[en] Chimeric antigen receptor (CAR) T-cell therapies have transformed the treatment landscape of blood cancers. These engineered receptors which endow T cells with antibody-like target cell recognition combined with the typical T cell target cell lysis abilities. Introduced into the clinic in the 2010s, CAR T-cells have shown efficacy in chronic B lymphocytic leukemia (CLL), but a majority of patients do not achieve sustained remission. Here we discuss the current treatment landscape in CLL using small molecules and allogeneic stem cell transplantation, the niche CAR T-cells filled in this context, and what we have learned from biomarker and mechanistic studies. Several product parameters and improvements are introduced as examples of how the bedside-to-bench is translated into improved CAR T-cells for CLL. We hope to convey to our readers the crucial role translational medicine plays in transforming the treatment outcomes for patients with CLL and how this line of research is an essential component of modern medicine.
Disciplines :
Hematology Immunology & infectious disease
Author, co-author :
Zhao, Ziran; Cell Therapy & Immuno-Engineering Program, Center for ImmunoTherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH
Grégoire, Céline ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique ; Cell Therapy & Immuno-Engineering Program, Center for ImmunoTherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH
Oliveira, Beatriz; Cell Therapy & Immuno-Engineering Program, Center for ImmunoTherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH
Chung, Kunho; Cell Therapy & Immuno-Engineering Program, Center for ImmunoTherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH
Melenhorst, Jan Joseph ; Cell Therapy & Immuno-Engineering Program, Center for ImmunoTherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH. Electronic address: melenhj@ccf.org
Language :
English
Title :
Challenges and opportunities of CAR T-cell therapies for CLL.
NIH - National Institutes of Health ERC - European Research Council Cleveland Clinic
Funding text :
This work was supported by seed funding from the Cleveland Clinic, NIH grant R01-CA-241762-01, and the ERC Consolidator Grant #864815 “BOOTCAMP.”This work was supported by seed funding from the Cleveland Clinic, NIH grant R01-CA-241762-01, and the ERC Consolidator Grant #864815 “BOOTCAMP.”
Eichhorst, B., Robak, T., Montserrat, E., et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 32:1 (2021), 23–33.
Michallet, M., Corront, B., Hollard, D., Gratwohl, A., Domingo, A., Burnett, S., Allogeneic bone marrow transplantation in chronic lymphocytic leukemia: report from the European Cooperative Group for bone marrow transplantation (8 cases). Nouv Rev Fr Hematol (1978) 30:5-6 (1988), 467–470.
Michallet, M., Corront, B., Hollard, D., et al. Allogeneic bone marrow transplantation in chronic lymphocytic leukemia: 17 cases. Rep EBMTG, Bone Marrow Transpl 7:4 (1991), 275–279.
Michallet, M., Archimbaud, E., Bandini, G., et al. HLA-identical sibling bone marrow transplantation in younger patients with chronic lymphocytic leukemia. European Group for Blood and Marrow Transplantation and the International Bone Marrow Transplant Registry. Ann Intern Med 124:3 (1996), 311–315.
Rondon, G., Giralt, S., Huh, Y., et al. Graft-versus-leukemia effect after allogeneic bone marrow transplantation for chronic lymphocytic leukemia. Bone Marrow Transpl 18:3 (1996), 669–672.
deMagalhaes-Silverman, M., Donnenberg, A., Hammert, L., et al. Induction of graft-versus-leukemia effect in a patient with chronic lymphocytic leukemia. Bone Marrow Transpl 20:2 (1997), 175–177.
Sorror, M.L., Maris, M.B., Sandmaier, B.M., et al. Hematopoietic cell transplantation after nonmyeloablative conditioning for advanced chronic lymphocytic leukemia. J Clin Oncol 23:16 (2005), 3819–3829.
Khouri, I.F., Keating, M., Korbling, M., et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 16:8 (1998), 2817–2824.
Khouri, I.F., Saliba, R.M., Giralt, S.A., et al. Nonablative allogeneic hematopoietic transplantation as adoptive immunotherapy for indolent lymphoma: low incidence of toxicity, acute graft-versus-host disease, and treatment-related mortality. Blood 98:13 (2001), 3595–3599.
Tournilhac, O., Le Garff-Tavernier, M., Nguyen Quoc, S., et al. Efficacy of minimal residual disease driven immune-intervention after allogeneic hematopoietic stem cell transplantation for high-risk chronic lymphocytic leukemia: results of a prospective multicenter trial. Haematological 106:7 (2021), 1867–1875.
Roeker, L.E., Dreger, P., Brown, J.R., et al. Allogeneic stem cell transplantation for chronic lymphocytic leukemia in the era of novel agents. Blood Adv 4:16 (2020), 3977–3989.
Kharfan-Dabaja, M.A., Kumar, A., Hamadani, M., et al. Clinical practice recommendations for use of allogeneic hematopoietic cell transplantation in chronic lymphocytic leukemia on behalf of the guidelines committee of the american society for blood and marrow transplantation. Biol Blood Marrow Transpl 22:12 (2016), 2117–2125.
Hoogendoorn, M., Jedema, I., Barge, R.M., et al. Characterization of graft-versus-leukemia responses in patients treated for advanced chronic lymphocytic leukemia with donor lymphocyte infusions after in vitro T-cell depleted allogeneic stem cell transplantation following reduced-intensity conditioning. Leukemia 21:12 (2007), 2569–2574.
Bachireddy, P., Ennis, C., Nguyen, V.N., et al. Distinct evolutionary paths in chronic lymphocytic leukemia during resistance to the graft-versus-leukemia effect. Sci Transl Med, 12(561), 2020, eabb7661 https://pubmed.ncbi.nlm.nih.gov/32938797/.
Milone, M.C., Fish, J.D., Carpenito, C., et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17:8 (2009), 1453–1464.
Brentjens, R.J., Riviere, I., Park, J.H., et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:18 (2011), 4817–4828.
Porter, D.L., Hwang, W.T., Frey, N.V., et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med, 7(303), 2015, 303ra139.
Turtle, C.J., Hay, K.A., Hanafi, L.A., et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 35:26 (2017), 3010–3020.
Siddiqi, T., Soumerai, J.D., Dorritie, K.A., et al. Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. Blood 139:12 (2022), 1794–1806.
Frey, N.V., Gill, S., Hexner, E.O., et al. Long-term outcomes from a randomized dose optimization study of chimeric antigen receptor modified T cells in relapsed chronic lymphocytic leukemia. J Clin Oncol 38:25 (2020), 2862–2871.
Geyer, M.B., Riviere, I., Senechal, B., et al. Autologous CD19-targeted CAR T-cells in patients with residual CLL following initial purine analog-based therapy. Mol Ther 26:8 (2018), 1896–1905.
Geyer, M.B., Riviere, I., Senechal, B., et al. Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T-cells for relapsed/refractory CLL. JCI Insight, 5(9), 2019, e122627 https://pubmed.ncbi.nlm.nih.gov/30938714/.
Melenhorst, J.J., Chen, G.M., Wang, M., et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T-cells. Nature 602:7897 (2022), 503–509.
Porter, D.L., Levine, B.L., Kalos, M., Bagg, A., June, C.H., Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med 365 (2011), 725–733.
Kalos, M., Levine, B.L., Porter, D.L., et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med, 3(95), 2011, 95ra73 https://pubmed.ncbi.nlm.nih.gov/21832238/.
Fraietta, J.A., Lacey, S.F., Orlando, E.J., et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:5 (2018), 563–571.
Yamane, H., Paul, W.E., Cytokines of the γ(c) family control CD4+ T cell differentiation and function. Nat Immunol 13:11 (2012), 1037–1044.
Maude, S.L., Laetsch, T.W., Buechner, J., et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378:5 (2018), 439–448.
Cohen, A.D., Garfall, A.L., Stadtmauer, E.A., et al. B cell maturation antigen–specific CAR T-cells are clinically active in multiple myeloma. J Clin Investig 129:6 (2019), 2210–2221.
Ghorashian, S., Kramer, A.M., Onuoha, S., et al. Enhanced CAR T-cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nature Med 25:9 (2019), 1408–1414.
Neelapu, S.S., Locke, F.L., Bartlett, N.L., et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377:26 (2017), 2531–2544.
Nobles, C.L., Sherrill-Mix, S., Everett, J.K., et al. CD19-targeting CAR T-cell immunotherapy outcomes correlate with genomic modification by vector integration. J Clin Invest 130:2 (2020), 673–685.
Obstfeld, A.E., Frey, N.V., Mansfield, K., et al. Cytokine release syndrome associated with chimeric-antigen receptor T-cell therapy: clinicopathological insights. Blood, J Am Soc Hematol 130:23 (2017), 2569–2572.
Castellino, F., Germain, R.N., Chemokine-guided CD4+ T cell help enhances generation of IL-6RalphahighIL-7Ralpha high prememory CD8+ T cells. J Immunol 178:2 (2007), 778–787.
Durant, L., Watford, W.T., Ramos, H.L., et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32:5 (2010), 605–615.
Nish, S.A., Schenten, D., Wunderlich, F.T., et al. T cell-intrinsic role of IL-6 signaling in primary and memory responses. Elife, 3, 2014, e01949.
Liu, K., Rosenberg, S.A., Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 167:11 (2001), 6356–6365.
Liu, K., Rosenberg, S.A., Interleukin-2–independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J Immunotherapy (Hagerstown, Md.: 1997), 26(3), 2003, 190.
Hsu, C., Hughes, M.S., Zheng, Z., Bray, R.B., Rosenberg, S.A., Morgan, R.A., Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 175:11 (2005), 7226–7234.
Collins, M.A., Jung, I.-Y., Zhao, Z., et al. Enhanced costimulatory signaling improves CAR T-cell effector responses in CLL. Cancer Res Commun 2:9 (2022), 1089–1103.
Mongini, P.K., Gupta, R., Boyle, E., et al. TLR-9 and IL-15 synergy promotes the in vitro clonal expansion of chronic lymphocytic leukemia B cells. J Immunol 195:3 (2015), 901–923.
Trentin, L., Cerutti, A., Zambello, R., et al. Interleukin-15 promotes the growth of leukemic cells of patients with B-cell chronic lymphoproliferative disorders. Blood 87:8 (1996), 3327–3335.
Waldmann, T., Goldman, C.K., Robb, R.J., et al. Expression of interleukin 2 receptors on activated human B cells. J Exp Med 160:5 (1984), 1450–1466.
Hu, B., Ren, J., Luo, Y., et al. Augmentation of antitumor immunity by human and mouse CAR T-cells secreting IL-18. Cell Rep 20:13 (2017), 3025–3033.
Görgün, G., Holderried, T.A., Zahrieh, D., Neuberg, D., Gribben, J.G., Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Investig 115:7 (2005), 1797–1805.
Ramsay, A.G., Johnson, A.J., Lee, A.M., et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Investig 118:7 (2008), 2427–2437.
Ramsay, A.G., Clear, A.J., Fatah, R., Gribben, J.G., Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood, J Am Soc Hematol 120:7 (2012), 1412–1421.
te Raa, G.D., Pascutti, M.F., García-Vallejo, J.J., et al. CMV-specific CD8+ T-cell function is not impaired in chronic lymphocytic leukemia. Blood, J Am Soc Hematol 123:5 (2014), 717–724.
McClanahan, F., Hanna, B., Miller, S., et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood, J Am Soc Hematol 126:2 (2015), 203–211.
Ding, W., LaPlant, B.R., Call, T.G., et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood, J Am Soc Hematol 129:26 (2017), 3419–3427.
Wherry, E.J., Kurachi, M., Molecular and cellular insights into T cell exhaustion. Nature Rev Immunol 15:8 (2015), 486–499.
Buhmann, R., Nolte, A., Westhaus, D., Emmerich, B., Hallek, M., CD40-activated B-cell chronic lymphocytic leukemia cells for tumor immunotherapy: stimulation of allogeneic versus autologous T cells generates different types of effector cells. Blood 93:6 (1999), 1992–2002.
Palena, C., Foon, K.A., Panicali, D., et al. Potential approach to immunotherapy of chronic lymphocytic leukemia (CLL): enhanced immunogenicity of CLL cells via infection with vectors encoding for multiple costimulatory molecules. Blood 106:10 (2005), 3515–3523.
Litzinger, M.T., Foon, K.A., Sabzevari, H., Tsang, K.-Y., Schlom, J., Palena, C., Chronic lymphocytic leukemia (CLL) cells genetically modified to express B7-1, ICAM-1, and LFA-3 confer APC capacity to T cells from CLL patients. Cancer Immunol, Immunotherapy 58:6 (2009), 955–965.
Chin, S.M., Kimberlin, C.R., Roe-Zurz, Z., et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun, 9(1), 2018, 4679.
Davenport, A.J., Cross, R.S., Watson, K.A., et al. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci U S A 115:9 (2018), E2068–E2076.
Salter, A.I., Rajan, A., Kennedy, J.J., et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci Signal, 14(697), 2021, eabe2606 https://pubmed.ncbi.nlm.nih.gov/34429382/.
Siska, P.J., van der Windt, G.J., Kishton, R.J., et al. Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B Cell leukemia. J Immunol 197:6 (2016), 2532–2540.
van Bruggen, J.A.C., Martens, A.W.J., Fraietta, J.A., et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8(+) T cells and impede CAR T-cell efficacy. Blood 134:1 (2019), 44–58.
Fraietta, J.A., Nobles, C.L., Sammons, M.A., et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:7709 (2018), 307–312.
Guan, Y., Hasipek, M., Jiang, D., et al. Eltrombopag inhibits TET dioxygenase to contribute to hematopoietic stem cell expansion in aplastic anemia. J Clin Investig, 132(4), 2022, e149856 https://pubmed.ncbi.nlm.nih.gov/35085104/.
Chung, K., Xu, J., Kaminskiy, Y., et al. Functional disruption of TET2-mediated cytosine oxidation in CAR T-cells using IDH1 neomorph. Blood 140:Supplement 1 (2022), 628–629.
An, J., Rao, A., Ko, M., TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med, 49(4), 2017, e323.
Zebley, C.C., Brown, C., Mi, T., et al. CD19-CAR T-cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Rep, 37(9), 2021, 110079.
Youngblood, B., Oestreich, K.J., Ha, S.J., et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35:3 (2011), 400–412.
Akondy, R.S., Fitch, M., Edupuganti, S., et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552:7685 (2017), 362–367.
Prinzing, B., Zebley, C.C., Petersen, C.T., et al. Deleting DNMT3A in CAR T-cells prevents exhaustion and enhances antitumor activity. Sci Transl Med, 13(620), 2021, eabh0272.
Feucht, J., Sun, J., Eyquem, J., et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 25:1 (2019), 82–88.
Scharer, C.D., Barwick, B.G., Youngblood, B.A., Ahmed, R., Boss, J.M., Global DNA methylation remodeling accompanies CD8 T cell effector function. J Immunol 191:6 (2013), 3419–3429.
Pauken, K.E., Sammons, M.A., Odorizzi, P.M., et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:6316 (2016), 1160–1165.
Shah, N.N., Qin, H., Yates, B., et al. Clonal expansion of CAR T-cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood advances 3:15 (2019), 2317–2322.
Schmitz, M.L., Activation of T cells: releasing the brakes by proteolytic elimination of Cbl-b. Science signaling, 2(76), 2009, pe38 https://pubmed.ncbi.nlm.nih.gov/19549983/.
Kumar, J., Kumar, R., Kumar Singh, A., et al. Deletion of Cbl-b inhibits CD8(+) T-cell exhaustion and promotes CAR T-cell function. J Immunother Cancer, 9(1), 2021, e001688 https://pubmed.ncbi.nlm.nih.gov/33462140/.
Kustikova, O.S., Geiger, H., Li, Z., et al. Retroviral vector insertion sites associated with dominant hematopoietic clones mark "stemness" pathways. Blood 109:5 (2007), 1897–1907.
Howe, S.J., Mansour, M.R., Schwarzwaelder, K., et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:9 (2008), 3143–3150.
Wang, G.P., Berry, C.C., Malani, N., et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood 115:22 (2010), 4356–4366.
Hacein-Bey-Abina, S., Garrigue, A., Wang, G.P., et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:9 (2008), 3132–3142.
Hacein-Bey-Abina, S., Hauer, J., Lim, A., et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:4 (2010), 355–364.
Sommermeyer, D., Hudecek, M., Kosasih, P.L., et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30:2 (2016), 492–500.
Aldoss, I., Khaled, S.K., Wang, X., et al. Favorable activity and safety profile of memory-enriched CD19-targeted chimeric antigen receptor T Cell therapy in adults with high-risk relapsed/refractory ALL. Clin Cancer Res, 2022 CCR- 22- 2038 https://pubmed.ncbi.nlm.nih.gov/36255386/ Online ahead of print.
Pauken, K.E., Nelson, C.E., Martinov, T., et al. Cutting edge: identification of autoreactive CD4+ and CD8+ T cell subsets resistant to PD-1 pathway blockade. J Immunol 194:8 (2015), 3551–3555.
Lewinsky, H., Barak, A.F., Huber, V., et al. CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia. J Clin Invest 128:12 (2018), 5465–5478.
Chen, G., Huang, A.C., Zhang, W., et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:7718 (2018), 382–386.
Cox, M.J., Lucien, F., Sakemura, R., et al. Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in chronic lymphocytic leukemia. Mol Ther 29:4 (2021), 1529–1540.
Weber, E.W., Lynn, R.C., Sotillo, E., Lattin, J., Xu, P., Mackall, C.L., Pharmacologic control of CAR T-cell function using dasatinib. Blood Adv, 3(5), 2019, 711.
Belk, J.A., Yao, W., Ly, N., et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40:7 (2022), 768–786.e7.
Huang, Y., Si, X., Shao, M., Teng, X., Xiao, G., Huang, H., Rewiring mitochondrial metabolism to counteract exhaustion of CAR T-cells. J Hematol Oncol, 15(1), 2022, 38.
Long, A.H., Haso, W.M., Shern, J.F., et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Med 21:6 (2015), 581–590.
Khopanlert, W., Choochuen, P., Jangphattananont, N., Maneechai, K., et al. Co-stimulation of CD28/CD40 signaling molecule potentiates CD19CAR T-cell functions and stemness. Blood 140(Supplement 1), 2022, 7364–7365.
Kawalekar, O.U., O'Connor, R.S., Fraietta, J.A., et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T-cells. Immunity 44:2 (2016), 380–390.
Menk, A.V., Scharping, N.E., Rivadeneira, D.B., et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med 215:4 (2018), 1091–1100.
Wenes, M., Jaccard, A., Wyss, T., et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metabo 34:5 (2022), 731–746.e9.
Sotillo, E., Barrett, D.M., Black, K.L., et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapyalternative splicing of CD19 enables resistance to CART-19. Cancer disc 5:12 (2015), 1282–1295.
Orlando, E.J., Han, X., Tribouley, C., et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nature Med 24:10 (2018), 1504–1506.
Jacoby, E., Nguyen, S.M., Fountaine, T.J., et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Commun 7:1 (2016), 1–10.