Investigation of the laser fluence and wavelength dependence in surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. - 2024
Investigation of the laser fluence and wavelength dependence in surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles.
[en] RATIONALE: Surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) builds on the use of nanostructured surfaces (e.g., coatings of colloidal nanoparticles) to promote analyte desorption and ionization. The SALDI process is believed to occur mainly through thermal processes, resulting from heating of the nanosubstrate upon absorption of the photon energy, and by assisting ionization steps. Mostly due to the accessibility of the respective hardware, the majority of SALDI-MS studies use standard laser wavelengths for MALDI (i.e., 337 or 355 nm), even though peak absorption of the SALDI nanosubstrate might completely differ from these values.
METHODS: Here, we investigated the wavelength dependence in SALDI-MS to determine if wavelength adjustment would be beneficial, and to provide new experimental data for a better understanding of the SALDI mechanism. To this end, gold nanoparticles (AuNPs) sprayed onto microscope glass slides were employed as SALDI nanosubstrates and L-arginine as a model analyte. In addition, we used 2,5-dihydroxyacetophenone (2,5-DHAP) for classical MALDI-MS using the same experimental setup. Arginine ion signals were recorded as a function of laser wavelength and laser fluence. Mass spectra were acquired in the wavelength range between 310 and 630 nm, including the absorption maximum of the sprayed AuNPs around 550 nm and that of 2,5-DHAP around 380 nm.
RESULTS: Laser fluence thresholds for the generation of arginine ions were found to be dependent on the laser wavelength and to inversely correlate with the absorbance profiles of the deposited AuNPs and 2,5-DHAP, respectively. Very differently to MALDI, in SALDI ionization efficiency was found to strictly linearly decrease with increasing laser wavelength.
CONCLUSIONS: Our results, therefore, corroborate the general assumption that material ejection in SALDI-MS is mainly driven by thermal processes in the low laser fluence range and add new evidence that the ionization process is directly influenced by photon energy when AuNPs are employed as nanosubstrates.
Disciplines :
Chemistry
Author, co-author :
Müller, Wendy ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique ; Institute of Hygiene, University of Münster, Münster, Germany
Potthoff, Alexander; Institute of Hygiene, University of Münster, Münster, Germany
Dreisewerd, Klaus; Institute of Hygiene, University of Münster, Münster, Germany
Soltwisch, Jens ; Institute of Hygiene, University of Münster, Münster, Germany
Language :
English
Title :
Investigation of the laser fluence and wavelength dependence in surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles.
Karas M, Bachmann D, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53-68. doi:10.1016/0168-1176(87)87041-6
Dreisewerd K. Recent methodological advances in MALDI mass spectrometry. Anal Bioanal Chem. 2014;406(9-10):2261-2278. doi:10.1007/s00216-014-7646-6
Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57:2935-2939.
Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103(2):395-425. doi:10.1021/cr010375i
Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem. 2018;410(17):4015-4038. doi:10.1007/s00216-018-1014-x
Law KP, Larkin JR. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem. 2011;399(8):2597-2622. doi:10.1007/s00216-010-4063-3
Müller WH, De Pauw E, Far J, Malherbe C, Eppe G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: a concise review of the last decade. Prog Lipid Res. 2021;83:101114. doi:10.1016/j.plipres.2021.101114
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: a review. Mass Spectrom Rev. 2022;41(3):373-420. doi:10.1002/mas.21670
Müller WH, McCann A, Arguelles Arias A, et al. Imaging metabolites in agar-based bacterial co-cultures with minimal sample preparation using a DIUTHAME membrane in surface-assisted laser desorption/ionization mass spectrometry. Chemistry Select. 2022;7(18):e202200734. doi:10.1002/slct.202200734
Müller WH, Verdin A, Kune C, et al. Dual polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis. Anal Bioanal Chem. 2021;413(10):2821-2830. doi:10.1007/s00216-020-03020-w
Schürenberg M, Dreisewerd K, Kamanabrou S, Hillenkamp F. Influence of the sample temperature on the desorption of matrix molecules and ions in matrix-assisted laser desorption ionization. Int. J. Mass Spectrom. Ion Process. 1998;172(1-2):89-94. doi:10.1016/S0168-1176(97)00253-X
Müller WH. Optimization of surface-assisted laser desorption/ionization mass spectrometry. Bull la Société R Ddes Sci Liège. 2022;91(1):105-127. doi:10.25518/0037-9565.10993
Bae YJ, Kim MS. A thermal mechanism of ion formation in MALDI. Annu Rev Anal Chem. 2015;8(1):41-60. doi:10.1146/annurev-anchem-081413-024102
Karas M, Krüger R. Ion formation in MALDI: the cluster ionization mechanism. Chem Rev. 2003;103(2):427-439. doi:10.1021/cr010376a
Knochenmuss R. Ion formation mechanisms in UV-MALDI. Analyst. 2006;131:966-986. doi:10.1039/b605646f
Lee C, Inutan ED, Chen JL, et al. Toward understanding the ionization mechanism of matrix-assisted ionization using mass spectrometry experiment and theory. Rapid Commun Mass Spectrom. 2021;35(S1):e8382. doi:10.1002/rcm.8382
Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17(5):337-366. doi:10.1002/(SICI)1098-2787(1998)17:5<337::AID-MAS2>3.0.CO,2-S
Jaskolla TW, Karas M. Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI Analyte protonation mechanism. J am Soc Mass Spectrom. 2011;22(6):976-988. doi:10.1007/s13361-011-0093-0
Xiao Y, Retterer ST, Thomas DK, Tao J-Y, He L. Impacts of surface morphology on ion desorption and ionization in desorption ionization on porous silicon (DIOS) mass spectrometry. J Phys Chem C. 2009;113(8):3076-3083. doi:10.1021/jp808844f
Ng K, Chau S, Tang H, et al. Ion-desorption efficiency and internal-energy transfer in surface-assisted laser desorption/ionization: more implication(s) for the thermal-driven and phase-transition-driven desorption process. J Phys Chem C. 2015;119(41):23708-23720. doi:10.1021/acs.jpcc.5b05957
Picca RA, Calvano CD, Cioffi N, Palmisano F. Mechanisms of nanophase-induced desorption in LDI-MS. A Short Review. Nanomaterials. 2017;7(4):75. doi:10.3390/nano7040075
Soltwisch J, Jaskolla TW, Dreisewerd K. Color matters - material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence. J am Soc Mass Spectrom. 2013;24(10):1477-1488. doi:10.1007/s13361-013-0699-5
Niehaus M, Schnapp A, Koch A, Soltwisch J, Dreisewerd K. New insights into the wavelength dependence of MALDI mass spectrometry. Anal Chem. 2017;89(14):7734-7741. doi:10.1021/acs.analchem.7b01744
Soltwisch J, Jaskolla TW, Hillenkamp F, Karas M, Dreisewerd K. Ion yields in UV-MALDI mass spectrometry as a function of excitation laser wavelength and optical and physico-chemical properties of classical and halogen-substituted MALDI matrixes. Analytical. 2012;84:6567-6576. doi:10.1021/ac3008434
Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev. 2003;103(2):441-452. doi:10.1021/cr0103773
Wiegelmann M, Dreisewerd K, Soltwisch J. Influence of the laser spot size, focal beam profile, and tissue type on the lipid signals obtained by MALDI-MS imaging in oversampling mode. J am Soc Mass Spectrom. 2016;27(12):1952-1964. doi:10.1007/s13361-016-1477-y
Robinson KN, Steven RT, Race AM, Bunch J. The influence of MS imaging parameters on UV-MALDI desorption and ion yield. J am Soc Mass Spectrom. 2019;30(7):1284-1293. doi:10.1007/s13361-019-02193-8
Guenther S, Koestler M, Schulz O, Spengler B. Laser spot size and laser power dependence of ion formation in high resolution MALDI imaging. Int. J. Mass Spectrom. 2010;294(1):7-15. doi:10.1016/j.ijms.2010.03.014
Wiegelmann M, Soltwisch J, Jaskolla TW, Dreisewerd K. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry. Anal Bioanal Chem. 2013;405(22):6925-6932. doi:10.1007/s00216-012-6478-5
Potthoff A, Dreisewerd K, Soltwisch J. Detailed characterization of the postionization efficiencies in MALDI-2 as a function of relevant input parameters. J Am Soc Mass Spectrom. 2020;31(9):1844-1853. doi:10.1021/jasms.0c00072
Chambers MC, Maclean B, Burke R, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918-920. doi:10.1038/nbt.2377
Schramm T, Hester Z, Klinkert I, Both J, et al. ImzML — a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteomics. 2012;75(16):5106-5110. doi:10.1016/j.jprot.2012.07.026
Race AM, Styles IB, Bunch J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J Proteomics. 2012;75(16):5111-5112. doi:10.1016/j.jprot.2012.05.035
Fay, D. pyimzML parser for the imzML format https://github.com/alexandrovteam/pyimzML (accessed Jun 22, 2024), doi:10.1016/j.shpsa.2024.06.004.
Escorcia-Diaz D, Garcia-Mora S, Rendon-Castrillon L, Ramirez-Carmona M, Ocampo-Lopez C. Advancements in nanoparticle deposition techniques for diverse substrates: a review. Nanomaterials. 2023;13(18):2586. doi:10.3390/nano13182586
Lai SKM, Tang H, Lau K, Ng K. Nanosecond UV laser ablation of gold nanoparticles: enhancement of ion desorption by thermal-driven desorption, vaporization, or phase explosion. J Phys Chem C. 2016;120(36):20368-20377. doi:10.1021/acs.jpcc.6b06261
Song K, Cheng Q. Desorption and ionization mechanisms and signal enhancement in surface assisted laser desorption ionization mass spectrometry (SALDI-MS). Appl Spectrosc Rev. 2020;55(3):220-242. doi:10.1080/05704928.2019.1570519
Pyatenko A, Yamaguchi M, Suzuki M. Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser. J Phys Chem C. 2009;113(21):9078-9085. doi:10.1021/jp808300q
Huwaidi A, Robert G, Kumari B, et al. Electron-induced damage by UV photolysis of DNA attached to gold nanoparticles. Chem Res Toxicol. 2024;37(2):419-428. doi:10.1021/acs.chemrestox.3c00370