[en] The aim of this study was to compare the circular transcriptome of divergent tissues in order to understand: i) the presence of circular RNAs (circRNAs) that are not exonic circRNAs, i.e. originated from backsplicing involving known exons and, ii) the origin of artificial circRNA (artif_circRNA), i.e. circRNA not generated in-vivo. CircRNA identification is mostly an in-silico process, and the analysis of data from the BovReg project (https://www.bovreg.eu/) provided an opportunity to explore new ways to identify reliable circRNAs. By considering 117 tissue samples, we characterized 23,926 exonic circRNAs, 337 circRNAs from 273 introns (191 ciRNAs, 146 intron circles), 108 circRNAs from small non-coding genes and nearly 36.6K circRNAs classified as other_circRNAs. Furthermore, for 63 of those samples we analysed in parallel data from total-RNAseq (ribosomal RNAs depleted prior to library preparation) with paired mRNAseq (library prepared with poly(A)-selected RNAs). The high number of circRNAs detected in mRNAseq, and the significant number of novel circRNAs, mainly other_circRNAs, led us to consider all circRNAs detected in mRNAseq as artificial. This study provided evidence of 189 false entries in the list of exonic circRNAs: 103 artif_circRNAs identified by total RNAseq/mRNAseq comparison using two circRNA tools, 26 probable artif_circRNAs, and 65 identified by deep annotation analysis. Extensive benchmarking was performed (including analyses with CIRI2 and CIRCexplorer-2) and confirmed 94% of the 23,737 reliable exonic circRNAs. Moreover, this study demonstrates the effectiveness of a panel of highly expressed exonic circRNAs (5-8%) in analysing the tissue specificity of the bovine circular transcriptome.
Disciplines :
Genetics & genetic processes
Author, co-author :
Robic, Annie ; GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
Hadlich, Frieder ; Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
Costa Monteiro Moreira, Gabriel ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Louise Clark, Emily ; The Roslin Institute, University of Edinburgh, Edinburgh, UK
Plastow, Graham ; Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, Canada
Charlier, Carole ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics
Kühn, Christa ; Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany ; Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany ; Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
Language :
English
Title :
Innovative construction of the first reliable catalogue of bovine circular RNAs.
H2020 - 815668 - BovReg - BovReg - Identification of functionally active genomic features relevant to phenotypic diversity and plasticity in cattle
Funders :
EU - European Union
Funding text :
These studies are fully associated with the FAANG initiative. Data was produced by BovReg, which has received funding from the European Union\u2019s Horizon 2020 research and innovation programme under grant agreement [No 815668]. INRAE (GenPhySE and Animal Genetics division) and the Institute of Genome Biology of FBN supported studies around circular RNAs. Annie Robic acknowledges INRAE (more precisely the Animal Genetics and the M2I divisions) and the FBN (more precisely the Institute of Genome Biology), which supported her research stay in FBN in 2022\u20132023. We thank Dr Sylvain Foissac and Dr Laurence Liaubet (GenPhySE) for indirectly enriching this study through their insightful discussions.
Rosen BD, Bickhart DM, Schnabel RD, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience. 2020;9(3). doi: 10.1093/gigascience/giaa021
Goszczynski DE, Halstead MM, Islas-Trejo AD, et al. Transcription initiation mapping in 31 bovine tissues reveals complex promoter activity, pervasive transcription, and tissue-specific promoter usage. Genome Res. 2021;31(4):732–744. doi: 10.1101/gr.267336.120
Ross EM, Sanjana H, Nguyen LT, et al. Extensive variation in gene expression is revealed in 13 fertility-related genes using RNA-Seq, ISO-Seq, and CAGE-Seq from Brahman Cattle. Front Genet. 2022;13:784663. doi: 10.3389/fgene.2022.784663
Salavati M, Clark R, Becker D, et al. Improving the annotation of the cattle genome by annotating transcription start sites in a diverse set of tissues and populations using cap analysis gene expression sequencing. G3: Genes, Genomes, Genet. 2023;13(8):G3 13. doi: 10.1093/g3journal/jkad108
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–157. doi: 10.1261/rna.035667.112
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi: 10.1038/nature11928
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLOS ONE. 2012;7(2):e30733. doi: 10.1371/journal.pone.0030733
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806. doi: 10.1016/j.molcel.2013.08.017
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691. doi: 10.1038/s41576-019-0158-7
Liu CX, Chen LL., Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185(13):2390. doi: 10.1016/j.cell.2022.06.001
Wilusz JE. Circular RNAs: unexpected outputs of many protein-coding genes. RNA Biol. 2017;14(8):1007–1017. doi: 10.1080/15476286.2016.1227905
Yang L, Wilusz JE, Chen LL. Biogenesis and regulatory roles of circular RNAs. Annu Rev Cell Dev Biol. 2022;38(1):263–289. doi: 10.1146/annurev-cellbio-120420-125117
Horiuchi T, Aigaki T. Alternative trans-splicing: a novel mode of pre-mRNA processing. Biol Cell. 2006;98(2):135–140. doi: 10.1042/BC20050002
Chuang TJ, Chen YJ, Chen CY, et al. Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells. Nucleic Acids Res. 2018;46(7):3671–3691. doi: 10.1093/nar/gky032
Dubois J, Sczakiel G. The human TRAM1 locus expresses circular RNAs. Sci Rep. 2021;11(1):22114. doi: 10.1038/s41598-021-01548-0
Rahimi K, Veno MT, Dupont DM, et al. Nanopore sequencing of brain-derived full-length circRnas reveals circRNA-specific exon usage, intron retention and microexons. Nat Commun. 2021;12(1):4825. doi: 10.1038/s41467-021-24975-z
Robic A, Faraut T, Djebali S, et al. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs. RNA Biol. 2019;16(9):1190–1204. doi: 10.1080/15476286.2019.1621621
Talhouarne GJ, Gall JG. Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes. RNA. 2014;20(9):1476–1487. doi: 10.1261/rna.045781.114
Taggart AJ, Lin CL, Shrestha B, et al. Large-scale analysis of branchpoint usage across species and cell lines. Genome Res. 2017;27(4):639–649. doi: 10.1101/gr.202820.115
Ares M, Jr., Igel H, Katzman S, et al. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes Dev. 2024;38(7–8):322–335. doi: 10.1101/gad.351764.124
Ma XK, Zhai SN, Yang L. Approaches and challenges in genome-wide circular RNA identification and quantification. Trends Genet. 2023;39(12):897–907. doi: 10.1016/j.tig.2023.09.006
Nielsen AF, Bindereif A, Bozzoni I, et al. Best practice standards for circular RNA research. Nat Methods. 2022;19(10):1208–1220. doi: 10.1038/s41592-022-01487-2
Ma XK, Xue W, Chen LL, et al. CIRCexplorer pipelines for circRNA annotation and quantification from non-polyadenylated RNA-seq datasets. Methods. 2021;196:3–10. doi: 10.1016/j.ymeth.2021.02.008
Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Brief Bioinform. 2018;19(5):803–810. doi: 10.1093/bib/bbx014
Liu X, Frost J, Bowcock A, et al. Canonical and interior circular RNAs function as competing endogenous RNAs in Psoriatic Skin. Int J Mol Sci. 2021;22(10):5182. doi: 10.3390/ijms22105182
Liu X, Hu Z, Zhou J, et al. Interior circular RNA. RNA Biol. 2020;17(1):87–97. doi: 10.1080/15476286.2019.1669391
Robic A, Cerutti C, Kühn C, et al. Comparative analysis of the circular transcriptome in muscle, liver and testis in three livestock species. Front Genet. 2021;12:665153. doi: 10.3389/fgene.2021.665153
Robic A, Demars J, Kühn C. In-depth analysis reveals production of circular RNAs from non-coding sequences. Cells. 2020;9(8):1806. doi: 10.3390/cells9081806
Yu CY, Liu HJ, Hung LY, et al. Is an observed non-co-linear RNA product spliced in trans, in cis or just in vitro?Nucleic Acids Res. 2014;42(14):9410–9423. doi: 10.1093/nar/gku643
Lv X, Chen W, Sun W, et al. Expression profile analysis to identify circular RNA expression signatures in hair follicle of Hu sheep lambskin. Genomics. 2020;112(6):4454–4462. doi: 10.1016/j.ygeno.2020.07.046
Lu T, Cui L, Zhou Y, et al. Transcriptome-wide investigation of circular RNAs in rice. RNA. 2015;21(12):2076–2087. doi: 10.1261/rna.052282.115
Gruhl F, Janich P, Kaessmann H, et al. Circular RNA repertoires are associated with evolutionarily young transposable elements. Elife. 2021;10. doi: 10.7554/eLife.67991
Moreira GCM, Dupont S, Becker D, et al. Multi-dimensional functional annotation of the bovine genome for the BovReg project. In: Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP), Rotterdam, the Netherlands; 2022. p. 2261–2264.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635
Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 2016;32(7):1094–1096. doi: 10.1093/bioinformatics/btv656
Robic A, Cerutti C, Demars J, et al. From the comparative study of a circRNA originating from an mammalian ATXN2L intron to understanding the genesis of intron lariat-derived circRNAs. Biochim Et Biophys Acta (BBA) - Gene Regul Mechanisms. 2022;1865(4):194815. doi: 10.1016/j.bbagrm.2022.194815
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30(20):2843–2851. doi: 10.1093/bioinformatics/btu356
SIGENAE. Available from:http://www.sigenae.org/
HCA-Galaxy-tutorial. Available from:http://genoweb.toulouse.inra.fr/~formation/CATIBIOS4BIOL_stats/Learning_clustering_current.pdf
Xu C, Zhang J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 2021;36(4):109439. doi: 10.1016/j.celrep.2021.109439
Ragan C, Goodall GJ, Shirokikh NE, et al. Insights into the biogenesis and potential functions of exonic circular RNA. Sci Rep. 2019;9(1):2048. doi: 10.1038/s41598-018-37037-0
Chen LL, Bindereif A, Bozzoni I, et al. A guide to naming eukaryotic circular RNAs. Nat Cell Biol. 2023;25(1):1–5. doi: 10.1038/s41556-022-01066-9
Chuang TJ, Chiang TW, Chen CY. Assessing the impacts of various factors on circular RNA reliability. Life Sci Alliance. 2023;6(5):e202201793. doi: 10.26508/lsa.202201793
Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 2021;22(3):e52072. doi: 10.15252/embr.202052072
Chuang TJ, Wu CS, Chen CY, et al. NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res. 2016;44(3):e29. doi: 10.1093/nar/gkv1013
Chen YC, Chen CY, Chiang TW, et al. Detecting intragenic trans-splicing events from non-co-linearly spliced junctions by hybrid sequencing. Nucleic Acids Res. 2023;51(15):7777–7797. doi: 10.1093/nar/gkad623
Schneider T, Schreiner S, Preusser C, et al. Northern blot analysis of circular RNAs. Methods Mol Biol. 2018;1724:119–133.
Mi Z, Zhongqiang C, Caiyun J, et al. Circular RNA detection methods: A minireview. Talanta. 2022;238:123066. doi: 10.1016/j.talanta.2021.123066
Vromman M, Anckaert J, Bortoluzzi S, et al. Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat Methods. 2023;20(8):1159–1169. doi: 10.1038/s41592-023-01944-6
Appelbaum T, Aguirre GD, Beltran WA. Identification of circular RNAs hosted by the RPGR ORF15 genomic locus. RNA Biol. 2023;20(1):31–47. doi: 10.1080/15476286.2022.2159165
Wu Z, Sun H, Wang C, et al. Mitochondrial genome-derived circRNA mc-COX2 functions as an oncogene in chronic lymphocytic leukemia. Mol Ther Nucleic Acids. 2020;20:801–811. doi: 10.1016/j.omtn.2020.04.017
Rasmussen AM, Okholm TLH, Knudsen M, et al. Circular stable intronic RNAs possess distinct biological features and are deregulated in bladder cancer. NAR Cancer. 2023;5(3):zcad041. doi: 10.1093/narcan/zcad041
Robic A, Kühn C. Beyond back splicing, a still poorly explored world: non-canonical circular RNAs. Genes (Basel). 2020;11(9):1111. doi: 10.3390/genes11091111
Jin L, Tang Q, Hu S, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat Commun. 2021;12(1):3715. doi: 10.1038/s41467-021-23560-8
Soumillon M, Necsulea A, Weier M, et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 2013;3(6):2179–2190. doi: 10.1016/j.celrep.2013.05.031
Yang W, Zhao F, Chen M, et al. Identification and characterization of male reproduction-related genes in pig (sus scrofa) using transcriptome analysis. BMC Genomics. 2020;21(1):381. doi: 10.1186/s12864-020-06790-w
Clark EL, Bush SJ, McCulloch MEB, et al. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLOS Genet. 2017;13(9):e1006997. doi: 10.1371/journal.pgen.1006997