[en] About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.
F.R.S.-FNRS - Fonds de la Recherche Scientifique ANR - Agence Nationale de la Recherche
Funding text :
The UMR1136 is supported by a grant overseen by the French National
Research Agency (ANR) as part of the “Investissements d’Avenir”
program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). The work
about the chloroplastic SUF machinery is supported by a grant awarded
by the French National Research Agency (ANR-22-CE20-0039-01) to N.
R. A. K. is recipient of a research fellow from Fonds de la Recherche
Scientifique — FNRS (F.R.S.-FNRS). C.R. acknowledges F.R.S.-FNRS
(CDR J.0149.23).
Braymer, J.J., Freibert, S.A., Rakwalska-Bange, M., Lill, R., Mechanistic concepts of iron-sulfur protein biogenesis in biology. Biochim. Biophys. Acta Mol. Cell. Res., 1868, 2021, 118863.
Przybyla-Toscano, J., Boussardon, C., Law, S.R., Rouhier, N., Keech, O., Gene atlas of iron-containing proteins in Arabidopsis thaliana. Plant J. 106 (2021), 258–274.
Przybyla-Toscano, J., Roland, M., Gaymard, F., Couturier, J., Rouhier, N., Roles and maturation of iron-sulfur proteins in plastids. J. Biol. Inorg. Chem. 23 (2018), 545–566.
Garcia, P.S., D'Angelo, F., Ollagnier de Choudens, S., Dussouchaud, M., Bouveret, E., Gribaldo, S., Barras, F., An early origin of iron-sulfur cluster biosynthesis machineries before Earth oxygenation. Nat. Ecol. Evol. 6 (2022), 1564–1572.
Boyd, E.S., Thomas, K.M., Dai, Y., Boyd, J.M., Outten, F.W., Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway. Biochemistry 53 (2014), 5834–5847.
Blahut, M., Sanchez, E., Fisher, C.E., Outten, F.W., Fe-S cluster biogenesis by the bacterial Suf pathway. Biochim. Biophys. Acta Mol. Cell. Res., 1867, 2020, 118829.
Couturier, J., Touraine, B., Briat, J.-F., Gaymard, F., Rouhier, N., The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Front. Plant Sci., 4, 2013, 259.
Balk, J., Schaedler, T.A., Iron cofactor assembly in plants. Annu. Rev. Plant Biol. 65 (2014), 125–153.
Zhang, J., Bai, Z., Ouyang, M., Xu, X., Xiong, H., Wang, Q., Grimm, B., Rochaix, J.-D., Zhang, L., The DnaJ proteins DJA6 and DJA5 are essential for chloroplast iron-sulfur cluster biogenesis. EMBO J., 40, 2021, e106742.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 (2021), 583–589.
Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E., Kohli, P., et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2021 2021.10.04.463034.
Murthy, N.U., Ollagnier-de-Choudens, S., Sanakis, Y., Abdel-Ghany, S.E., Rousset, C., Ye, H., Fontecave, M., Pilon-Smits, E.A.H., Pilon, M., Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and Nad synthesis. J. Biol. Chem. 282 (2007), 18254–18264.
Xu, X.M., Møller, S.G., AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis. EMBO J. 25 (2006), 900–909.
Van Hoewyk, D., Abdel-Ghany, S.E., Cohu, C.M., Herbert, S.K., Kugrens, P., Pilon, M., Pilon-Smits, E.A.H., Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 5686–5691.
Hu, X., Kato, Y., Sumida, A., Tanaka, A., Tanaka, R., The SUFBC2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins. Plant J. 90 (2017), 235–248.
Roret, T., Pégeot, H., Couturier, J., Mulliert, G., Rouhier, N., Didierjean, C., X-ray structures of Nfs2, the plastidial cysteine desulfurase from Arabidopsis thaliana. Acta Crystallogr. F Struct. Biol. Commun. 70 (2014), 1180–1185.
Dunkle, J.A., Bruno, M.R., Outten, F.W., Frantom, P.A., Structural evidence for dimer-interface-driven regulation of the type II cysteine desulfurase, SufS. Biochemistry 58 (2019), 687–696.
Gogar, R.K., Carroll, F., Conte, J.V., Nasef, M., Dunkle, J.A., Frantom, P.A., The β-latch structural element of the SufS cysteine desulfurase mediates active site accessibility and SufE transpersulfurase positioning. J. Biol. Chem., 299, 2023, 102966.
Ye, H., Abdel-Ghany, S.E., Anderson, T.D., Pilon-Smits, E.A.H., Pilon, M., CpSufE activates the cysteine desulfurase CpNifS for chloroplastic Fe-S cluster formation. J. Biol. Chem. 281 (2006), 8958–8969.
Couturier, J., Wu, H.-C., Dhalleine, T., Pégeot, H., Sudre, D., Gualberto, J.M., Jacquot, J.-P., Gaymard, F., Vignols, F., Rouhier, N., Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1. Mol. Plant 7 (2014), 187–205.
Outten, F.W., Wood, M.J., Munoz, F.M., Storz, G., The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J. Biol. Chem. 278 (2003), 45713–45719.
Fujishiro, T., Nakamura, R., Kunichika, K., Takahashi, Y., Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis. Biophys. Physicobiol. 19 (2022), 1–18.
Caubrière, D., Moseler, A., Rouhier, N., Couturier, J., Diversity and roles of cysteine desulfurases in photosynthetic organisms. J. Exp. Bot. 74 (2023), 3345–3360.
Singh, H., Dai, Y., Outten, F.W., Busenlehner, L.S., Escherichia coli SufE sulfur transfer protein modulates the SufS cysteine desulfurase through allosteric conformational dynamics. J. Biol. Chem. 288 (2013), 36189–36200.
Kim, S., Park, S., Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration. J. Biol. Chem. 288 (2013), 27172–27180.
Parent, A., Elduque, X., Cornu, D., Belot, L., Le Caer, J.-P., Grandas, A., Toledano, M.B., D'Autréaux, B., Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols. Nat. Commun., 6, 2015, 5686.
Srour, B., Gervason, S., Hoock, M.H., Monfort, B., Want, K., Larkem, D., Trabelsi, N., Landrot, G., Zitolo, A., Fonda, E., Etienne, E., Gerbaud, G., Müller, C.S., Oltmanns, J., Gordon, J.B., Yadav, V., Kleczewska, M., Jelen, M., Toledano, M.B., Dutkiewicz, R., et al. Iron insertion at the assembly site of the ISCU scaffold protein is a conserved process initiating Fe-S cluster biosynthesis. J. Am. Chem. Soc. 144 (2022), 17496–17515.
Webert, H., Freibert, S.-A., Gallo, A., Heidenreich, T., Linne, U., Amlacher, S., Hurt, E., Mühlenhoff, U., Banci, L., Lill, R., Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat. Commun., 5, 2014, 5013.
Freibert, S.-A., Boniecki, M.T., Stümpfig, C., Schulz, V., Krapoth, N., Winge, D.R., Mühlenhoff, U., Stehling, O., Cygler, M., Lill, R., N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization. Nat. Commun., 12, 2021, 6902.
Gervason, S., Larkem, D., Mansour, A.B., Botzanowski, T., Müller, C.S., Pecqueur, L., Le Pavec, G., Delaunay-Moisan, A., Brun, O., Agramunt, J., Grandas, A., Fontecave, M., Schünemann, V., Cianférani, S., Sizun, C., Tolédano, M.B., D'Autréaux, B., Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat. Commun., 10, 2019, 3566.
Pérard, J., Ollagnier de Choudens, S., Iron-sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding. J. Biol. Inorg. Chem. 23 (2018), 581–596.
Saini, A., Mapolelo, D.T., Chahal, H.K., Johnson, M.K., Outten, F.W., SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe-S cluster formation on SufB. Biochemistry 49 (2010), 9402–9412.
Wollers, S., Layer, G., Garcia-Serres, R., Signor, L., Clemancey, M., Latour, J.-M., Fontecave, M., Ollagnier de Choudens, S., Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor. J. Biol. Chem. 285 (2010), 23331–23341.
Layer, G., Gaddam, S.A., Ayala-Castro, C.N., Ollagnier-de Choudens, S., Lascoux, D., Fontecave, M., Outten, F.W., SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly. J. Biol. Chem. 282 (2007), 13342–13350.
Blanc, B., Clémancey, M., Latour, J.-M., Fontecave, M., Ollagnier de Choudens, S., Molecular investigation of iron-sulfur cluster assembly scaffolds under stress. Biochemistry 53 (2014), 7867–7869.
Chahal, H.K., Dai, Y., Saini, A., Ayala-Castro, C., Outten, F.W., The SufBCD Fe−S scaffold complex interacts with SufA for Fe−S cluster transfer. Biochemistry 48 (2009), 10644–10653.
Chahal, H.K., Outten, F.W., Separate FeS scaffold and carrier functions for SufB2C2 and SufA during in vitro maturation of [2Fe2S] Fdx. J. Inorg. Biochem. 116 (2012), 126–134.
Hirabayashi, K., Yuda, E., Tanaka, N., Katayama, S., Iwasaki, K., Matsumoto, T., Kurisu, G., Outten, F.W., Fukuyama, K., Takahashi, Y., Wada, K., Functional dynamics revealed by the structure of the SufBCD complex, a novel ATP-binding cassette (ABC) protein that serves as a scaffold for iron-sulfur cluster biogenesis. J. Biol. Chem. 290 (2015), 29717–29731.
Yuda, E., Tanaka, N., Fujishiro, T., Yokoyama, N., Hirabayashi, K., Fukuyama, K., Wada, K., Takahashi, Y., Mapping the key residues of SufB and SufD essential for biosynthesis of iron-sulfur clusters. Sci. Rep., 7, 2017, 9387.
Carvalho, F.A., Mühlenhoff, U., Braymer, J.J., Root, V., Stümpfig, M., Oliveira, C.C., Lill, R., Hsp90 and metal-binding J-protein family chaperones are not critically involved in cellular iron-sulfur protein assembly and iron regulation in yeast. FEBS Lett. 597 (2023), 1718–1732.
Szabo, A., Korszun, R., Hartl, F.U., Flanagan, J., A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J. 15 (1996), 408–417.
Hollenstein, K., Dawson, R.J.P., Locher, K.P., Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17 (2007), 412–418.
Selbach, B.P., Chung, A.H., Scott, A.D., George, S.J., Cramer, S.P., Dos Santos, P.C., Fe-S cluster biogenesis in gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein. Biochemistry 53 (2014), 152–160.
Lin, H., Kwan, A.L., Dutcher, S.K., Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. PLoS Genet., 6, 2010, e1001105.
Azam, T., Przybyla-Toscano, J., Vignols, F., Couturier, J., Rouhier, N., Johnson, M.K., [4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins. J. Biol. Chem. 295 (2020), 18367–18378.
Przybyla-Toscano, J., Christ, L., Keech, O., Rouhier, N., Iron-sulfur proteins in plant mitochondria: roles and maturation. J. Exp. Bot. 72 (2021), 2014–2044.
Pedroletti, L., Moseler, A., Meyer, A.J., Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. J. Exp. Bot. 74 (2023), 3328–3344.
Lezhneva, L., Amann, K., Meurer, J., The universally conserved HCF101 protein is involved in assembly of [4Fe-4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J. 37 (2004), 174–185.
Touraine, B., Vignols, F., Przybyla-Toscano, J., Ischebeck, T., Dhalleine, T., Wu, H.-C., Magno, C., Berger, N., Couturier, J., Dubos, C., Feussner, I., Caffarri, S., Havaux, M., Rouhier, N., Gaymard, F., Iron–sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. J. Exp. Bot. 70 (2019), 1875–1889.
Nath, K., Wessendorf, R.L., Lu, Y., A nitrogen-fixing subunit essential for accumulating 4Fe-4S-containing photosystem I core proteins. Plant Physiol. 172 (2016), 2459–2470.
Yabe, T., Nakai, M., Arabidopsis AtIscA-I is affected by deficiency of Fe-S cluster biosynthetic scaffold AtCnfU-V. Biochem. Biophys. Res. Commun. 340 (2006), 1047–1052.
Rey, P., Becuwe, N., Tourrette, S., Rouhier, N., Involvement of Arabidopsis glutaredoxin S14 in the maintenance of chlorophyll content. Plant Cell Environ. 40 (2017), 2319–2332.
Stöckel, J., Oelmüller, R., A novel protein for photosystem I biogenesis. J. Biol. Chem. 279 (2004), 10243–10251.
Couturier, J., Jacquot, J.-P., Rouhier, N., Evolution and diversity of glutaredoxins in photosynthetic organisms. Cell. Mol. Life Sci. 66 (2009), 2539–2557.
Couturier, J., Przybyla-Toscano, J., Roret, T., Didierjean, C., Rouhier, N., The roles of glutaredoxins ligating Fe-S clusters: sensing, transfer or repair functions?. Biochim. Biophys. Acta 2015 (1853), 1513–1527.
Berndt, C., Christ, L., Rouhier, N., Mühlenhoff, U., Glutaredoxins with iron-sulphur clusters in eukaryotes — structure, function and impact on disease. Biochim. Biophys. Acta Bioenerg., 1862, 2021, 148317.
Iwema, T., Picciocchi, A., Traore, D.A.K., Ferrer, J.-L., Chauvat, F., Jacquamet, L., Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry 48 (2009), 6041–6043.
Bandyopadhyay, S., Gama, F., Molina-Navarro, M.M., Gualberto, J.M., Claxton, R., Naik, S.G., Huynh, B.H., Herrero, E., Jacquot, J.P., Johnson, M.K., Rouhier, N., Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters. EMBO J. 27 (2008), 1122–1133.
Wang, L., Ren, X., Li, Y., Rouhier, N., Jacquot, J.-P., Jin, C., Xia, B., 1H, 13C, and 15N resonance assignments of reduced GrxS14 from Populus tremula × tremuloides. Biomol. NMR Assign. 5 (2011), 121–124.
Dhalleine, T., Rouhier, N., Couturier, J., Putative roles of glutaredoxin-BolA holo-heterodimers in plants. Plant Signal. Behav., 9, 2014, e28564.
Roret, T., Tsan, P., Couturier, J., Zhang, B., Johnson, M.K., Rouhier, N., Didierjean, C., Structural and spectroscopic insights into bola-glutaredoxin complexes. J. Biol. Chem. 289 (2014), 24588–24598.
Lill, R., Freibert, S.-A., Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu. Rev. Biochem. 89 (2020), 471–499.
Wada, K., Hasegawa, Y., Gong, Z., Minami, Y., Fukuyama, K., Takahashi, Y., Crystal structure of Escherichia coli SufA involved in biosynthesis of iron-sulfur clusters: implications for a functional dimer. FEBS Lett. 579 (2005), 6543–6548.
Abdel-Ghany, S.E., Ye, H., Garifullina, G.F., Zhang, L., Pilon-Smits, E.A.H., Pilon, M., Iron-sulfur cluster biogenesis in chloroplasts involvement of the scaffold protein cpisca. Plant Physiol. 138 (2005), 161–172.
Brancaccio, D., Gallo, A., Piccioli, M., Novellino, E., Ciofi-Baffoni, S., Banci, L., [4Fe-4S] cluster assembly in mitochondria and its impairment by copper. J. Am. Chem. Soc. 139 (2017), 719–730.
Teplyakov, A., Obmolova, G., Sarikaya, E., Pullalarevu, S., Krajewski, W., Galkin, A., Howard, A.J., Herzberg, O., Gilliland, G.L., Crystal structure of the YgfZ protein from Escherichia coli suggests a folate-dependent regulatory role in one-carbon metabolism. J. Bacteriol. 186 (2004), 7134–7140.
Waller, J.C., Ellens, K.W., Alvarez, S., Loizeau, K., Ravanel, S., Hanson, A.D., Mitochondrial and plastidial COG0354 proteins have folate-dependent functions in iron-sulphur cluster metabolism. J. Exp. Bot. 63 (2012), 403–411.
Lund, T., Kulkova, M.Y., Jersie-Christensen, R., Atlung, T., Essentiality of the Escherichia coli YgfZ protein for the in vivo thiomethylation of ribosomal protein S12 by the RimO enzyme. Int. J. Mol. Sci., 24, 2023, 4728.
Weiler, B.D., Brück, M.-C., Kothe, I., Bill, E., Lill, R., Mühlenhoff, U., Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2. Proc. Natl. Acad. Sci. U. S. A. 117 (2020), 20555–20565.
Gourdoupis, S., Nasta, V., Calderone, V., Ciofi-Baffoni, S., Banci, L., IBA57 recruits ISCA2 to form a [2Fe-2S] cluster-mediated complex. J. Am. Chem. Soc. 140 (2018), 14401–14412.
Nasta, V., Da Vela, S., Gourdoupis, S., Ciofi-Baffoni, S., Svergun, D.I., Banci, L., Structural properties of [2Fe-2S] ISCA2-IBA57: a complex of the mitochondrial iron-sulfur cluster assembly machinery. Sci. Rep., 9, 2019, 18986.
Sánchez, L.A., Gómez-Gallardo, M., Díaz-Pérez, A.L., Cortés-Rojo, C., Campos-García, J., Iba57p participates in maturation of a [2Fe-2S]-cluster Rieske protein and in formation of supercomplexes III/IV of Saccharomyces cerevisiae electron transport chain. Mitochondrion 44 (2019), 75–84.
Gao, H., Subramanian, S., Couturier, J., Naik, S.G., Kim, S.-K., Leustek, T., Knaff, D.B., Wu, H.-C., Vignols, F., Huynh, B.H., Rouhier, N., Johnson, M.K., Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 52 (2013), 6633–6645.
Roland, M., Przybyla-Toscano, J., Vignols, F., Berger, N., Azam, T., Christ, L., Santoni, V., Wu, H.-C., Dhalleine, T., Johnson, M.K., Dubos, C., Couturier, J., Rouhier, N., The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. J. Biol. Chem. 295 (2020), 1727–1742.
Gao, H., Azam, T., Randeniya, S., Couturier, J., Rouhier, N., Johnson, M.K., Function and maturation of the Fe-S center in dihydroxyacid dehydratase from Arabidopsis. J. Biol. Chem. 293 (2018), 4422–4433.
Py, B., Gerez, C., Angelini, S., Planel, R., Vinella, D., Loiseau, L., Talla, E., Brochier-Armanet, C., Garcia Serres, R., Latour, J.-M., Ollagnier-de Choudens, S., Fontecave, M., Barras, F., Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier. Mol. Microbiol. 86 (2012), 155–171.
Mashruwala, A.A., Bhatt, S., Poudel, S., Boyd, E.S., Boyd, J.M., The DUF59 containing protein SufT is involved in the maturation of iron-sulfur (FeS) proteins during conditions of high FeS cofactor demand in Staphylococcus aureus. PLoS Genet., 12, 2016, e1006233.
Mashruwala, A.A., Boyd, J.M., Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron-sulfur proteins. Curr. Genet. 64 (2018), 9–16.
Roland, M., Przybyla-Toscano, J., Vignols, F., Berger, N., Azam, T., Christ, L., Santoni, V., Wu, H.-C., Dhalleine, T., Johnson, M.K., Dubos, C., Couturier, J., Rouhier, N., The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. J. Biol. Chem. 295 (2020), 1727–1742.
Berger, N., Vignols, F., Przybyla-Toscano, J., Roland, M., Rofidal, V., Touraine, B., Zienkiewicz, K., Couturier, J., Feussner, I., Santoni, V., Rouhier, N., Gaymard, F., Dubos, C., Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. J. Exp. Bot. 71 (2020), 4171–4187.
Berger, N., Vignols, F., Touraine, B., Taupin-Broggini, M., Rofidal, V., Demolombe, V., Santoni, V., Rouhier, N., Gaymard, F., Dubos, C., A global proteomic approach sheds new light on potential iron-sulfur client proteins of the chloroplastic maturation factor nfu3. Int. J. Mol. Sci., 21, 2020.
Boyd, J.M., Pierik, A.J., Netz, D.J.A., Lill, R., Downs, D.M., Bacterial ApbC can bind and effectively transfer iron-sulfur clusters. Biochemistry 47 (2008), 8195–8202.
Bych, K., Kerscher, S., Netz, D.J.A., Pierik, A.J., Zwicker, K., Huynen, M.A., Lill, R., Brandt, U., Balk, J., The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO J. 27 (2008), 1736–1746.
Netz, D.J.A., Pierik, A.J., Stümpfig, M., Bill, E., Sharma, A.K., Pallesen, L.J., Walden, W.E., Lill, R., A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J. Biol. Chem. 287 (2012), 12365–12378.
Schwenkert, S., Netz, D.J.A., Frazzon, J., Pierik, A.J., Bill, E., Gross, J., Lill, R., Meurer, J., Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly. Biochem. J. 425 (2010), 207–218.
Pyrih, J., Žárský, V., Fellows, J.D., Grosche, C., Wloga, D., Striepen, B., Maier, U.G., Tachezy, J., The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista. BMC Ecol. Evol., 21, 2021, 46.
Weerapana, E., Wang, C., Simon, G.M., Richter, F., Khare, S., Dillon, M.B.D., Bachovchin, D.A., Mowen, K., Baker, D., Cravatt, B.F., Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468 (2010), 790–795.
Tripathi, A., Anand, K., Das, M., O'Niel, R.A., Sabarinath, P.S., Thakur, C., Raghunatha Reddy, R.L., Rajmani, R.S., Chandra, N., Laxman, S., Singh, A., Mycobacterium tuberculosis requires SufT for Fe-S cluster maturation, metabolism, and survival in vivo. PLoS Pathog., 18, 2022, e1010475.
Grossman, J.D., Gay, K.A., Camire, E.J., Walden, W.E., Perlstein, D.L., Coupling nucleotide binding and hydrolysis to iron-sulfur cluster acquisition and transfer revealed through genetic dissection of the Nbp35 ATPase site. Biochemistry 58 (2019), 2017–2027.
Pardoux, R., Fiévet, A., Carreira, C., Brochier-Armanet, C., Valette, O., Dermoun, Z., Py, B., Dolla, A., Pauleta, S.R., Aubert, C., The bacterial MrpORP is a novel Mrp/NBP35 protein involved in iron-sulfur biogenesis. Sci. Rep., 9, 2019, 712.