Plastic Waste; Chemical Recycling; Technology Readiness Level; Value Chain; Circular Economy
Abstract :
[en] It is estimated that nearly 400 million tons of plastic are produced each year worldwide. However, only 10% of this enormous amount is recycled after use. Currently, mechanical recycling is the dominant method, despite certain operational limitations. To increase recycling rates, chemical recycling processes are emerging as viable alternatives, promising the creation of more valuable products. This comprehensive review begins with an introduction to ongoing plastic recycling technologies, covering general pretreatment methods for plastic waste and the taxonomy of various recycling technologies and their applications for specific polymer recycling. Then various aspects of chemical recycling are examined to explore its role within the context of a circular economy. Detailing chemical recycling technologies, such as depolymerization pathways and thermochemical pathways, are systematically elaborated. It also delves into optimization strategies, technological maturity, and economic assessments of chemical recycling. In addition, this review also examines the symbiotic and/or substitutional relationship between conventional recycling methods and alternatives, including biological recycling, biodegradable polymers, and eco-design. Finally, the approaches to improve the large-scale application of chemical recycling technology from the perspectives of technological level, infrastructure construction, public awareness enhancement, and national and international policy formulation are discussed. This review aims to provide theoretical support and practical recommendations for the future development of chemical recycling technologies to achieve the goals of sustainable development and a circular economy. [fr] On estime que près de 400 millions de tonnes de plastique sont produites chaque année dans le monde. Cependant, seulement 10 % de cette énorme quantité est recyclée après usage. Actuellement, le recyclage mécanique est la méthode dominante, malgré certaines limitations opérationnelles. Pour augmenter les taux de recyclage, des procédés de recyclage chimique émergent comme des alternatives viables, promettant la création de produits plus précieux. Cette revue exhaustive commence par une introduction aux technologies de recyclage des plastiques en cours, couvrant les méthodes générales de prétraitement des déchets plastiques et la taxonomie des différentes technologies de recyclage ainsi que leurs applications pour le recyclage spécifique des polymères. Ensuite, divers aspects du recyclage chimique sont examinés pour explorer son rôle dans le contexte d'une économie circulaire. Les technologies de recyclage chimique, telles que les voies de dépolymérisation et les voies thermochimiques, sont systématiquement détaillées. Il explore également les stratégies d'optimisation, la maturité technologique et les évaluations économiques du recyclage chimique. De plus, cette revue examine également la relation symbiotique et/ou substitutionnelle entre les méthodes de recyclage conventionnelles et les alternatives, y compris le recyclage biologique, les polymères biodégradables et l'éco-conception. Enfin, les approches visant à améliorer l'application à grande échelle de la technologie de recyclage chimique du point de vue du niveau technologique, de la construction des infrastructures, de la sensibilisation du public et de la formulation de politiques nationales et internationales sont discutées. Cette revue vise à fournir un soutien théorique et des recommandations pratiques pour le développement futur des technologies de recyclage chimique afin d'atteindre les objectifs de développement durable et d'économie circulaire.
Disciplines :
Chemistry
Author, co-author :
Liu, Qi; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Wang, Shu; Jinan University - University of Birmingham Joint Institute, Jinan University, Guangzhou 511436, China
Ngoc Thanh Tien, Nguyen; Department of Food Technology, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam Vietnam National University, Ho Chi Minh City 700000, Vietnam
Len, Christophe; Chimie ParisTech, CNRS, PSL Research University, Institute of Chemistry for Life and Health Sciences, 11 rue Pierre et Marie Curie, Paris F-75005, France
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Language :
English
Title :
The role of plastic chemical recycling processes in a circular economy context
Alternative titles :
[fr] Le rôle des procédés de recyclage chimique dans un contexte d'économie circulaire
Publication date :
October 2024
Journal title :
Chemical Engineering Journal
ISSN :
1385-8947
eISSN :
1873-3212
Publisher :
Elsevier BV
Volume :
498
Pages :
155227
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
7. Affordable and clean energy 9. Industry, innovation and infrastructure 12. Responsible consumption and production
Stegmann, P., Daioglou, V., Londo, M., Van Vuuren, D.P., Junginger, M., Plastic futures and their CO2 emissions. Nature 612 (2022), 272–276, 10.1038/s41586-022-05422-5.
Thompson, R.C., Swan, S.H., Moore, C.J., Vom Saal, F.S., Our plastic age. Philos T R Soc B 364 (2009), 1973–1976, 10.1098/rstb.2009.0054.
Plastics Europe, Market data, (2021). https://plasticseurope.org/resources/market-data/ (accessed December 14, 2022).
European Commission, A European strategy for plastics in a circular economy, (2018). https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1516265440535&uri=COM:2018:28:FIN (accessed December 14, 2022).
Rahimi, A., García, J.M., Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1 (2017), 1–11, 10.1038/s41570-017-0046.
Garcia, J.M., Robertson, M.L., The future of plastics recycling. Science 358 (2017), 870–872, 10.1126/science.aaq0324.
System, 2019 accessed December 14, 2022 https://nepis.epa.gov/Exe/ZyPDF.cgi/P100Y4CB.PDF?Dockey=P100Y4CB.PDF.
Ghayebzadeh, M., Aslani, H., Taghipour, H., Mousavi, S., Estimation of plastic waste inputs from land into the Caspian Sea: A significant unseen marine pollution. Mar. Pollut. Bull., 151, 2020, 110871, 10.1016/j.marpolbul.2019.110871.
Stöfen-O′Brien, A., Naji, A., Brooks, A.L., Jambeck, J.R., Khan, F.R., Marine plastic debris in the Arabian/Persian Gulf: Challenges, opportunities and recommendations from a transdisciplinary perspective. Mar. Policy, 136, 2022, 104909, 10.1016/j.marpol.2021.104909.
Organisation for Economic Co-operation and Development, Plastic pollution is growing relentlessly as waste management and recycling fall short, says OECD. 2023, OECD https://www.oecd.org/en/about/news/press-releases/2022/02/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.html (accessed July 20, 2024.
Ragaert, K., Delva, L., Van Geem, K., Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69 (2017), 24–58, 10.1016/j.wasman.2017.07.044.
Gopinath, K.P., Nagarajan, V.M., Krishnan, A., Malolan, R., A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: Development of a comprehensive index. J. Clean. Prod., 274, 2020, 123031, 10.1016/j.jclepro.2020.123031.
European Commission, An ambitious EU circular economy package, (2015). https://commission.europa.eu/publications/ambitious-eu-circular-economy-package_en (accessed July 12, 2024).
Liu, M., Wen, J., Feng, Y., Zhang, L., Wu, J., Wang, J., Yang, X., A benefit evaluation for recycling medical plastic waste in China based on material flow analysis and life cycle assessment. J. Clean. Prod., 368, 2022, 133033, 10.1016/j.jclepro.2022.133033.
Dash, A., Kumar, S., Singh, R.K., Thermolysis of Medical Waste (Waste Syringe) to Liquid Fuel Using Semi Batch Reactor. Waste Biomass Valor 6 (2015), 507–514, 10.1007/s12649-015-9382-3.
Khoo, H.H., LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resour Conserv Recy 145 (2019), 67–77, 10.1016/j.resconrec.2019.02.010.
Kusenberg, M., Eschenbacher, A., Delva, L., De Meester, S., Delikonstantis, E., Stefanidis, G.D., Ragaert, K., Van Geem, K.M., Towards high-quality petrochemical feedstocks from mixed plastic packaging waste via advanced recycling: The past, present and future. Fuel Process. Technol., 238, 2022, 107474, 10.1016/j.fuproc.2022.107474.
Chawla, S., Varghese, B.S., Hussain, C.A.C.G., Keçili, R., Hussain, C.M., Environmental impacts of post-consumer plastic wastes: Treatment technologies towards eco-sustainability and circular economy. Chemosphere, 308, 2022, 135867, 10.1016/j.chemosphere.2022.135867.
Lee, B.-K., Ellenbecker, M.J., Moure-Eraso, R., Analyses of the recycling potential of medical plastic wastes. Waste Manag. 22 (2002), 461–470, 10.1016/S0956-053X(02)00006-5.
Lim, J., Ahn, Y., Kim, J., Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution. Process Saf Environ 169 (2023), 685–696, 10.1016/j.psep.2022.11.027.
Sugihara, T., Udupa, A., Viswanathan, K., Davis, J.M., Chandrasekar, S., Organic monolayers disrupt plastic flow in metals. Sci. Adv. 6 (2020), 1–7, 10.1126/sciadv.abc8900.
Serranti, S., Bonifazi, G., Techniques for separation of plastic wastes. Use of Recycled Plastics in Eco-Efficient Concrete, 2019, Elsevier, 9–37, 10.1016/B978-0-08-102676-2.00002-5.
P. Bakaya, B.R. Coates, Conversion of polymer containing materials to petroleum products, US9624439B2, 2017. https://patents.google.com/patent/US9624439B2/en (accessed July 20, 2024).
Huang, J., Veksha, A., Chan, W.P., Giannis, A., Lisak, G., Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes. Renewable and Sustainable Energy Reviews, 154, 2022, 111866, 10.1016/j.rser.2021.111866.
Vollmer, I., Jenks, M.J.F., Roelands, M.C.P., White, R.J., Van Harmelen, T., De Wild, P., Van Der Laan, G.P., Meirer, F., Keurentjes, J.T.F., Weckhuysen, B.M., Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 59 (2020), 15402–15423, 10.1002/anie.201915651.
Lange, J.-P., Managing Plastic Waste─Sorting. Recycling, Disposal, and Product Redesign, Acs Sustain Chem Eng 9 (2021), 15722–15738, 10.1021/acssuschemeng.1c05013.
Lee, A., Liew, M.S., Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods. J Mater Cycles Waste 23 (2021), 32–43, 10.1007/s10163-020-01106-2.
Anne, C., Mulkern, CLIMATEWIRE, How States Will Hit 100 Percent Clean Energy. accessed July 25, 2023 Sci. Am., 2017 https://www.scientificamerican.com/article/how-states-will-hit-100-percent-clean-energy/.
Geyer, R., Jambeck, J.R., Law, K.L., Production, use, and fate of all plastics ever made. Sci. Adv., 3, 2017, e1700782.
Barnard, E., Rubio Arias, J.J., Thielemans, W., Chemolytic depolymerisation of PET: a review. Green Chem. 23 (2021), 3765–3789, 10.1039/D1GC00887K.
Zhang, H., Wen, Z.-G., The consumption and recycling collection system of PET bottles: A case study of Beijing, China. Waste Manag. 34 (2014), 987–998, 10.1016/j.wasman.2013.07.015.
F.P.L. Mantia, Handbook of Plastics Recycling, iSmithers Rapra Publishing, 2002.
Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M., Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 50 (2015), 1167–1180, 10.1016/j.rser.2015.04.063.
Serrano, D.P., Aguado, J., Escola, J.M., Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catal. 2 (2012), 1924–1941, 10.1021/cs3003403.
Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., Olazar, M., Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A Review, Renewable and Sustainable Energy Reviews 73 (2017), 346–368, 10.1016/j.rser.2017.01.142.
Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L., Fraternali, F., Recycling of plastic solid waste: A state of art review and future applications. Compos Part B-Eng 115 (2017), 409–422, 10.1016/j.compositesb.2016.09.013.
Thiounn, T., Smith, R.C., Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 58 (2020), 1347–1364, 10.1002/pol.20190261.
Schyns, Z.O.G., Shaver, M.P., Mechanical Recycling of Packaging Plastics: A Review. Macromol Rapid Comm, 42, 2021, 2000415, 10.1002/marc.202000415.
Uddin, M.A., Koizumi, K., Murata, K., Sakata, Y., Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil. Polym Degrad Stabil 56 (1997), 37–44, 10.1016/S0141-3910(96)00191-7.
Lewandowski, K., Skórczewska, K., A Brief Review of Poly(Vinyl Chloride) (PVC) Recycling. Polymers, 14, 2022, 3035, 10.3390/polym14153035.
Allen, N.S., Edge, M., Perspectives on additives for polymers. 1. Aspects of stabilization. Vinyl Additive Technology 27 (2021), 5–27, 10.1002/vnl.21807.
Zakharyan, E.M., Petrukhina, N.N., Maksimov, A.L., Pathways of Chemical Recycling of Polyvinyl Chloride: Part 1. Russ J Appl Chem+ 93 (2020), 1271–1313, 10.1134/S1070427220090013.
Ciacci, L., Passarini, F., Vassura, I., The European PVC cycle: In-use stock and flows. Resour Conserv Recy 123 (2017), 108–116, 10.1016/j.resconrec.2016.08.008.
Sadat-Shojai, M., Bakhshandeh, G.-R., Recycling of PVC wastes. Polym Degrad Stabil 96 (2011), 404–415, 10.1016/j.polymdegradstab.2010.12.001.
Sophonrat, N., Sandström, L., Svanberg, R., Han, T., Dvinskikh, S., Lousada, C.M., Yang, W., Ex Situ Catalytic Pyrolysis of a Mixture of Polyvinyl Chloride and Cellulose Using Calcium Oxide for HCl Adsorption and Catalytic Reforming of the Pyrolysis Products. Ind. Eng. Chem. Res. 58 (2019), 13960–13970, 10.1021/acs.iecr.9b02299.
Shah, J., Jan, M.R., Adnan. Tertiary Recycling of Waste Polystyrene Using Magnesium Impregnated Catalysts into Valuable Products, J Anal Appl Pyrol 114 (2015), 163–171, 10.1016/j.jaap.2015.05.009.
Greenland, B.W., Burattini, S., Hayes, W., Colquhoun, H.M., Design, synthesis and computational modelling of aromatic tweezer-molecules as models for chain-folding polymer blends. Tetrahedron 64 (2008), 8346–8354, 10.1016/j.tet.2008.05.077.
Ke, H., Li-hua, T., Zi-bin, Z., Cheng-fang, Z., Reaction mechanism of styrene monomer recovery from waste polystyrene by supercritical solvents. Polym. Degrad. Stab. 89 (2005), 312–316, 10.1016/j.polymdegradstab.2005.01.014.
Garforth, A.A., Ali, S., Hernández-Martínez, J., Akah, A., Feedstock recycling of polymer wastes. Curr. Opin. Solid State Mater. Sci. 8 (2004), 419–425, 10.1016/j.cossms.2005.04.003.
Ding, Y., Zhang, W., Zhang, X., Han, D., Liu, W., Jia, J., Pyrolysis and combustion behavior study of PMMA waste from micro-scale to bench-scale experiments. Fuel, 319, 2022, 123717, 10.1016/j.fuel.2022.123717.
Wang, J., Jiang, J., Meng, X., Li, M., Wang, X., Pang, S., Wang, K., Sun, Y., Zhong, Z., Ruan, R., Ragauskas, A.J., Promoting Aromatic Hydrocarbon Formation via Catalytic Pyrolysis of Polycarbonate Wastes over Fe- and Ce-Loaded Aluminum Oxide Catalysts. Environ. Sci. Tech. 54 (2020), 8390–8400, 10.1021/acs.est.0c00899.
Yeh, G.S.Y., Geil, P.H., Crystallization of polyethylene terephthalate from the glassy amorphous state. Journal of Macromolecular Science, Part B 1 (1967), 235–249, 10.1080/00222346708212777.
Yuen, A.C.Y., Chen, T.B.Y., Wang, C., Wei, W., Kabir, I., Vargas, J.B., Chan, Q.N., Kook, S., Yeoh, G.H., Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos Part B-Eng, 182, 2020, 107619, 10.1016/j.compositesb.2019.107619.
Ma, C., Sánchez-Rodríguez, D., Kamo, T., A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: Product characteristics and kinetics. J. Hazard. Mater., 412, 2021, 125329, 10.1016/j.jhazmat.2021.125329.
Kim, J.G., Chemical recycling of poly(bisphenol A carbonate). Polym Chem-Uk 11 (2020), 4830–4849, 10.1039/C9PY01927H.
National Academies of Sciences, Engineering, and Medicine, Reckoning with the U.S. Role in Global Ocean Plastic Waste, National Academies Press, Washington, D.C., 2022. https://doi.org/10.17226/26132.
Allen, S., Allen, D., Baladima, F., Phoenix, V.R., Thomas, J.L., Le Roux, G., Sonke, J.E., Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nat. Commun., 12, 2021, 7242, 10.1038/s41467-021-27454-7.
T.A. Saleh, G.I. Danmaliki, Polymer Consumption, Environmental Concerns, Possible Disposal Options, and Recycling for Water Treatment:, in: I.R. Management Association (Ed.), Waste Management: Concepts, Methodologies, Tools, and Applications, IGI Global, 2020: pp. 971–989. https://doi.org/10.4018/978-1-7998-1210-4.ch044.
Fraunhofer cluster of excellence circular plastics economy CCPE, Position Paper Recycling Technologies for Plastics, Fraunhofer UMSICHT Institute Branch Sulzbach-Rosenberg (2021). https://www.umsicht-suro.fraunhofer.de/en/press-and-media/press-releases/2021/position-paper-recycling-plastics.html (accessed October 27, 2022).
Dimitrov, N., Kratofil Krehula, L., Ptiček Siročić, A., Hrnjak-Murgić, Z., Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stabil 98 (2013), 972–979, 10.1016/j.polymdegradstab.2013.02.013.
Cella, R.F., Mumbach, G.D., Andrade, K.L., Oliveira, P., Marangoni, C., Bolzan, A., Bernard, S., Machado, R.A.F., Polystyrene recycling processes by dissolution in ethyl acetate. J. Appl. Polym. Sci., 135, 2018, 46208, 10.1002/app.46208.
Sherwood, J., Closed-Loop Recycling of Polymers Using Solvents: Remaking plastics for a circular economy. Johnson Matthey Technol. Rev. 64 (2020), 4–15, 10.1595/205651319X15574756736831.
Chen, H., Wan, K., Zhang, Y., Wang, Y., Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem 14 (2021), 4123–4136, 10.1002/cssc.202100652.
Howarth, J., Mareddy, S.S.R., Mativenga, P.T., Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite. J. Clean. Prod. 81 (2014), 46–50, 10.1016/j.jclepro.2014.06.023.
Jones, G.O., Yuen, A., Wojtecki, R.J., Hedrick, J.L., García, J.M., Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s. PNAS 113 (2016), 7722–7726, 10.1073/pnas.1600924113.
Feghali, E., Cantat, T., Room Temperature Organocatalyzed Reductive Depolymerization of Waste Polyethers, Polyesters, and Polycarbonates. ChemSusChem 8 (2015), 980–984, 10.1002/cssc.201500054.
Fernandes, A.C., Reductive Depolymerization of Plastic Waste Catalyzed by Zn(OAc)sub>2⋅2H2O. ChemSusChem 14 (2021), 4228–4233, 10.1002/cssc.202100130.
Al-Sabagh, A.M., Yehia, F.Z., Eshaq, Gh., Rabie, A.M., ElMetwally, A.E., Greener routes for recycling of polyethylene terephthalate. Egypt. J. Pet. 25 (2016), 53–64, 10.1016/j.ejpe.2015.03.001.
Chiu, S.-J., Tsai, C.-T., Chang, Y.-K., Monomer recovery from polycarbonate by methanolysis. E-Polymers 8 (2008), 1–13, 10.1515/epoly.2008.8.1.1516.
Heiran, R., Ghaderian, A., Reghunadhan, A., Sedaghati, F., Thomas, S., Haghighi, A.H., Glycolysis: an efficient route for recycling of end of life polyurethane foams. J. Polym. Res., 28, 2021, 22, 10.1007/s10965-020-02383-z.
Wang, C., El-Sepelgy, O., Reductive depolymerization of plastics catalyzed with transition metal complexes. Curr Opin Green Sust, 32, 2021, 100547, 10.1016/j.cogsc.2021.100547.
Datta, J., Kopczyńska, P., From polymer waste to potential main industrial products: Actual state of recycling and recovering. Crit Rev Env Sci Tec 46 (2016), 905–946, 10.1080/10643389.2016.1180227.
Zhang, F., Wang, F., Wei, X., Yang, Y., Xu, S., Deng, D., Wang, Y.-Z., From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. Journal of Energy Chemistry 69 (2022), 369–388, 10.1016/j.jechem.2021.12.052.
Jiang, J., Shi, K., Zhang, X., Yu, K., Zhang, H., He, J., Ju, Y., Liu, J., From plastic waste to wealth using chemical recycling: A review. J. Environ. Chem. Eng., 10, 2022, 106867, 10.1016/j.jece.2021.106867.
Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K., A review on pyrolysis of plastic wastes, Energ Convers. Manage 115 (2016), 308–326, 10.1016/j.enconman.2016.02.037.
Lee, J., Kwon, E.E., Lam, S.S., Chen, W.-H., Rinklebe, J., Park, Y.-K., Chemical recycling of plastic waste via thermocatalytic routes. Journal of Cleaner Production, 321, 2021, 128989, 10.1016/j.jclepro.2021.128989.
K. Moorthy Rajendran, D. Kumar, B. Yadav Lamba, P. Kumar Ghodke, Production and characterization of plastic oil from mixed plastic waste through the pyrolysis process, Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.02.277.
Hu, Y., Li, M., Zhou, N., Yuan, H., Guo, Q., Jiao, L., Ma, Z., Catalytic stepwise pyrolysis for dechlorination and chemical recycling of PVC-containing mixed plastic wastes: Influence of temperature, heating rate, and catalyst. Sci. Total Environ., 908, 2024, 168344, 10.1016/j.scitotenv.2023.168344.
Xu, Q., Zhu, J., Wu, B., Jin, G., Liu, Y., Huang, A., Tian, C., Luo, Y., Enhancing light fuel production through catalytic pyrolysis of municipal mixed plastic waste over activated spent FCC catalyst. J. Energy Inst., 113, 2024, 101556, 10.1016/j.joei.2024.101556.
Liu, C., Hong, W., Yang, B., Lin, C., Wang, L., Chen, C., Switchable deep eutectic solvents as efficient and sustainable recycling media for carbon fiber reinforced polymer composite waste. J. Clean. Prod., 378, 2022, 134334, 10.1016/j.jclepro.2022.134334.
Hao, C., Zhao, B., Shao, L., Cao, Y., Fei, M., Liu, W., Liu, T., Chang, Y., Simmons, K.L., Zhang, J., Mild chemical recycling of carbon fiber-reinforced epoxy composites in aqueous buffers and development of hydrothermally recyclable vitrimer composites from recyclates. Resour. Conserv. Recy., 207, 2024, 107668, 10.1016/j.resconrec.2024.107668.
Shen, M., Cao, H., Robertson, M.L., Hydrolysis and Solvolysis as Benign Routes for the End-of-Life Management of Thermoset Polymer Waste. Annu. Rev. Chem. Biomol. Eng. 11 (2020), 183–201, 10.1146/annurev-chembioeng-120919-012253.
Nguyen, S.T., Fries, L.R., Cox, J.H., Ma, Y., Fors, B.P., Knowles, R.R., Chemical Recycling of Thiol Epoxy Thermosets via Light-Driven C-C Bond Cleavage. J. Am. Chem. Soc. 145 (2023), 11151–11160, 10.1021/jacs.3c00958.
Yan, Y., Zhou, H., Xu, S.-M., Yang, J., Hao, P., Cai, X., Ren, Y., Xu, M., Kong, X., Shao, M., Li, Z., Duan, H., Electrocatalytic Upcycling of Biomass and Plastic Wastes to Biodegradable Polymer Monomers and Hydrogen Fuel at High Current Densities. J. Am. Chem. Soc. 145 (2023), 6144–6155, 10.1021/jacs.2c11861.
European Commission, Waste Framework Directive, (2022). https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en (accessed December 9, 2022).
Maisels, A., Hiller, A., Simon, F., Chemical Recycling for Plastic Waste: Status and Perspectives. ChemBioEng Rev. 9 (2022), 541–555, 10.1002/cben.202200024.
Solis, M., Silveira, S., Technologies for chemical recycling of household plastics – A technical review and TRL assessment. Waste Manag. 105 (2020), 128–138, 10.1016/j.wasman.2020.01.038.
S. Poppe, From Waste-to-Chemicals to Waste-to-Jet, (2021). https://enerkem.com/newsroom/from-waste-to-chemicals-to-waste-to-jet (accessed July 20, 2024).
J. Hicks Dow and Mura Technology plan to locate Europe's largest advanced recycling facility at Dow's site in Böhlen 2022 Germany accessed November 7, 2022.
Jehanno, C., Alty, J.W., Roosen, M., De Meester, S., Dove, A.P., Chen, E.-Y.-X., Leibfarth, F.A., Sardon, H., Critical advances and future opportunities in upcycling commodity polymers. Nature 603 (2022), 803–814, 10.1038/s41586-021-04350-0.
Zhou, X., Fang, C., Yu, Q., Yang, R., Xie, L., Cheng, Y., Li, Y., Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment. Int. J. Adhes. Adhes. 74 (2017), 49–56, 10.1016/j.ijadhadh.2016.12.010.
Raheem, A.B., Noor, Z.Z., Hassan, A., Abd Hamid, M.K., Samsudin, S.A., Sabeen, A.H., Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Clean. Prod. 225 (2019), 1052–1064, 10.1016/j.jclepro.2019.04.019.
Iwaya, T., Sasaki, M., Goto, M., Kinetic analysis for hydrothermal depolymerization of nylon 6. Polym Degrad Stabil 91 (2006), 1989–1995, 10.1016/j.polymdegradstab.2006.02.009.
Jasińska, A., Soboń, A., Różalska, S., Średnicka, P., Bisphenol A Removal by the Fungus Myrothecium roridumIM 6482—Analysis of the Cellular and Subcellular Level. Int. J. Mol. Sci., 22, 2021, 10676, 10.3390/ijms221910676.
Zia, K.M., Bhatti, H.N., Ahmad Bhatti, I., Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 67 (2007), 675–692, 10.1016/j.reactfunctpolym.2007.05.004.
Simón, D., Borreguero, A.M., De Lucas, A., Rodríguez, J.F., Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag. 76 (2018), 147–171, 10.1016/j.wasman.2018.03.041.
Lubongo, C., Congdon, T., McWhinnie, J., Alexandridis, P., Economic feasibility of plastic waste conversion to fuel using pyrolysis. Sustain. Chem. Pharm., 27, 2022, 100683, 10.1016/j.scp.2022.100683.
Cudjoe, D., Wang, H., Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Process. Technol., 237, 2022, 107470, 10.1016/j.fuproc.2022.107470.
Westerhout, R.W.J., Kuipers, J.A.M., Van Swaaij, W.P.M., Experimental Determination of the Yield of Pyrolysis Products of Polyethene and Polypropene. Influence of Reaction Conditions, Ind Eng Chem Res 37 (1998), 841–847, 10.1021/ie970384a.
Yuan, X., Kumar, N.M., Brigljević, B., Li, S., Deng, S., Byun, M., Lee, B., Lin, C.S.K., Tsang, D.C.W., Lee, K.B., Chopra, S.S., Lim, H., Ok, Y.S., Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO 2 capture. Green Chem. 24 (2022), 1494–1504, 10.1039/D1GC03600A.
Voss, R., Lee, R.P., Seidl, L., Keller, F., Fröhling, M., Global warming potential and economic performance of gasification-based chemical recycling and incineration pathways for residual municipal solid waste treatment in Germany. Waste Manag. 134 (2021), 206–219, 10.1016/j.wasman.2021.07.040.
Larrain, M., Van Passel, S., Thomassen, G., Kresovic, U., Alderweireldt, N., Moerman, E., Billen, P., Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling. J. Clean. Prod., 270, 2020, 122442, 10.1016/j.jclepro.2020.122442.
Riedewald, F., Patel, Y., Wilson, E., Santos, S., Sousa-Gallagher, M., Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium. Waste Manag. 120 (2021), 698–707, 10.1016/j.wasman.2020.10.039.
Fivga, A., Dimitriou, I., Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment. Energy 149 (2018), 865–874, 10.1016/j.energy.2018.02.094.
Cruz Sanchez, F.A., Boudaoud, H., Camargo, M., Pearce, J.M., Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. Journal of Cleaner Production 264, 2020, 121602, 10.1016/j.jclepro.2020.121602.
Closed Loop, Accelerating Circular Supply Chains for Plastics, (2021). https://www.closedlooppartners.com/wp-content/uploads/2021/01/CLP_Circular_Supply_Chains_for_Plastics_Updated.pdf (accessed July 10, 2024).
European Commission, Plastic Waste: a European strategy to protect the planet, defend our citizens and empower our industries, (2018). https://ec.europa.eu/commission/presscorner/detail/en/ip_18_5 (accessed July 12, 2024).
J. Santos, M. Pizzol, H. Azarijafari, Life cycle assessment (LCA) of using recycled plastic waste in road pavements: Theoretical modeling, in: Plastic Waste for Sustainable Asphalt Roads, Elsevier, 2022: pp. 273–302. https://doi.org/10.1016/B978-0-323-85789-5.00014-9.
Jiao, H., Ali, S.S., Alsharbaty, M.H.M., Elsamahy, T., Abdelkarim, E., Schagerl, M., Al-Tohamy, R., Sun, J., A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. Ecotox Environ Safe, 271, 2024, 115942, 10.1016/j.ecoenv.2024.115942.
Zhang, C.-Y., Nakatani, J., Implications of chemical recycling of plastic waste for climate change impacts: A critical review. Sustainable Production and Consumption 48 (2024), 301–323, 10.1016/j.spc.2024.05.016.
Bisinella, V., Schmidt, S., Varling, A.S., Laner, D., Christensen, T.H., Waste LCA and the future. Waste Manag. 174 (2024), 53–75, 10.1016/j.wasman.2023.11.021.
De Filippis, F., Bonelli, M., Bruno, D., Sequino, G., Montali, A., Reguzzoni, M., Pasolli, E., Savy, D., Cangemi, S., Cozzolino, V., Tettamanti, G., Ercolini, D., Casartelli, M., Caccia, S., Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. Microbiome, 11, 2023, 205, 10.1186/s40168-023-01649-0.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., Oda, K., A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351 (2016), 1196–1199, 10.1126/science.aad6359.
Aer, L., Jiang, Q., Gul, I., Qi, Z., Feng, J., Tang, L., Overexpression and kinetic analysis of Ideonella sakaiensis PETase for polyethylene terephthalate (PET) degradation. Environ. Res., 212, 2022, 113472, 10.1016/j.envres.2022.113472.
Puspitasari, N., Tsai, S.-L., Lee, C.-K., Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. Int. J. Biol. Macromol. 176 (2021), 157–164, 10.1016/j.ijbiomac.2021.02.026.
Joo, S., Cho, I.J., Seo, H., Son, H.F., Sagong, H.-Y., Shin, T.J., Choi, S.Y., Lee, S.Y., Kim, K.-J., Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun., 9, 2018, 382, 10.1038/s41467-018-02881-1.
Lu, H., Diaz, D.J., Czarnecki, N.J., Zhu, C., Kim, W., Shroff, R., Acosta, D.J., Alexander, B.R., Cole, H.O., Zhang, Y., Lynd, N.A., Ellington, A.D., Alper, H.S., Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604 (2022), 662–667, 10.1038/s41586-022-04599-z.
Bioplastics, E., accessed February 1, 2024 Bioplastics Market Development Update, 2022, 2022 https://docs.european-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf.
Huang, Q., Kimura, S., Iwata, T., Thermal Embedding of Humicola insolens Cutinase: A Strategy for Improving Polyester Biodegradation in Seawater. Biomacromolecules 24 (2023), 5836–5846, 10.1021/acs.biomac.3c00835.
Shi, J., Wang, J., Lv, J., Wang, Z., Peng, Y., Shang, J., Wang, X., Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils. Science of the Total Environment, 838, 2022, 156471, 10.1016/j.scitotenv.2022.156471.
Li, K., Jia, W., Xu, L., Zhang, M., Huang, Y., The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. J. Hazard. Mater., 442, 2023, 130011, 10.1016/j.jhazmat.2022.130011.
Chen, H., Wang, Y., Sun, X., Peng, Y., Xiao, L., Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 2020, 125271, 10.1016/j.chemosphere.2019.125271.
Lata, K., Kushwaha, A., Ramanathan, G., Bacterial enzymatic degradation and remediation of 2,4,6-trinitrotoluene, in. Microbial and Natural Macromolecules, Elsevier, 2021, 623–659, 10.1016/B978-0-12-820084-1.00024-7.
Phothisarattana, D., Wongphan, P., Promhuad, K., Promsorn, J., Harnkarnsujarit, N., Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloid Surface B, 214, 2022, 112472, 10.1016/j.colsurfb.2022.112472.
Choi, S.M., Lee, S.Y., Lee, S., Han, S.S., Shin, E.J., In Situ Synthesis of Environmentally Friendly Waterborne Polyurethane Extended with Regenerated Cellulose Nanoparticles for Enhanced Mechanical Performances. Polymers-Basel, 15, 2023, 1541, 10.3390/polym15061541.
Schick, S., Groten, R., Seide, G.H., Performance Spectrum of Home-Compostable Biopolymer Fibers Compared to a Petrochemical Alternative. Polymers, 15, 2023, 1372, 10.3390/polym15061372.
Riesener, M., Kuhn, M., Hellwig, F., Ays, J., Schuh, G., Design for Circularity – Identification of Fields of Action for Ecodesign for the Circular Economy. Procedia CIRP 116 (2023), 137–142, 10.1016/j.procir.2023.02.024.
Müller-Carneiro, J., Rodrigues, C., Dias, L.C., Henggeler Antunes, C., Mattos, A.L.A., Freire, F., A multi-criteria framework for the ecodesign of bio-based materials at early development stages. Journal of Cleaner Production 427, 2023, 139268, 10.1016/j.jclepro.2023.139268.
K. Van Doorsselaer, The role of ecodesign in the circular economy, in: Circular Economy and Sustainability, Elsevier, 2022: pp. 189–205. https://doi.org/10.1016/B978-0-12-819817-9.00018-1.
Polverini, D., Regulating the circular economy within the ecodesign directive: Progress so far, methodological challenges and outlook. Sustain Prod Consump 27 (2021), 1113–1123, 10.1016/j.spc.2021.02.023.
Sampaio, A.P.C., Müller-Carneiro, J., Pereira, A.L.S., Rosa, M.D.F., Mattos, A.L.A., Azeredo, H.M.C.D., Freire, F., Figueirêdo, M.C.B.D., Ecodesign of bio-based films for food packaging: Challenges and recommendations. Environ Dev, 48, 2023, 100926, 10.1016/j.envdev.2023.100926.
Haryńska, A., Janik, H., Sienkiewicz, M., Mikolaszek, B., Kucińska-Lipka, J., PLA–Potato Thermoplastic Starch Filament as a Sustainable Alternative to the Conventional PLA Filament: Processing, Characterization, and FFF 3D Printing. ACS Sustain. Chem. Eng. 9 (2021), 6923–6938, 10.1021/acssuschemeng.0c09413.
Noè, C., Tonda-Turo, C., Chiappone, A., Sangermano, M., Hakkarainen, M., Light Processable Starch Hydrogels. Polymers, 12, 2020, 1359, 10.3390/polym12061359.
Khaled, S.A., Burley, J.C., Alexander, M.R., Roberts, C.J., Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharmaceut 461 (2014), 105–111, 10.1016/j.ijpharm.2013.11.021.
Shan, C., Pandyaswargo, A.H., Onoda, H., Environmental Impact of Plastic Recycling in Terms of Energy Consumption: A Comparison of Japan's Mechanical and Chemical Recycling Technologies. Energies, 16, 2023, 2199, 10.3390/en16052199.
Cosate De Andrade, M.F., Souza, P.M.S., Cavalett, O., Morales, A.R., Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling. Mechanical Recycling and Composting, J Polym Environ 24 (2016), 372–384, 10.1007/s10924-016-0787-2.
Commission, E., Environmental and economic assessment of plastic waste recycling: a comparison of mechanical, physical, chemical recycling and energy recovery of plastic waste. 2023, Publications Office, LU https://data.europa.eu/doi/10.2760/0472 (accessed July 20, 2024.
Park, S.H., Kim, S.H., Poly (ethylene terephthalate) recycling for high value added textiles, Fash. Text 1 (2014), 1–17, 10.1186/s40691-014-0001-x.
Shamsuyeva, M., Endres, H.-J., Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Composites Part c: Open Access, 6, 2021, 100168, 10.1016/j.jcomc.2021.100168.
Kawai, F., Kawabata, T., Oda, M., Current State and Perspectives Related to the Polyethylene Terephthalate Hydrolases Available for Biorecycling. ACS Sustain. Chem. Eng. 8 (2020), 8894–8908, 10.1021/acssuschemeng.0c01638.
De-la-Torre, G.E., Dioses-Salinas, D.C., Pizarro-Ortega, C.I., Saldaña-Serrano, M., Global distribution of two polystyrene-derived contaminants in the marine environment: A review. Mar. Pollut. Bull., 161, 2020, 111729, 10.1016/j.marpolbul.2020.111729.
Hwang, J., Choi, D., Han, S., Choi, J., Hong, J., An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 684 (2019), 657–669, 10.1016/j.scitotenv.2019.05.071.
Sanluis-Verdes, A., Colomer-Vidal, P., Rodriguez-Ventura, F., Bello-Villarino, M., Spinola-Amilibia, M., Ruiz-Lopez, E., Illanes-Vicioso, R., Castroviejo, P., Aiese Cigliano, R., Montoya, M., Falabella, P., Pesquera, C., Gonzalez-Legarreta, L., Arias-Palomo, E., Solà, M., Torroba, T., Arias, C.F., Bertocchini, F., Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nat. Commun., 13, 2022, 5568, 10.1038/s41467-022-33127-w.
Kawai, F., Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for Biorecycling. ChemSusChem 14 (2021), 4115–4122, 10.1002/cssc.202100740.
Muhonja, C.N., Makonde, H., Magoma, G., Imbuga, M., Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One, 13, 2018, e0198446.
Kushwaha, A., Goswami, L., Singhvi, M., Kim, B.S., Biodegradation of poly(ethylene terephthalate): Mechanistic insights, advances, and future innovative strategies. Chem. Eng. J., 457, 2023, 141230, 10.1016/j.cej.2022.141230.
Narancic, T., Verstichel, S., Reddy Chaganti, S., Morales-Gamez, L., Kenny, S.T., De Wilde, B., Babu Padamati, R., O'Connor, K.E., Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Tech. 52 (2018), 10441–10452, 10.1021/acs.est.8b02963.