Astrophysics - Earth and Planetary Astrophysics; Instrumentation and Methods for Astrophysics
Abstract :
[en] Ultracool dwarf stars are abundant, long-lived and uniquely suited to enable the atmospheric study of transiting terrestrial companions with the JWST. Among them, the most prominent is the M8.5V star TRAPPIST-1 and its seven planets. While JWST Cycle 1 observations have started to yield preliminary insights into the planets, they have also revealed that their atmospheric exploration requires a better understanding of their host star. Here we propose a roadmap to characterize the TRAPPIST-1 system — and others like it — in an efficient and robust manner with JWST. We notably recommend that — although more challenging to schedule — multi-transit windows be prioritized to mitigate the effects of stellar activity and gather up to twice more transits per JWST hour spent. We conclude that, for such systems, planets cannot be studied in isolation by small programmes but rather need large-scale, joint space- and ground-based initiatives to fully exploit the capabilities of JWST for the exploration of terrestrial planets.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
de Wit, J.; MIT, Department of Earth and Planetary Science
Doyon, René; MIT, Department of Earth and Planetary Science
Rackham, Benjamin V.; University of Montreal, Department of Physics, -
Lim, Olivia; MIT, Department of Earth and Planetary Science, MIT, Center for Space Research/Kavli Institute
Ducrot, Elsa; University of Montreal, Department of Physics, -
Kreidberg, Laura; Paris Region Fellow, Marie Sklodowska-Curie Action, Paris, France, AIM, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
Benneke, Björn; Max-Planck-Institute for Astronomy, Heidelberg
Ribas, Ignasi; University of Montreal, Department of Physics, -
Berardo, David; Institute of Space Studies, Catalona, Institute of Space Studies, Catalona
Niraula, Prajwal; MIT, Department of Earth and Planetary Science
Iyer, Aishwarya; MIT, Department of Earth and Planetary Science
Shapiro, Alexander; Arizona State University, School of Earth and Space Exploration
Kostogryz, Nadiia; Max-Planck-Institute for Solar System Research, Lindau
Witzke, Veronika; Max-Planck-Institute for Solar System Research, Lindau
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) ; Max-Planck-Institute for Solar System Research, Lindau
Agol, Eric; University of Liege, Belgium
Meadows, Victoria; Department of Astronomy and Astrobiology Program, University of Washington, Seattle, WA, USA, NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, WA, USA
Burgasser, Adam J.; Department of Astronomy and Astrobiology Program, University of Washington, Seattle, WA, USA, NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, WA, USA
Owen, James E.; University of California, San Diego, Center for Astrophysics and Space Science
Fortney, Jonathan J.; Imperial College, Astrophysics Group
Selsis, Franck; University of California, Santa Cruz, Department of Astronomy and Astrophysics
Bello-Arufe, Aaron; Laboratoire d'astrophysique de Bordeaux, University of Bordeaux, CNRS, B18N, Pessac, France
de Beurs, Zoë; Jet Propulsion Laboratory
Bolmont, Emeline; MIT, Department of Earth and Planetary Science
Cowan, Nicolas; University of Geneva, Astronomical Observatory, -
Dong, Chuanfei; McGill University, Department of Earth and Planetary Sciences, McGill University, Department of Physics
Drake, Jeremy J.; Boston University, Department of Astronomy
Garcia, Lionel; Harvard Smithsonian Center for Astrophysics
Greene, Thomas; University of Liege, Belgium
Haworth, Thomas; NASA Ames Research Center
Hu, Renyu; Queen Mary University, School of Physics and Astronomy
Kane, Stephen R.; Jet Propulsion Laboratory, California Institute of Technology, Division of Geological and Planetary Sciences
Kervella, Pierre; University of California, Irvine, Department of Earth System Science
Koll, Daniel; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Krissansen-Totton, Joshua; Peking University, China
Lagage, Pierre-Olivier; University of Washington, Department of Earth and Space Sciences
Lichtenberg, Tim; AIM, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
Lustig-Yaeger, Jacob; University of Groningen, Kapteyn Astronomical Institute
Turbet, Martin; University of Texas, Austin, Department of Physics, Florida Institute of Technology, Department of Physics and Space Science
Seager, Sara; Laboratoire d'astrophysique de Bordeaux, University of Bordeaux, CNRS, B18N, Pessac, France, Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, Ecole Normale Supérieure, Université PSL, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
Barkaoui, Khalid ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Exoplanets in Transit: Identification and Characterization ; MIT, Department of Earth and Planetary Science, MIT, Center for Space Research/Kavli Institute, MIT, Department of Earth and Planetary Science
Bell, Taylor J.; MIT, Department of Earth and Planetary Science, University of Liege, Belgium, Astrophysical Institute of the Canaries
Burdanov, Artem; NASA Ames Research Center, Bay Area Environmental Research Institute, California
Cadieux, Charles; MIT, Department of Earth and Planetary Science
Charnay, Benjamin; Trottier Institute for Research on Exoplanets, Université de Montréal, Montreal, Quebec, Canada
Cloutier, Ryan; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Cook, Neil J.; McMaster University, Department of Physics and Astronomy
Correia, Alexandre C. M.; Trottier Institute for Research on Exoplanets, Université de Montréal, Montreal, Quebec, Canada
Dang, Lisa; University of Coimbra, Department of Physics, -
Daylan, Tansu; Trottier Institute for Research on Exoplanets, Université de Montréal, Montreal, Quebec, Canada
Delrez, Laetitia; Princeton University, Department of Astrophysical Sciences
Edwards, Billy; University of Liege, Belgium, University of Liege, Laboratory of Planetary and Atmospheric Physics
Fauchez, Thomas J.; Netherlands Institute for Space Research
Flagg, Laura; NASA Goddard Space Flight Center, Maryland, -
Fraschetti, Federico; Cornell University, Department of Astronomy/Center for Radiophysics and Space Research
Haqq-Misra, Jacob; Harvard Smithsonian Center for Astrophysics, University of Arizona, Department of Planetary Sciences
Huang, Ziyu; Blue Marble Space Institute of Science, Washington
Iro, Nicolas; Boston University, Department of Astronomy
Jayawardhana, Ray; Helmholtz Institute for Planetary Research, Berlin
Jehin, Emmanuel ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Department of Physics &, Astronomy, Johns Hopkins University, Baltimore, ND, USA
Jin, Meng; University of Liege, Laboratory of Planetary and Atmospheric Physics
Kite, Edwin; Lockheed Martin, Palo Alto
Kitzmann, Daniel; University of Chicago, Department of Geophysical Sciences
Kral, Quentin; University of Bern, Physics Institute
Lafrenière, David; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Libert, Anne-Sophie; Trottier Institute for Research on Exoplanets, Université de Montréal, Montreal, Quebec, Canada
Liu, Beibei; Department of Mathematics, naXys Research Institute, University of Namur, Namur, Belgium
Mohanty, Subhanjoy; Institute for Astronomy, School of Physics, Zhejiang University, Hangzhou, China
Morris, Brett M.; Imperial College, Astrophysics Group
Murray, Catriona A.; Space Telescope Science Institute, Baltimore, Maryland
Piaulet, Caroline; University of Colorado, Boulder, Department of Astrophysical and Planetary Sciences
Pozuelos, Francisco J.; Trottier Institute for Research on Exoplanets, Université de Montréal, Montreal, Quebec, Canada
Radica, Michael; Instituto de Astrofsica de Andaluca, Granada, Spain
Ranjan, Sukrit; Trottier Institute for Research on Exoplanets, Université de Montréal, Montreal, Quebec, Canada
Rathcke, Alexander; University of Arizona, Department of Planetary Sciences
Roy, Pierre-Alexis; DTU Physics, Lyngby
Schwieterman, Edward W.; Trottier Institute for Research on Exoplanets, Université de Montréal, Montreal, Quebec, Canada
Turner, Jake D.; University of California, Irvine, Department of Earth System Science
Triaud, Amaury; Cornell University, Department of Astronomy/Center for Radiophysics and Space Research
Way, Michael J.; University of Birmingham, School of Physics and Astronomy
C.D. Dressing D. Charbonneau The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity Astrophys. J. 2015 807 45 2015ApJ..807..45D 10.1088/0004-637X/807/1/45
E. Gaidos A.W. Mann A.L. Kraus M. Ireland They are small worlds after all: revised properties of Kepler M dwarf stars and their planets Mon. Not. R. Astron. Soc. 2016 457 2877 2899 2016MNRAS.457.2877G 10.1093/mnras/stw097
K. Ment D. Charbonneau The occurrence rate of terrestrial planets orbiting nearby mid-to-late M dwarfs from TESS sectors 1–42 Astron. J. 2023 165 265 2023AJ..165.265M 10.3847/1538-3881/acd175
J.J. Bochanski et al. The luminosity and mass functions of low-mass stars in the galactic disk. II. The field Astron. J. 2010 139 2679 2699 2010AJ..139.2679B 10.1088/0004-6256/139/6/2679
Triaud, A. H. M. J. et al. Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets. Nat. Astron.https://doi.org/10.1038/s41550-023-02157-9 (2023).
V.B. Kostov et al. The L 98-59 system: three transiting, terrestrial-size planets orbiting a nearby M dwarf Astron. J. 2019 158 32 2019AJ..158..32K 10.3847/1538-3881/ab2459
J.A. Dittmann et al. A temperate rocky super-Earth transiting a nearby cool star Nature 2017 544 333 336 2017Natur.544.333D 10.1038/nature22055
R. Vanderspek et al. TESS discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844 Astrophys. J. Lett. 2019 871 L24 2019ApJ..871L.24V 10.3847/2041-8213/aafb7a
I.J.M. Crossfield et al. A super-Earth and sub-Neptune transiting the late-type M dwarf LP 791-18 Astrophys. J. Lett. 2019 883 L16 2019ApJ..883L.16C 10.3847/2041-8213/ab3d30
M.S. Peterson et al. A temperate Earth-sized planet with tidal heating transiting an M6 star Nature 2023 617 701 705 2023Natur.617.701P 10.1038/s41586-023-05934-8
L. Delrez et al. Two temperate super-Earths transiting a nearby late-type M dwarf Astron. Astrophys. 2022 667 A59 10.1051/0004-6361/202244041
K. Ment et al. TOI 540 b: a planet smaller than earth orbiting a nearby rapidly rotating low-mass star Astron. J. 2021 161 23 2021AJ..161..23M 10.3847/1538-3881/abbd91
M. Gillon et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star Nature 2016 533 221 224 2016Natur.533.221G 10.1038/nature17448
M. Gillon et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 Nature 2017 542 456 460 2017Natur.542.456G 10.1038/nature21360
T. Lichtenberg M.S. Clement Reduced late bombardment on rocky exoplanets around M dwarfs Astrophys. J. Lett. 2022 938 L3 2022ApJ..938L..3L 10.3847/2041-8213/ac9521
I. Baraffe G. Chabrier F. Allard P.H. Hauschildt Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams Astron. Astrophys. 1998 337 403 412 1998A&A..337.403B
I. Baraffe D. Homeier F. Allard G. Chabrier New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit Astron. Astrophys. 2015 577 A42 2015A&A..577A.42B 10.1051/0004-6361/201425481
S.R. Kane R.K. Kopparapu S.D. Domagal-Goldman On the frequency of potential venus analogs from Kepler data Astrophys. J. Lett. 2014 794 L5 2014ApJ..794L..5K 10.1088/2041-8205/794/1/L5
F. Tian S. Ida Water contents of Earth-mass planets around M dwarfs Nat. Geosci. 2015 8 177 180 2015NatGe..8.177T 10.1038/ngeo2372
S.R. Kane et al. Venus as a laboratory for exoplanetary science J. Geophys. Res. Planets 2019 124 2015 2028 2019JGRE.124.2015K 10.1029/2019JE005939
T. Lichtenberg et al. A water budget dichotomy of rocky protoplanets from 26Al-heating Nat. Astron. 2019 3 307 313 2019NatAs..3.307L 10.1038/s41550-018-0688-5
J. Venturini O.M. Guilera J. Haldemann M.P. Ronco C. Mordasini The nature of the radius valley. Hints from formation and evolution models Astron. Astrophys. 2020 643 L1 2020A&A..643L..1V 10.1051/0004-6361/202039141
M.J. Way A.D. Del Genio Venusian habitable climate scenarios: modeling venus through time and applications to slowly rotating Venus-like exoplanets J. Geophys. Res. Planets 2020 125 e06276 10.1029/2019JE006276
T. Kimura M. Ikoma Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs Nat. Astron. 2022 6 1296 1307 2022NatAs..6.1296K 10.1038/s41550-022-01781-1
R. Luger R. Barnes Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs Astrobiology 2015 15 119 143 2015AsBio.15.119L 10.1089/ast.2014.1231
C. Dong et al. The dehydration of water worlds via atmospheric losses Astrophys. J. Lett. 2017 847 L4 2017ApJ..847L..4D 10.3847/2041-8213/aa8a60
A.P. Lincowski et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system Astrophys. J. 2018 867 76 2018ApJ..867..76L 10.3847/1538-4357/aae36a
C. Dong et al. Atmospheric escape from the TRAPPIST-1 planets and implications for habitability Proc. Natl Acad. Sci. USA 2018 115 260 265 2018PNAS.115.260D 10.1073/pnas.1708010115
Q. Kral et al. Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h Mon. Not. R. Astron. Soc. 2018 479 2649 2672 2018MNRAS.479.2649K 10.1093/mnras/sty1677
R. Hu F. Gaillard E.S. Kite Narrow loophole for H2-dominated atmospheres on habitable rocky planets around M dwarfs Astrophys. J. Lett. 2023 948 L20 2023ApJ..948L.20H 10.3847/2041-8213/acd0b4
C.W. Ormel B. Liu D. Schoonenberg Formation of TRAPPIST-1 and other compact systems Astron. Astrophys. 2017 604 A1 2017A&A..604A..1O 10.1051/0004-6361/201730826
L.M. Weiss et al. The California-Kepler Survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced Astron. J. 2018 155 48 2018AJ..155..48W 10.3847/1538-3881/aa9ff6
E. Sandford D. Kipping M. Collins On planetary systems as ordered sequences Mon. Not. R. Astron. Soc. 2021 505 2224 2246 2021MNRAS.505.2224S 10.1093/mnras/stab1480
L. Mishra et al. The New Generation Planetary Population Synthesis (NGPPS) VI. Introducing KOBE: Kepler observes Bern exoplanets. Theoretical perspectives on the architecture of planetary systems: peas in a pod Astron. Astrophys. 2021 656 A74 10.1051/0004-6361/202140761
S.C. Millholland J.N. Winn Split peas in a pod: intra-system uniformity of super-Earths and sub-Neptunes Astrophys. J. Lett. 2021 920 L34 2021ApJ..920L.34M 10.3847/2041-8213/ac2c77
A.V. Goyal S. Wang Generalized peas in a pod: extending intra-system mass uniformity to non-TTV systems via the Gini Index Astrophys. J. 2022 933 162 2022ApJ..933.162G 10.3847/1538-4357/ac7562
Delrez, L. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. In Ground-based and Airborne Telescopes VII (eds Marshall, H. K. & Spyromilio, J.) 107001I (SPIE, 2018).
Burdanov, A., Delrez, L., Gillon, M. Jehin, E. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1007–1023 (Springer Cham, 2018).
A. Gibbs et al. EDEN: sensitivity analysis and transiting planet detection limits for nearby late red dwarfs Astron. J. 2020 159 169 2020AJ..159.169G 10.3847/1538-3881/ab7926
P. Tamburo et al. The Perkins INfrared Exosatellite Survey (PINES) I. Survey overview, reduction pipeline, and early results Astron. J. 2022 163 253 2022AJ..163.253T 10.3847/1538-3881/ac64aa
M. Gillon E. Jehin A. Fumel P. Magain D. Queloz TRAPPIST-UCDTS: a prototype search for habitable planets transiting ultra-cool stars EPJ Web Conf. 2013 47 03001 10.1051/epjconf/20134703001
E. Ducrot et al. TRAPPIST-1: global results of the Spitzer Exploration Science Program Red Worlds Astron. Astrophys. 2020 640 A112 10.1051/0004-6361/201937392
E. Agol et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides Planet. Sci. J. 2021 2 1 10.3847/PSJ/abd022
C. Dorn T. Lichtenberg Hidden water in magma ocean exoplanets Astrophys. J. Lett. 2021 922 L4 2021ApJ..922L..4D 10.3847/2041-8213/ac33af
J. de Wit et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c Nature 2016 537 69 72 2016Natur.534..69W 10.1038/nature18641
J. de Wit et al. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1 Nat. Astron. 2018 2 214 219 2018NatAs..2.214D 10.1038/s41550-017-0374-z
H.R. Wakeford et al. Disentangling the planet from the star in late-type M dwarfs: a case study of TRAPPIST-1g Astron. J. 2019 157 11 2019AJ..157..11W 10.3847/1538-3881/aaf04d
M. Turbet et al. A review of possible planetary atmospheres in the TRAPPIST-1 system Space Sci. Rev. 2020 216 100 2020SSRv.216.100T 10.1007/s11214-020-00719-1
L.J. Garcia et al. HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h Astron. Astrophys. 2022 665 A19 10.1051/0004-6361/202142603
A. Gressier et al. Near-infrared transmission spectrum of TRAPPIST-1 h using Hubble WFC3 G141 observations Astron. Astrophys. 2022 658 A133 10.1051/0004-6361/202142140
T.P. Greene et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST Nature 2023 618 39 42 2023Natur.618..39G 10.1038/s41586-023-05951-7
O. Lim et al. Atmospheric reconnaissance of TRAPPIST-1 b with JWST/NIRISS: evidence for strong stellar contamination in the transmission spectra Astrophys. J. Lett. 2023 955 L22 2023ApJ..955L.22L 10.3847/2041-8213/acf7c4
S. Zieba et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c Nature 2023 620 746 749 2023Natur.620.746Z 10.1038/s41586-023-06232-z
A.P. Lincowski et al. Potential atmospheric compositions of TRAPPIST-1 c constrained by JWST/MIRI observations at 15 μm Astrophys. J. Lett. 2023 955 L7 2023ApJ..955L..7L 10.3847/2041-8213/acee02
W.S. Howard et al. Characterizing the near-infrared spectra of flares from TRAPPIST-1 during JWST transit spectroscopy observations Astrophys. J. 2023 959 64 2023ApJ..959..64H 10.3847/1538-4357/acfe75
S.E. Moran et al. High tide or riptide on the cosmic shoreline? A water-rich atmosphere or stellar contamination for the warm super-Earth GJ 486b from JWST observations Astrophys. J. Lett. 2023 948 L11 2023ApJ..948L.11M 10.3847/2041-8213/accb9c
B.V. Rackham D. Apai M.S. Giampapa The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets Astrophys. J. 2018 853 122 2018ApJ..853.122R 10.3847/1538-4357/aaa08c
B.V. Rackham D. Apai M.S. Giampapa The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars Astron. J. 2019 157 96 2019AJ..157..96R 10.3847/1538-3881/aaf892
V. Witzke et al. MPS-ATLAS: a fast all-in-one code for synthesising stellar spectra Astron. Astrophys. 2021 653 A65 10.1051/0004-6361/202140275
Z. Rustamkulov et al. Early release science of the exoplanet WASP-39b with JWST NIRSpec PRISM Nature 2023 614 659 663 2023Natur.614.659R 10.1038/s41586-022-05677-y
Z. Zhang Y. Zhou B.V. Rackham D. Apai The near-infrared transmission spectra of TRAPPIST-1 planets b, c, d, e, f, and g and stellar contamination in multi-epoch transit spectra Astron. J. 2018 156 178 2018AJ..156.178Z 10.3847/1538-3881/aade4f
C.V. Morley L. Kreidberg Z. Rustamkulov T. Robinson J.J. Fortney Observing the atmospheres of known temperate Earth-sized planets with JWST Astrophys. J. 2017 850 121 2017ApJ..850.121M 10.3847/1538-4357/aa927b
J. Krissansen-Totton R. Garland P. Irwin D.C. Catling Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: a TRAPPIST-1e case study Astron. J. 2018 156 114 2018AJ..156.114K 10.3847/1538-3881/aad564
J. Lustig-Yaeger V.S. Meadows A.P. Lincowski The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST Astron. J. 2019 158 27 2019AJ..158..27L 10.3847/1538-3881/ab21e0
T.J. Fauchez et al. Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system Astrophys. J. 2019 887 194 2019ApJ..887.194F 10.3847/1538-4357/ab5862
F. Wunderlich et al. Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs Astron. Astrophys. 2019 624 A49 10.1051/0004-6361/201834504
M.T. Gialluca T.D. Robinson S. Rugheimer F. Wunderlich Characterizing atmospheres of transiting Earth-like exoplanets orbiting M dwarfs with James Webb Space Telescope Publ. Astron. Soc. Pac. 2021 133 054401 2021PASP.133e4401G 10.1088/1538-3873/abf367
J.P. Faria et al. A candidate short-period sub-Earth orbiting Proxima Centauri Astron. Astrophys. 2022 658 A115 10.1051/0004-6361/202142337
Rackham, B. V. & de Wit, J. Towards robust corrections for stellar contamination in JWST exoplanet transmission spectra. Preprint at https://arxiv.org/abs/2303.15418 (2023).
D. Berardo J. de Wit B.V. Rackham Empirically constraining the spectra of stellar surface features using time-resolved spectroscopy Astrophys. J. Lett. 2024 961 L18 2024ApJ..961L.18B 10.3847/2041-8213/ad1b5b
A. Vögler et al. Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code Astron. Astrophys. 2005 429 335 351 2005A&A..429.335V 10.1051/0004-6361:20041507
B.M. Morris et al. Non-detection of contamination by stellar activity in the spitzer transit light curves of TRAPPIST-1 Astrophys. J. 2018 863 L32 2018ApJ..863L.32M 10.3847/2041-8213/aad8aa
J. Krissansen-Totton Implications of atmospheric nondetections for TRAPPIST-1 inner planets on atmospheric retention prospects for outer planets Astrophys. J. Lett. 2023 951 L39 2023ApJ..951L.39K 10.3847/2041-8213/acdc26
Redfield, S. et al. Report of the Working Group on Strategic Exoplanet Initiatives with HST and JWST. Preprint at https://arxiv.org/abs/2404.02932 (2024).
R. Luger D. Foreman-Mackey C. Hedges D.W. Hogg Mapping stellar surfaces. I. Degeneracies in the rotational light-curve problem Astron. J. 2021 162 123 2021AJ..162.123L 10.3847/1538-3881/abfdb8
R. Luger D. Foreman-Mackey C. Hedges Mapping stellar surfaces. II. An interpretable Gaussian process model for light curves Astron. J. 2021 162 124 2021AJ..162.124L 10.3847/1538-3881/abfdb9
Luger, R. et al. Mapping stellar surfaces III: an efficient, scalable, and open-source Doppler imaging model. Preprint at https://arxiv.org/abs/2110.06271 (2021).
M. Mallonn et al. GJ 1214: rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum Astron. Astrophys. 2018 614 A35 10.1051/0004-6361/201732300
A. Rosich et al. Correcting for chromatic stellar activity effects in transits with multiband photometric monitoring: application to WASP-52 Astron. Astrophys. 2020 641 A82 10.1051/0004-6361/202037586
M. Perger et al. A machine learning approach for correcting radial velocities using physical observables Astron. Astrophys. 2023 672 A118 10.1051/0004-6361/202245092
Rackham, B. V. speclib. Zenodohttps://doi.org/10.5281/zenodo.7868050 (2023).
P. Niraula et al. The impending opacity challenge in exoplanet atmospheric characterization Nat. Astron. 2022 6 1287 1295 2022NatAs..6.1287N 10.1038/s41550-022-01773-1
B. Morris fleck: fast approximate light curves for starspot rotational modulation J. Open Source Softw. 2020 5 2103 2020JOSS..5.2103M 10.21105/joss.02103
C. Reylé et al. The 10 parsec sample in the Gaia era Astron. Astrophys. 2021 650 A201 10.1051/0004-6361/202140985
Hansen, C. J. & Kawaler, S. D. Stellar Interiors. Physical Principles, Structure, and Evolution (Springer, 1994).
P. Kroupa On the variation of the initial mass function Mon. Not. R. Astron. Soc. 2001 322 231 246 2001MNRAS.322.231K 10.1046/j.1365-8711.2001.04022.x
E.M.R. Kempton et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization Publ. Astron. Soc. Pac. 2018 130 114401 2018PASP.130k4401K 10.1088/1538-3873/aadf6f