.
Kemppinen, J., & Niittynen, P. (2022). Microclimate relationships of intraspecific trait variation in sub-Arctic plants. Oikos, 2022, e09507.
Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C., & Luoto, M. (2019). Water as a resource, stress and disturbance shaping tundra vegetation. Oikos, 128, 811–822.
Kemppinen, J., Niittynen, P., le Roux, P. C., Momberg, M., Happonen, K., Aalto, J., Rautakoski, H., Enquist, B. J., Vandvik, V., Halbritter, A. H., Maitner, B., & Luoto, M. (2021). Consistent trait-environment relationships within and across tundra plant communities. Nature Ecology & Evolution, 5, 458–467.
Keppel, G., Mokany, K., Wardell-Johnson, G. W., Phillips, B. L., Welbergen, J. A., & Reside, A. E. (2015). The capacity of refugia for conservation planning under climate change. Frontiers in Ecology and the Environment, 13, 106–112.
Keppel, G., Van Niel, K. P., Wardell-Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A. G. T., Hopper, S. D., & Franklin, S. E. (2012). Refugia: Identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography: A Journal of Macroecology, 21, 393–404.
Kermavnar, J., Ferlan, M., Marinšek, A., Eler, K., Kobler, A., & Kutnar, L. (2020). Effects of various cutting treatments and topographic factors on microclimatic conditions in Dinaric fir-beech forests. Agricultural and Forest Meteorology, 295, 108186.
Kim, H., McComb, B. C., Frey, S. J. K., Bell, D. M., & Betts, M. G. (2022). Forest microclimate and composition mediate long-term trends of breeding bird populations. Global Change Biology, 28, 6180–6193.
Klinges, D. H., Duffy, J. P., Kearney, M. R., & Maclean, I. M. D. (2022). mcera5: Driving microclimate models with ERA5 global gridded climate data. Methods in Ecology and Evolution/British Ecological Society, 13, 1402–1411.
Kraus, G. (1911). Boden und Klima auf kleinstem Raum, Versuch einer exakten Behandlung des Standorts auf dem Wellenkalk. von Dr. Gregor Kraus.
Kusch, E., & Davy, R. (2022). KrigR—A tool for downloading and statistically downscaling climate reanalysis data. Environmental Research Letters [Web Site], 17, 024005.
Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. The Science of the Total Environment, 661, 337–353.
Larsen, A., Larsen, J. R., & Lane, S. N. (2021). Dam builders and their works: Beaver influences on the structure and function of river corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth-Science Reviews, 218, 103623.
Law, S. J., Bishop, T. R., Eggleton, P., Griffiths, H., Ashton, L., & Parr, C. (2020). Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. The Journal of Animal Ecology, 89, 347–359.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., … Zeng, X. (2019). The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245–4287.
le Roux, P. C., Aalto, J., & Luoto, M. (2013). Soil moisture's underestimated role in climate change impact modelling in low-energy systems. Global Change Biology, 19, 2965–2975.
Lembrechts, J. J., Aalto, J., Ashcroft, M. B., De Frenne, P., Kopecký, M., Lenoir, J., Luoto, M., Maclean, I. M. D., Roupsard, O., Fuentes-Lillo, E., García, R. A., Pellissier, L., Pitteloud, C., Alatalo, J. M., Smith, S. W., Björk, R. G., Muffler, L., Ratier Backes, A., Cesarz, S., … Nijs, I. (2020). SoilTemp: A global database of near-surface temperature. Global Change Biology, 26, 6616–6629.
Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider, S., Pellissier, L., Pauchard, A., Ratier Backes, A., Dimarco, R. D., Nuñez, M. A., Aalto, J., & Nijs, I. (2019). Comparing temperature data sources for use in species distribution models: From in-situ logging to remote sensing. Global Ecology and Biogeography: A Journal of Macroecology, 28, 1578–1596.
Lembrechts, J. J., Lenoir, J., Scheffers, B., & De Frenne, P. (2021). Designing countrywide and regional microclimate networks. Global Ecology and Biogeography: A Journal of Macroecology, 30, 1168–1174.
Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42, 1267–1279.
Lembrechts, J. J., van den Hoogen, J., Aalto, J., Ashcroft, M. B., De Frenne, P., Kemppinen, J., Kopecký, M., Luoto, M., Maclean, I. M. D., Crowther, T. W., Bailey, J. J., Haesen, S., Klinges, D. H., Niittynen, P., Scheffers, B. R., Van Meerbeek, K., Aartsma, P., Abdalaze, O., Abedi, M., … Lenoir, J. (2022). Global maps of soil temperature. Global Change Biology, 28, 3110–3144.
Lenoir, J., Hattab, T., & Pierre, G. (2017). Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography, 40, 253–266.
Levy, O., Buckley, L. B., Keitt, T. H., & Angilletta, M. J., Jr. (2016). A dynamically downscaled projection of past and future microclimates. Ecology, 97, 1888.
Li, S., Xu, L. D., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17, 243–259.
Liancourt, P., Song, X., Macek, M., Santrucek, J., & Dolezal, J. (2020). Plant's-eye view of temperature governs elevational distributions. Global Change Biology, 26, 4094–4103.
Lin, B. B., Perfecto, I., & Vandermeer, J. (2008). Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience, 58, 847–854.
Lin, Y., Wang, Z., Jim, C. Y., Li, J., Deng, J., & Liu, J. (2020). Water as an urban heat sink: Blue infrastructure alleviates urban heat Island effect in mega-city agglomeration. Journal of Cleaner Production, 262, 121411.
Liu, D., Ogaya, R., Barbeta, A., Yang, X., & Peñuelas, J. (2018). Long-term experimental drought combined with natural extremes accelerate vegetation shift in a Mediterranean holm oak forest. Environmental and Experimental Botany, 151, 1–11.
Lloret, F., Siscart, D., & Dalmases, C. (2004). Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Global Change Biology, 10, 2092–2099.
Lucid, M. K., Wan, H. Y., Ehlers, S., Robinson, L., Svancara, L. K., Shirk, A., & Cushman, S. (2021). Land snail microclimate niches identify suitable areas for climate refugia management on a montane landscape. Ecological Indicators, 129, 107885.
Lundgren, E. J., Ramp, D., Stromberg, J. C., Wu, J., Nieto, N. C., Sluk, M., Moeller, K. T., & Wallach, A. D. (2021). Equids engineer desert water availability. Science, 372, 491–495.
Iungman, T., Cirach, M., Marando, F., Barboza, E. P., Khomenko, S., Masselot, P., Quijal-Zamorano, M., Mueller, N., Gasparrini, A., Urquiza, J., Heris, M., Thondoo, M., & Nieuwenhuijsen, M. (2023). Cooling cities through urban green infrastructure: A health impact assessment of European cities. The Lancet, 401(10376), P577–589.
Luskin, M. S., & Potts, M. D. (2011). Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic and Applied Ecology, 12, 540–551.
Ma, L., Liu, L., Lu, Y., Chen, L., Zhang, Z., Zhang, H., Wang, X., Shu, L., Yang, Q., Song, Q., Peng, Q., Yu, Z., & Zhang, J. (2022). When microclimates meet soil microbes: Temperature controls soil microbial diversity along an elevational gradient in subtropical forests. Soil Biology & Biochemistry, 166, 108566.
Maclean, I. M. D., Duffy, J. P., Haesen, S., Govaert, S., De Frenne, P., Vanneste, T., Lenoir, J., Lembrechts, J. J., Rhodes, M. W., & Van Meerbeek, K. (2021). On the measurement of microclimate. Methods in Ecology and Evolution/British Ecological Society, 12, 1397–1410.
Maclean, I. M. D., & Early, R. (2023). Macroclimate data overestimate range shifts of plants in response to climate change. Nature Climate Change, 13, 484–490.
Maclean, I. M. D., & Klinges, D. H. (2021). Microclimc: A mechanistic model of above, below and within-canopy microclimate. Ecological Modelling, 451, 109567.
Malhi, Y., Lander, T., le Roux, E., Stevens, N., Macias-Fauria, M., Wedding, L., Girardin, C., Kristensen, J. Å., Sandom, C. J., Evans, T. D., Svenning, J.-C., & Canney, S. (2022). The role of large wild animals in climate change mitigation and adaptation. Current Biology: CB, 32, R181–R196.
Man, M., Kalčík, V., Macek, M., Brůna, J., Hederová, L., Wild, J., & Kopecký, M. (2023). myClim: Microclimate data handling and standardised analyses in R. Methods in ecology and evolution, 14, 2308–2320.
Man, M., Wild, J., Macek, M., & Kopecký, M. (2022). Can high-resolution topography and forest canopy structure substitute microclimate measurements? Bryophytes say no. The Science of the Total Environment, 821, 153377.
Massimino, D., Beale, C. M., Suggitt, A. J., Crick, H. Q. P., Macgregor, N. A., Carroll, M. J., Maclean, I. M. D., & Pearce-Higgins, J. W. (2020). Can microclimate offer refuge to an upland bird species under climate change? Landscape Ecology, 35, 1907–1922.
McCullough, I. M., Davis, F. W., Dingman, J. R., Flint, L. E., Flint, A. L., Serra-Diaz, J. M., Syphard, A. D., Moritz, M. A., Hannah, L., & Franklin, J. (2016). High and dry: High elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecology, 31, 1063–1075.
McGlynn, T. P., Meineke, E. K., Bahlai, C. A., Li, E., Hartop, E. A., Adams, B. J., & Brown, B. V. (2019). Temperature accounts for the biodiversity of a hyperdiverse group of insects in urban Los Angeles. Proceedings. Biological Sciences/The Royal Society, 286, 20191818.
McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017). Hydrologic refugia, plants, and climate change. Global Change Biology, 23, 2941–2961.
Meeussen, C., Govaert, S., Vanneste, T., Haesen, S., Van Meerbeek, K., Bollmann, K., Brunet, J., Calders, K., Cousins, S. A. O., Diekmann, M., Graae, B. J., Iacopetti, G., Lenoir, J., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Sørensen, M. V., … De Frenne, P. (2021). Drivers of carbon stocks in forest edges across Europe. The Science of the Total Environment, 759, 143497.
Meineri, E., & Hylander, K. (2017). Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography, 40, 1003–1013.
Menge, J. H., Magdon, P., Wöllauer, S., & Ehbrecht, M. (2023). Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests. Landscape Ecology, 38, 903–917.
Meyer, A. V., Sakairi, Y., Kearney, M. R., & Buckley, L. B. (2023). A guide and tools for selecting and accessing microclimate data for mechanistic niche modeling. Ecosphere, 14, e4506.
Mickley, J. G., Moore, T. E., Schlichting, C. D., DeRobertis, A., Pfisterer, E. N., & Bagchi, R. (2019). Measuring microenvironments for global change: DIY environmental microcontroller units (EMUs). Methods in Ecology and Evolution/British Ecological Society, 10, 578–584.
Mollinari, M. M., Peres, C. A., & Edwards, D. P. (2019). Rapid recovery of thermal environment after selective logging in the Amazon. Agricultural and Forest Meteorology, 278, 107637.
Momberg, M., Hedding, D. W., Luoto, M., & le Roux, P. C. (2021). Species differ in their responses to wind: The underexplored link between species fine-scale occurrences and variation in wind stress. Journal of vegetation science: Official organ of the International Association for Vegetation Science, 32, e13093.
Momberg, M., Ryan, P. G., Hedding, D. W., Schoombie, J., Goddard, K. A., Craig, K. J., & Le Roux, P. C. (2023). Factors determining nest-site selection of surface-nesting seabirds: A case study on the world's largest pelagic bird, the wandering albatross (Diomedea exulans). The Ibis, 165, 190–203.
Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate-change refugia: Biodiversity in the slow lane. Frontiers in Ecology and the Environment, 18, 228–234.
Moritz, C., & Agudo, R. (2013). The future of species under climate change: Resilience or decline? Science, 341, 504–508.
Nadeau, C. P., Giacomazzo, A., & Urban, M. C. (2022). Cool microrefugia accumulate and conserve biodiversity under climate change. Global Change Biology, 28, 3222–3235.
Niittynen, P., Heikkinen, R. K., Aalto, J., Guisan, A., Kemppinen, J., & Luoto, M. (2020). Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nature Climate Change, 10, 1143–1148.
Niittynen, P., & Luoto, M. (2018). The importance of snow in species distribution models of arctic vegetation. Ecography, 41, 1024–1037.
Norris, C., Hobson, P., & Ibisch, P. L. (2011). Microclimate and vegetation function as indicators of forest thermodynamic efficiency. Journal of Applied Ecology, 49, 570.
Nuñez, M. A., Chiuffo, M. C., Pauchard, A., & Zenni, R. D. (2021). Making ecology really global. Trends in Ecology & Evolution, 36, 766–769.
Oldfather, M. F., & Ackerly, D. D. (2019). Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. The New Phytologist, 222, 193–205.
Ononye, B. U., Akunne, C. E., Ogbuefi, E. O., Okeke, T. E., Okafor, K. P., Azaka, E. I., Obiyo, G. E., Aniefuna, C. O., Akwuaka, P. C., & Chidi, C. A. (2023). Effect of improved hive cover designs on internal microclimate and colony establishment of West African honeybees (Apis mellifera adansonii L.) in Awka, Nigeria. Journal of Applied Life Sciences International, 26, 1–16.
Opedal, Ø. H., Armbruster, W. S., & Graae, B. J. (2015). Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity, 8, 305–315.
Örlander, G. (1993). Shading reduces both visible and invisible frost damage to Norway spruce seedlings in the field. Forestry, 66, 27–36.
Ozanne, C. M. P., Anhuf, D., Boulter, S. L., Keller, M., Kitching, R. L., Körner, C., Meinzer, F. C., Mitchell, A. W., Nakashizuka, T., Dias, P. L. S., Stork, N. E., Wright, S. J., & Yoshimura, M. (2003). Biodiversity meets the atmosphere: A global view of forest canopies. Science, 301, 183–186.
Paaijmans, K. P., Imbahale, S. S., Thomas, M. B., & Takken, W. (2010). Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malaria Journal, 9, 196.
Pincebourde, S., & Casas, J. (2019). Narrow safety margin in the phyllosphere during thermal extremes. Proceedings of the National Academy of Sciences of the United States of America, 116, 5588–5596.
Pincebourde, S., & Woods, H. A. (2020). There is plenty of room at the bottom: Microclimates drive insect vulnerability to climate change. Current Opinion in Insect Science, 41, 63–70.
Playà-Montmany, N., & Tattersall, G. J. (2021). Spot size, distance and emissivity errors in field applications of infrared thermography. Methods in Ecology and Evolution / British Ecological Society, 12, 828–840.
Poorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A., Mäenpää, M., Matsubara, S., & Pons, T. (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. The New Phytologist, 223, 1073–1105.
Porter, W. P., Mitchell, J. W., Beckman, W. A., & DeWitt, C. B. (1973). Behavioral implications of mechanistic ecology: Thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia, 13, 1–54.
Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic challenges in global change biology. Global Change Biology, 19, 2932–2939.
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rebaudo, F., Soulard, T., Condori, B., Quispe-Tarqui, R., Calatayud, P.-A., Chavez Vino, S., Tonnang, H. E. Z., & Bessière, L. (2023). A low-cost IoT network to monitor microclimate variables in ecosystems. Methods in Ecology and Evolution/British Ecological Society. 14, 1025–1034.
Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge University Press.
Riddell, E. A., Iknayan, K. J., Hargrove, L., Tremor, S., Patton, J. L., Ramirez, R., Wolf, B. O., & Beissinger, S. R. (2021). Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science, 371, 633–636.
Ripley, B. S., Edwardes, A., Rossouw, M. W., Smith, V. R., & Midgley, G. F. (2020). Invasive grasses of sub-Antarctic Marion Island respond to increasing temperatures at the expense of chilling tolerance. Annals of Botany, 125, 765–773.
Risch, A. C., Zimmermann, S., Schütz, M., Borer, E. T., Broadbent, A. A. D., Caldeira, M. C., Davies, K. F., Eisenhauer, N., Eskelinen, A., Fay, P. A., Hagedorn, F., Knops, J. M. H., Lembrechts, J. J., MacDougall, A. S., McCulley, R. L., Melbourne, B. A., Moore, J. L., Power, S. A., Seabloom, E. W., … Ochoa-Hueso, R. (2023). Drivers of the microbial metabolic quotient across global grasslands. Global Ecology and Biogeography: A Journal of Macroecology, 32, 904–918.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7, 358–389.
Roman, L. A., Conway, T. M., Eisenman, T. S., Koeser, A. K., Ordóñez Barona, C., Locke, D. H., Jenerette, G. D., Östberg, J., & Vogt, J. (2021). Beyond ‘trees are good’: Disservices, management costs, and tradeoffs in urban forestry. Ambio, 50, 615–630.
Sanczuk, P., Govaert, S., Meeussen, C., De Pauw, K., Vanneste, T., Depauw, L., Moreira, X., Schoelynck, J., De Boevre, M., De Saeger, S., Bollmann, K., Brunet, J., Cousins, S. A. O., Plue, J., Diekmann, M., Graae, B. J., Hedwall, P., Iacopetti, G., Lenoir, J., … De Frenne, P. (2021). Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Europe. Global Ecology and Biogeography, 30, 205–219.
Sandom, C. J., Hughes, J., & Macdonald, D. W. (2013). Rewilding the Scottish highlands: Do wild boar,Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restoration Ecology, 21, 336–343.
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E., & Evans, T. A. (2014). Microhabitats reduce animal's exposure to climate extremes. Global Change Biology, 20, 495–503.
Scheffers, B. R., Edwards, D. P., Macdonald, S. L., Senior, R. A., Andriamahohatra, L. R., Roslan, N., Rogers, A. M., Haugaasen, T., Wright, P., & Williams, S. E. (2017). Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica, 49, 35–44.
Scheffers, B. R., Phillips, B. L., Laurance, W. F., Sodhi, N. S., Diesmos, A., & Williams, S. E. (2013). Increasing arboreality with altitude: A novel biogeographic dimension. Proceedings. Biological Sciences/The Royal Society, 280, 20131581.
Scherrer, D., & Körner, C. (2009). Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16, 2602–2613.
Schmalholz, M., & Hylander, K. (2011). Microtopography creates small-scale refugia for boreal forest floor bryophytes during clear-cut logging. Ecography, 34, 637–648.
Schouten, R., Baudrot, V., Umina, P., & Maino, J. (2022). A working guide to spatial mechanistic modelling in Julia. Methods in Ecology and Evolution/British Ecological Society, 13, 945–954.
Schwaab, J., Meier, R., Mussetti, G., Seneviratne, S., Bürgi, C., & Davin, E. L. (2021). The role of urban trees in reducing land surface temperatures in European cities. Nature Communications, 12, 6763.
Sears, M. W., Angilletta, M. J., Jr., Schuler, M. S., Borchert, J., Dilliplane, K. F., Stegman, M., Rusch, T. W., & Mitchell, W. A. (2016). Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proceedings of the National Academy of Sciences of the United States of America, 113, 10595–10600.
Senior, R. A., Hill, J. K., Benedick, S., & Edwards, D. P. (2018). Tropical forests are thermally buffered despite intensive selective logging. Global Change Biology, 24, 1267–1278.
Senior, R. A., Hill, J. K., & Edwards, D. P. (2019). ThermStats: An R package for quantifying surface thermal heterogeneity in assessments of microclimates. Methods in Ecology and Evolution/British Ecological Society, 10, 1606–1614.
Senior, R. A., Hill, J. K., González Del Pliego, P., Goode, L. K., & Edwards, D. P. (2017). A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecology and Evolution, 7, 7897–7908.
Shafique, M., Luo, X., & Zuo, J. (2020). Photovoltaic-green roofs: A review of benefits, limitations, and trends. Solar Energy, 202, 485–497.
Shanks, R. E. (1956). Altitudinal and microclimatic relationships of soil temperature under natural vegetation. Ecology, 37, 1–7.
Shen, T., Corlett, R. T., Collart, F., Kasprzyk, T., Guo, X.-L., Patiño, J., Su, Y., Hardy, O. J., Ma, W.-Z., Wang, J., Wei, Y.-M., Mouton, L., Li, Y., Song, L., & Vanderpoorten, A. (2022). Microclimatic variation in tropical canopies: A glimpse into the processes of community assembly in epiphytic bryophyte communities. The Journal of Ecology, 110, 3023–3038.
Shen, T., Song, L., Collart, F., Guisan, A., Su, Y., Hu, H.-X., Wu, Y., Dong, J.-L., & Vanderpoorten, A. (2022). What makes a good phorophyte? Predicting occupancy, species richness and abundance of vascular epiphytes in a lowland seasonal tropical forest. Frontiers in Forests and Global Change, 5, 1007473.
Stark, G., Ma, L., Zeng, Z.-G., Du, W.-G., & Levy, O. (2023). Cool shade and not-so-cool shade: How habitat loss may accelerate thermal stress under current and future climate. Global Change Biology, 29, 6201–6216.
Stark, J. R., Fridley, J. D., & Gill, J. (2022). Microclimate-based species distribution models in complex forested terrain indicate widespread cryptic refugia under climate change. Global Ecology and Biogeography: A Journal of Macroecology, 31, 562–575.
Stickley, S. F., & Fraterrigo, J. M. (2023). Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. Journal of Nature Conservation, 72, 126333.
Suggitt, A. J., Wilson, R. J., Isaac, N. J. B., Beale, C. M., Auffret, A. G., August, T., Bennie, J. J., Crick, H. Q. P., Duffield, S., Fox, R., Hopkins, J. J., Macgregor, N. A., Morecroft, M. D., Walker, K. J., & Maclean, I. M. D. (2018). Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 8, 713–717.
Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies—A review. Renewable and Sustainable Energy Reviews, 81, 2011–2018.
Terando, A. J., Youngsteadt, E., Meineke, E. K., & Prado, S. G. (2017). Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements. Ecology and Evolution, 7, 9890–9904.
Thers, H., Bøcher, P. K., & Svenning, J.-C. (2019). Using lidar to assess the development of structural diversity in forests undergoing passive rewilding in temperate northern Europe. PeerJ, 6, e6219.
Thom, D., Ammer, C., Annighöfer, P., Aszalós, R., Dittrich, S., Hagge, J., Keeton, W. S., Kovacs, B., Krautkrämer, O., Müller, J., von Oheimb, G., & Seidl, R. (2022). Regeneration in European beech forests after drought: The effects of microclimate, deadwood and browsing. European Journal of Forest Research, 291, 1–15.
Thom, D., Sommerfeld, A., Sebald, J., Hagge, J., Müller, J., & Seidl, R. (2020). Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agricultural and Forest Meteorology, 291, 108066.
Thorne, J. H., Gogol-Prokurat, M., Hill, S., Walsh, D., Boynton, R. M., & Choe, H. (2020). Vegetation refugia can inform climate-adaptive land management under global warming. Frontiers in Ecology and the Environment, 18, 281–287.
Tinya, F., Kovács, B., Bidló, A., Dima, B., Király, I., Kutszegi, G., Lakatos, F., Mag, Z., Márialigeti, S., Nascimbene, J., Samu, F., Siller, I., Szél, G., & Ódor, P. (2021). Environmental drivers of forest biodiversity in temperate mixed forests—A multi-taxon approach. The Science of the Total Environment, 795, 148720.
Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography: A Journal of Macroecology, 30, 768–783.
Vandvik, V., Skarpaas, O., Klanderud, K., Telford, R. J., Halbritter, A. H., & Goldberg, D. E. (2020). Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proceedings of the National Academy of Sciences of the United States of America, 117, 22858–22865.
Vega-Álvarez, J., García-Rodríguez, J. A., & Cayuela, L. (2019). Facilitation beyond species richness. The Journal of Ecology, 107, 722–734.
Virkkala, A.-M., Niittynen, P., Kemppinen, J., Marushchak, M. E., Voigt, C., Hensgens, G., Kerttula, J., Happonen, K., Tyystjärvi, V., Biasi, C., Hultman, J., Rinne, J., & Luoto, M. (2024). High-resolution spatial patterns and drivers of terrestrial ecosystem carbon dioxide, methane, and nitrous oxide fluxes in the tundra. Biogeosciences, 21, 335–355.
Vives-Ingla, M., Sala-Garcia, J., Stefanescu, C., Casadó-Tortosa, A., Garcia, M., Peñuelas, J., & Carnicer, J. (2023). Interspecific differences in microhabitat use expose insects to contrasting thermal mortality. Ecological Monographs, 93, e1561.
von Schmalensee, L. (2023). How to generate accurate continuous thermal regimes from sparse but regular temperature measurements. Methods in Ecology and Evolution/British Ecological Society, 14, 1208–1216.
von Schmalensee, L., Hulda Gunnarsdóttir, K., Näslund, J., Gotthard, K., & Lehmann, P. (2021). Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates. Ecology Letters, 24, 1633–1645.
Weber, N., Bouwes, N., Pollock, M. M., Volk, C., Wheaton, J. M., Wathen, G., Wirtz, J., & Jordan, C. E. (2017). Alteration of stream temperature by natural and artificial beaver dams. PLoS One, 12, e0176313.
Webster, C., Mazzotti, G., Essery, R., & Jonas, T. (2020). Enhancing airborne LiDAR data for improved forest structure representation in shortwave transmission models. Remote Sensing of the Environment, 249, 112017.
Welman, S., & Pichegru, L. (2023). Nest microclimate and heat stress in African Penguins Spheniscus demersus breeding on Bird Island, South Africa. Bird Conservation International, 33, 1–9.
Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., & Haase, T. (2019). Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agricultural and Forest Meteorology, 268, 40–47.
Willems, F. M., Scheepens, J. F., Ammer, C., Block, S., Bucharova, A., Schall, P., Sehrt, M., & Bossdorf, O. (2021). Spring understory herbs flower later in intensively managed forests. Ecological Applications: A Publication of the Ecological Society of America, 31, e02332.
Williamson, J., Slade, E. M., Luke, S. H., Swinfield, T., Chung, A. Y. C., Coomes, D. A., Heroin, H., Jucker, T., Lewis, O. T., Vairappan, C. S., Rossiter, S. J., & Struebig, M. J. (2021). Riparian buffers act as microclimatic refugia in oil palm landscapes. The Journal of Applied Ecology, 58, 431–442.
Wimberly, M. C., Davis, J. K., Evans, M. V., Hess, A., Newberry, P. M., Solano-Asamoah, N., & Murdock, C. C. (2020). Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. PLoS Neglected Tropical Diseases, 14, e0008614.
Wolf, C., Bell, D. M., Kim, H., Nelson, M. P., Schulze, M., & Betts, M. G. (2021). Temporal consistency of undercanopy thermal refugia in old-growth forest. Agricultural and Forest Meteorology, 307, 108520.
Wong, G. K. L., & Jim, C. Y. (2017). Urban-microclimate effect on vector mosquito abundance of tropical green roofs. Building and Environment, 112, 63–76.
Wurz, A., Tscharntke, T., Martin, D. A., Osen, K., Rakotomalala, A. A. N. A., Raveloaritiana, E., Andrianisaina, F., Dröge, S., Fulgence, T. R., Soazafy, M. R., Andriafanomezantsoa, R., Andrianarimisa, A., Babarezoto, F. S., Barkmann, J., Hänke, H., Hölscher, D., Kreft, H., Rakouth, B., Guerrero-Ramírez, N. R., … Grass, I. (2022). Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nature Communications, 13, 4127.
Xue, F., Gou, Z., & Lau, S. S. Y. (2017). Green open space in high-dense Asian cities: Site configurations, microclimates and users' perceptions. Sustainable Cities and Society, 34, 114–125.
Yin, Y., He, L., Wennberg, P. O., & Frankenberg, C. (2023). Unequal exposure to heatwaves in Los Angeles: Impact of uneven green spaces. Science Advances, 9, eade8501.
Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., & Coomes, D. (2019). Advances in microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 34, 327–341.
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368, 772–775.
Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102, 54–63.
Zölch, T., Maderspacher, J., Wamsler, C., & Pauleit, S. (2016). Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry & Urban Greening, 20, 305–316.
Zweifel, R., Steppe, K., & Sterck, F. J. (2007). Stomatal regulation by microclimate and tree water relations: Interpreting ecophysiological field data with a hydraulic plant model. Journal of Experimental Botany, 58, 2113–2131.