CRISPR/Cas9; Development; Estrogen receptor; Mutant; Zebrafish; Craniofacial; Endocrine disrupting chemicals; Endocrine-disruptors; Heart-rate; Oestrogens; Environmental Engineering; Environmental Chemistry; Chemistry (all); Pollution; Public Health, Environmental and Occupational Health; Health, Toxicology and Mutagenesis
Abstract :
[en] Endocrine disruptors are chemicals that have been in the spotlight for some time now. Their modulating action on endocrine signaling pathways made them a particularly interesting topic of research within the field of ecotoxicology. Traditionally, endocrine disrupting properties are studied using exposure to suspected chemicals. In recent years, a major breakthrough in biology has been the advent of targeted gene editing tools to directly assess the function of specific genes. Among these, the CRISPR/Cas9 method has accelerated progress across many disciplines in biology. This versatile tool allows to address antagonism differently, by directly inactivating the receptors targeted by endocrine disruptors. Here, we used the CRISPR/Cas9 method to knock out the different estrogen receptors in zebrafish and we assessed the potential effects this generates during development. We used a panel of biological tests generally used in zebrafish larvae to investigate exposure to compounds deemed as endocrine disrupting chemicals. We demonstrate that the absence of individual functional estrogen receptors (Esr1, Esr2b, or Gper1) does affect behavior, heart rate and overall development. Each mutant line was viable and could be grown to adulthood, the larvae tended to be morphologically grossly normal. A substantial fraction (70%) of the esr1 mutants presented severe craniofacial deformations, while the remaining 30% of esr1 mutants also had changes in behavior. esr2b mutants had significantly increased heart rate and significant impacts on craniofacial morphometrics. Finally, mutation of gper1 affected behavior, decreased standard length, and decreased bone mineralization as assessed in the opercle. Although the exact molecular mechanisms underlying these effects will require further investigations in the future, we added a new concept and new tools to explore and better understand the actions of the large group of endocrine disrupting chemicals found in our environment.
H2020 - 722634 - PROTECTED - PROTECTion against Endocrine Disruptors; Detection, mixtures, health effects, risk assessment and communication.
Name of the research project :
PROTECTED - PROTECTion against Endocrine Disruptors; Detection, mixtures, health effects, risk assessment and communication.
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union
Funding text :
This research project received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie Skłodowska-
Curie Innovative Training Network (ITN) program PROTECTED,
Grant agreement No. 722634. M.M. was a “Maître de
Recherche” at the Belgian research agency FNRS. The authors would like
to thank Mr. Dinh-Duy Thanh, Dr. J´er´emie Zappia, and Mr. Ratish
Raman for coaching and advising regarding the different protocols used
here. Also, the authors would like to thank the GIGA zebrafish platform
(H. Pendeville-Samain) for taking care and delivering zebrafish larvae,
and the GIGA genomic platform for sequencing.
Aceto, J., Nourizadeh-Lillabadi, R., Maree, R., Dardenne, N., Jeanray, N., Wehenkel, L., Alestrom, P., van Loon, J.J., Muller, M., Zebrafish bone and general physiology are differently affected by hormones or changes in gravity. PLoS One, 10, 2015, e0126928.
Ankley, G.T., Kahl, M.D., Jensen, K.M., Hornung, M.W., Korte, J.J., Makynen, E.A., Leino, R.L., Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicol. Sci. 67 (2002), 121–130.
Bardet, P.L., Horard, B., Robinson-Rechavi, M., Laudet, V., Vanacker, J.M., Characterization of oestrogen receptors in zebrafish (Danio rerio). J. Mol. Endocrinol. 28 (2002), 153–163.
Bedell, V.M., Wang, Y., Campbell, J.M., Poshusta, T.L., Starker, C.G., Krug, R.G., Tan, W., Penheiter, S.G., Ma, A.C., Leung, A.Y., Fahrenkrug, S.C., Carlson, D.F., Voytas, D.F., Clark, K.J., Essner, J.J., Ekker, S.C., In vivo genome editing using a high-efficiency TALEN system. Nature 491 (2012), 114–118.
Bertotto, L.B., Dasgupta, S., Vliet, S., Dudley, S., Gan, J., Volz, D.C., Schlenk, D., Evaluation of the estrogen receptor alpha as a possible target of bifenthrin effects in the estrogenic and dopaminergic signaling pathways in zebrafish embryos. Sci. Total Environ. 651 (2019), 2424–2431.
Chaturantabut, S., Shwartz, A., Evason, K.J., Cox, A.G., Labella, K., Schepers, A.G., Yang, S., Acuna, M., Houvras, Y., Mancio-Silva, L., Romano, S., Gorelick, D.A., Cohen, D.E., Zon, L.I., Bhatia, S.N., North, T.E., Goessling, W., Estrogen activation of G-protein-coupled estrogen receptor 1 regulates phosphoinositide 3-kinase and mTOR signaling to promote liver growth in zebrafish and proliferation of human hepatocytes. Gastroenterology 156 (2019), 1788–1804 e1713.
Chen, Y., Tang, H., He, J., Wu, X., Wang, L., Liu, X., Lin, H., Interaction of nuclear ERs and GPER in vitellogenesis in zebrafish. J. Steroid Biochem. Mol. Biol. 189 (2019), 10–18.
Cosnefroy, A., Brion, F., Maillot-Marechal, E., Porcher, J.M., Pakdel, F., Balaguer, P., Ait-Aissa, S., Selective activation of zebrafish estrogen receptor subtypes by chemicals by using stable reporter gene assay developed in a zebrafish liver cell line. Toxicol. Sci. 125 (2012), 439–449.
D'Agostino, Y., Locascio, A., Ristoratore, F., Sordino, P., Spagnuolo, A., Borra, M., D'Aniello, S., A rapid and cheap methodology for CRISPR/Cas9 zebrafish mutant screening. Mol. Biotechnol. 58 (2016), 73–78.
Díaz-Martín, R.D., Carvajal-Peraza, A., Yáñez-Rivera, B., Betancourt-Lozano, M., Short exposure to glyphosate induces locomotor, craniofacial, and bone disorders in zebrafish (Danio rerio) embryos. Environ. Toxicol. Pharmacol., 87, 2021, 103700.
Doering, J.A., Villeneuve, D.L., Fay, K.A., Randolph, E.C., Jensen, K.M., Kahl, M.D., LaLone, C.A., Ankley, G.T., Differential sensitivity to in vitro inhibition of cytochrome P450 aromatase (CYP19) activity among 18 freshwater fishes. Toxicol. Sci. 170 (2019), 394–403.
Doudna, J.A., Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 2014, 1258096.
El-Brolosy, M.A., Kontarakis, Z., Rossi, A., Kuenne, C., Günther, S., Fukuda, N., Kikhi, K., Boezio, G.L.M., Takacs, C.M., Lai, S.L., Fukuda, R., Gerri, C., Giraldez, A.J., Stainier, D.Y.R., Genetic compensation triggered by mutant mRNA degradation. Nature 568 (2019), 193–197.
Fenske, M., Maack, G., Schafers, C., Segner, H., An environmentally relevant concentration of estrogen induces arrest of male gonad development in zebrafish, Danio rerio. Environ. Toxicol. Chem. 24 (2005), 1088–1098.
Fenske, M., Segner, H., Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquat. Toxicol. 67 (2004), 105–126.
Fox, J., Weisberg, S., An {R} Companion to Applied Regression. 2019, Third Edition.
Fraser, T.W.K., Khezri, A., Lewandowska-Sabat, A.M., Henry, T., Ropstad, E., Endocrine disruptors affect larval zebrafish behavior: testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers. Aquat. Toxicol. 193 (2017), 128–135.
Froehlicher, M., Liedtke, A., Groh, K., Lopez-Schier, H., Neuhauss, S.C., Segner, H., Eggen, R.I., Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae. Dev. Biol. 330 (2009), 32–43.
Fushimi, S., Wada, N., Nohno, T., Tomita, M., Saijoh, K., Sunami, S., Katsuyama, H., 17β-Estradiol inhibits chondrogenesis in the skull development of zebrafish embryos. Aquat. Toxicol. 95 (2009), 292–298.
Gagnon, J.A., Valen, E., Thyme, S.B., Huang, P., Ahkmetova, L., Pauli, A., Montague, T.G., Zimmerman, S., Richter, C., Schier, A.F., Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One, 9, 2014, e98186.
Gamba, L., Cubedo, N., Ghysen, A., Lutfalla, G., Dambly-Chaudiere, C., Estrogen receptor ESR1 controls cell migration by repressing chemokine receptor CXCR4 in the zebrafish posterior lateral line system. Proc Natl Acad Sci U S A 107 (2010), 6358–6363.
Garcia, G.R., Bugel, S.M., Truong, L., Spagnoli, S., Tanguay, R.L., AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish. PLoS One, 13, 2018, e0193484.
Gorelick, D.A., Iwanowicz, L.R., Hung, A.L., Blazer, V.S., Halpern, M.E., Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples. Environ. Health Perspect. 122 (2014), 356–362.
Guerrero-Limón, G., Nivelle, R., Bich-Ngoc, N., Duy-Thanh, D., Muller, M., A realistic mixture of persistent organic pollutants affects zebrafish development, behavior, and specifically eye formation by inhibiting the condensin I complex. Toxics, 11, 2023, 357.
Hao, R., Bondesson, M., Singh, A.V., Riu, A., McCollum, C.W., Knudsen, T.B., Gorelick, D.A., Gustafsson, J.A., Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis. PLoS One, 8, 2013, e79020.
Harris, J.A., Cheng, A.G., Cunningham, L.L., MacDonald, G., Raible, D.W., Rubel, E.W., Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). Journal of the Association for Research in Otolaryngology : JARO 4 (2003), 219–234.
He, H., Wang, C., Tang, Q., Yang, F., Xu, Y., Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae. Toxicol. Lett. 289 (2018), 22–27.
Hernandez, P.P., Moreno, V., Olivari, F.A., Allende, M.L., Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear. Res. 213 (2006), 1–10.
Housden, B.E., Muhar, M., Gemberling, M., Gersbach, C.A., Stainier, D.Y., Seydoux, G., Mohr, S.E., Zuber, J., Perrimon, N., Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Rev. Genet. 18 (2017), 24–40.
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J.C., Koch, R., Rauch, G.J., White, S., Chow, W., Kilian, B., Quintais, L.T., Guerra-Assuncao, J.A., Zhou, Y., Gu, Y., Yen, J., Vogel, J.H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S.F., Laird, G.K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Elliot, D., Threadgold, G., Harden, G., Ware, D., Begum, S., Mortimore, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M., Glithero, R., Howden, P., Barker, N., Lloyd, C., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C.M., Ersan-Urun, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberlander, M., Rudolph-Geiger, S., Teucke, M., Lanz, C., Raddatz, G., Osoegawa, K., Zhu, B., Rapp, A., Widaa, S., Langford, C., Yang, F., Schuster, S.C., Carter, N.P., Harrow, J., Ning, Z., Herrero, J., Searle, S.M., Enright, A., Geisler, R., Plasterk, R.H., Lee, C., Westerfield, M., de Jong, P.J., Zon, L.I., Postlethwait, J.H., Nusslein-Volhard, C., Hubbard, T.J., Roest Crollius, H., Rogers, J., Stemple, D.L., The zebrafish reference genome sequence and its relationship to the human genome. Nature 496 (2013), 498–503.
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., Joung, J.K., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31 (2013), 227–229.
Joris, M., Schloesser, M., Baurain, D., Hanikenne, M., Muller, M., Motte, P., Number of inadvertent RNA targets for morpholino knockdown in Danio rerio is largely underestimated: evidence from the study of Ser/Arg-rich splicing factors. Nucleic Acids Res. 45 (2017), 9547–9557.
Lammer, E., Carr, G.J., Wendler, K., Rawlings, J.M., Belanger, S.E., Braunbeck, T., Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149 (2009), 196–209.
Lassiter, C.S., Kelley, B., Linney, E., Genomic structure and embryonic expression of estrogen receptor beta a (ERbetaa) in zebrafish (Danio rerio). Gene 299 (2002), 141–151.
Lenth, R.V., Least-squares means: the R package lsmeans. J. Stat. Software 69 (2016), 1–33.
Lenth, R.V., Bolker, B., Buerkner, P., Giné-Vazquez, I., Herve, M., Jung, M., Love, J., Miguez, F., Piaskowski, J., Riebl, H., Singmann, H., Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2022.
Liu, X., Zhu, P., Sham, K.W., Yuen, J.M., Xie, C., Zhang, Y., Liu, Y., Li, S., Huang, X., Cheng, C.H., Lin, H., Identification of a membrane estrogen receptor in zebrafish with homology to mammalian GPER and its high expression in early germ cells of the testis. Biol. Reprod. 80 (2009), 1253–1261.
Lopez-Munoz, A., Liarte, S., Gomez-Gonzalez, N.E., Cabas, I., Meseguer, J., Garcia-Ayala, A., Mulero, V., Estrogen receptor 2b deficiency impairs the antiviral response of zebrafish. Dev. Comp. Immunol. 53 (2015), 55–62.
Lu, H., Cui, Y., Jiang, L., Ge, W., Functional analysis of nuclear estrogen receptors in zebrafish reproduction by genome editing approach. Endocrinology 158 (2017), 2292–2308.
Luzio, A., Monteiro, S.M., Rocha, E., Fontainhas-Fernandes, A.A., Coimbra, A.M., Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17alpha-ethinylestradiol and fadrozole). Aquat. Toxicol. 175 (2016), 90–105.
Menuet, A., Pellegrini, E., Anglade, I., Blaise, O., Laudet, V., Kah, O., Pakdel, F., Molecular characterization of three estrogen receptor forms in zebrafish: binding characteristics, transactivation properties, and tissue distributions. Biol. Reprod. 66 (2002), 1881–1892.
Nasevicius, A., Ekker, S.C., Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26 (2000), 216–220.
Nasri, A., Mezni, A., Lafon, P.A., Wahbi, A., Cubedo, N., Clair, P., Harrath, A.H., Beyrem, H., Rossel, M., Perrier, V., Ethinylestradiol (EE2) residues from birth control pills impair nervous system development and swimming behavior of zebrafish larvae. Sci. Total Environ., 770, 2021, 145272.
Nicolson, T., The genetics of hearing and balance in zebrafish. Annu. Rev. Genet. 39 (2005), 9–22.
Notch, E.G., Mayer, G.D., Efficacy of pharmacological estrogen receptor antagonists in blocking activation of zebrafish estrogen receptors. Gen. Comp. Endocrinol. 173 (2011), 183–189.
Pang, Y., Thomas, P., Involvement of estradiol-17beta and its membrane receptor, G protein coupled receptor 30 (GPR30) in regulation of oocyte maturation in zebrafish, Danio rario. Gen. Comp. Endocrinol. 161 (2009), 58–61.
Pang, Y., Thomas, P., Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish. Dev. Biol. 342 (2010), 194–206.
Pinheiro, J., Bates, D.M., Mixed-Effects Models in S and S-PLUS, 2000, Springer, New York Nature.
Raman, R., Antony, M., Nivelle, R., Lavergne, A., Zappia, J., Guerrero-Limón, G., Caetano da Silva, C., Kumari, P., Sojan, J.M., Degueldre, C., Bahri, M.A., Ostertag, A., Collet, C., Cohen-Solal, M., Plenevaux, A., Henrotin, Y., Renn, J., Muller, M., The osteoblast transcriptome in developing zebrafish reveals key roles for extracellular matrix proteins Col10a1a and Fbln1 in skeletal development and homeostasis. Biomolecules, 14, 2024, 139.
Raman, R., Bahri, M.A., Degueldre, C., Caetano da Silva, C., Sanchez, C., Ostertag, A., Collet, C., Cohen-Solal, M., Plenevaux, A., Henrotin, Y., Muller, M., A zebrafish mutant in the extracellular matrix protein gene efemp1 as a model for spinal osteoarthritis. Animals (Basel), 14, 2023.
Religia, P., Nguyen, N.D., Nong, Q.D., Matsuura, T., Kato, Y., Watanabe, H., Mutation of the cytochrome P450 CYP360A8 gene increases sensitivity to paraquat in Daphnia magna. Environ. Toxicol. Chem. 40 (2021), 1279–1288.
Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., Stainier, D.Y., Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524 (2015), 230–233.
Santos, D., Matos, M., Coimbra, A.M., Developmental toxicity of endocrine disruptors in early life stages of zebrafish, a genetic and embryogenesis study. Neurotoxicol. Teratol. 46 (2014), 18–25.
Schiller, V., Wichmann, A., Kriehuber, R., Muth-Kohne, E., Giesy, J.P., Hecker, M., Fenske, M., Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 157 (2013), 41–53.
Schiller, V., Wichmann, A., Kriehuber, R., Schafers, C., Fischer, R., Fenske, M., Transcriptome alterations in zebrafish embryos after exposure to environmental estrogens and anti-androgens can reveal endocrine disruption. Reprod. Toxicol. 42 (2013), 210–223.
Schulte-Merker, S., Stainier, D.Y., Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 141 (2014), 3103–3104.
Segner, H., Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149 (2009), 187–195.
Soares, J., Coimbra, A.M., Reis-Henriques, M.A., Monteiro, N.M., Vieira, M.N., Oliveira, J.M., Guedes-Dias, P., Fontainhas-Fernandes, A., Parra, S.S., Carvalho, A.P., Castro, L.F., Santos, M.M., Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol. Aquat. Toxicol. 95 (2009), 330–338.
Staal, Y.C.M., Meijer, J., van der Kris, R.J.C., de Bruijn, A.C., Boersma, A.Y., Gremmer, E.R., Zwart, E.P., Beekhof, P.K., Slob, W., van der Ven, L.T.M., Head skeleton malformations in zebrafish (Danio rerio) to assess adverse effects of mixtures of compounds. Arch. Toxicol. 92 (2018), 3549–3564.
Stewart, M.K., Hoehne, L., Dudczig, S., Mattiske, D.M., Pask, A.J., Jusuf, P.R., Exposure to an environmentally relevant concentration of 17alpha-ethinylestradiol disrupts craniofacial development of juvenile zebrafish. Ecotoxicol. Environ. Saf., 251, 2023, 114541.
Ton, C., Parng, C., The use of zebrafish for assessing ototoxic and otoprotective agents. Hear. Res. 208 (2005), 79–88.
Van den Belt, K., Wester, P.W., van der Ven, L.T., Verheyen, R., Witters, H., Effects of ethynylestradiol on the reproductive physiology in zebrafish (Danio rerio): time dependency and reversibility. Environ. Toxicol. Chem. 21 (2002), 767–775.
Villeneuve, D.L., Knoebl, I., Kahl, M.D., Jensen, K.M., Hammermeister, D.E., Greene, K.J., Blake, L.S., Ankley, G.T., Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas). Aquat. Toxicol. 76 (2006), 353–368.
Villeneuve, L., Wang, R.L., Bencic, D.C., Biales, A.D., Martinovic, D., Lazorchak, J.M., Toth, G., Ankley, G.T., Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation. Environ. Toxicol. Chem. 28 (2009), 1767–1782.
Weber, D.N., Hoffmann, R.G., Hoke, E.S., Tanguay, R.L., Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions. J. Toxicol. Environ. Health, Part A 78 (2015), 50–66.
Welshons, W.V., Thayer, K.A., Judy, B.M., Taylor, J.A., Curran, E.M., Saal, F.S.v., Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Persp 111 (2003), 994–1006.
Westerfield, M., THE ZEBRAFISH BOOK; A Guide for the Laboratory Use of Zebrafish (Danio rerio). fifth ed., 2007, University of Oregon Press, Eugene, OR.
Wienholds, E., van Eeden, F., Kosters, M., Mudde, J., Plasterk, R.H., Cuppen, E., Efficient target-selected mutagenesis in zebrafish. Genome Res. 13 (2003), 2700–2707.
Wu, X.J., Williams, M.J., Kew, K.A., Converse, A., Thomas, P., Zhu, Y., Reduced vitellogenesis and female fertility in gper knockout zebrafish. Front. Endocrinol., 12, 2021, 637691.
Xia, M., Wang, X., Xu, J., Qian, Q., Gao, M., Wang, H., Tris (1-chloro-2-propyl) phosphate exposure to zebrafish causes neurodevelopmental toxicity and abnormal locomotor behavior. Sci. Total Environ., 758, 2021, 143694.
Young, A., Kochenkov, V., McIntyre, J.K., Stark, J.D., Coffin, A.B., Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos. Sci. Rep., 8, 2018, 2830.
Zare Mirakabad, H., Farsi, M., Malekzadeh Shafaroudi, S., Bagheri, A., Iranshahi, M., Moshtaghi, N., Comparison the effect of ferutinin and 17beta-estradiol on bone mineralization of developing zebrafish (Danio rerio) larvae. Int. J. Mol. Sci., 20, 2019.
Zhao, F., Ding, X., Liu, Z., Yan, X., Chen, Y., Jiang, Y., Chen, S., Wang, Y., Kang, T., Xie, C., He, M., Zheng, J., Application of CRISPR/Cas9-based genome editing in ecotoxicology. Environ Pollut, 336, 2023, 122458.